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Abstract
This thesis focuses on usability of mixed reality head-mounted display – Microsoft HoloLens
– in a human-robot collaborative workspace – the ARTable. Use of the headset is demon-
strated by created user interface which helps regular workers to better and faster understand
the ARTable system. It allows to spatially visualize learned programs, without the neces-
sity to run the robot itself. The user is guided by 3D animation of individual programs
and by device voice, which helps him to get a clear idea of what will happen if he runs
the program directly on the robot. The solution also provides interactive guidance for the
user when programming the robot. Using mixed reality displays also enables to visualize
valuable spatial information, such as robot perception.

Abstrakt
Tato práce se zaměřuje na použitelnost brýlí Microsoft HoloLens pro rozšířenou realitu
v prototypu pracoviště pro spolupráci člověka s robotem – „ARTable“. Použití brýlí je
demonstrováno vytvořeným uživatelským rozhraním, které pomáhá uživatelům lépe a rych-
leji porozumět systému ARTable. Umožňuje prostorově vizualizovat naučné programy, aniž
by bylo nutné spouštět samotného robota. Uživatel je veden 3D animací jednotlivých pro-
gramů a hlasem zařízení, což mu pomůže získat jasnou představu o tom, co by se stalo,
pokud by program spustil přímo na robotovi. Implementované řešení také umožňuje in-
teraktivně provést uživatele celým procesem programování robota. Použití brýlí umožňuje
mimo jiné zobrazit cenné prostorové informace, například vidění robota, tedy zvýraznit ty
objekty, které jsou robotem detekovány.
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Rozšířený abstrakt
Se stále větší dostupností průmyslových robotů je pravděpodobné, že malé a střední podniky
si začnou tyto roboty pořizovat, za cílem zvýšení produktivity podniku. Avšak v takových
podnicích jsou výrobní šarže menší a produkty bývají často přizpůsobeny pro konkrétní
zakázku. To vyžaduje přeprogramování robotů pro konkrétní úkoly, ke kterému je často
potřeba odborník disponující nutnými znalostmi konkrétního robota, který by mohl takové
podniky vyjít draho. Proto by bylo prospěšné umožnit běžnému pracovníku přeprogramo-
vat tyto roboty bez nutnosti hlubokých znalostí. Proto byl vytvořen prototyp pracoviště pro
spolupráci člověka s robotem – „ARTable“, který umožňuje běžnému uživateli robota pro-
gramovat na vysoké úrovni abstrakce pomocí prostorové rozšířené reality a multimodálního
vstupu a výstupu.

Takové programování je založeno na nastavování parametrů konkrétních instrukcí, které
tvoří celkový program. Avšak jednotlivé instrukce jsou popsány pouze jednoduchými tex-
tovými popisky a jak testy ukázaly, většina uživatelů měla potíže s orientací v topologii
celého programu. Uživatelé byli nejistí ohledně toho, co která instrukce znamená, co přesně
udělá, pokud bude puštěna na reálném robotu a co se od něj vůbec očekává v rámci nas-
tavování parametrů pro konkrétní program.

Cílem této práce je tedy odstranit uživatelské nejistoty tím, že uživateli nabídne možnost
vizualizovat existující programy prostřednictvím brýlí Microsoft HoloLens. Aplikace dále
interaktivně provede uživatele samotným procesem programování robota. Celkově tak
rozšíří možnosti 2D promítaného uživatelského rozhraní tím, že umožní vizualizovat pros-
torové informace prostřednictvím těchto brýlí.

Teoretická část práce popisuje základy rozšířené reality, porovnává ji s virtuální realitou,
popisuje nejčastější typy zařízení pro rozšířenou realitu, detailně popisuje brýle Microsoft
HoloLens a systém ARTable. Tento zahrnuje robota, několik senzorů, projektor a stůl s
dotykovou vrstvou.

V praktické části práce je navrženo a dále implementováno uživatelské rozhraní pro
Microsoft HoloLens, které umožní vizualizovat programy systému ARTable a provede uži-
vatele procesem programování robota. Práce je implementována prostřednictvím herního
enginu Unity, který využívá jazyk C# pro skriptování. Bylo maximálně využito existujících
balíčků a zdrojových souborů, jejichž autoři jsou řádně ocitováni, pro urychlení implemen-
tace a umožnění se soustředit na jádro práce samotné. Prvním problémem, který bylo
nutné vyřešit, byla komunikace mezi ARTable a HoloLens. Obě platformy jsou postaveny
na rozdílných operačních systémech, ARTable je postaven na Ubuntu spolu s ROSem
(Robotický Operační Systém), kdežto HoloLens běží pod Windows 10. Tento problém
řeší nástroj ROSu – rosbridge. Ten poskytuje JSON API rozhraní k funkcionalitám ROSu
pro externí programy jiných operačních systémů. Systémy si tedy prostřednictvím nástroje
rosbridge vyměňují zprávy, čímž spolu komunikují. Po úspěšném zprovoznění komunikace
je potřeba systémy vzájemně zkalibrovat, jinými slovy sladit počátky souřadných soustav.
ARTable má tento počátek po kalibraci umístěn v levém dolním rohu stolu. Brýlím je
tedy nutné sdělit, kde se tento roh nachází. Toho je docíleno pomocí detekce markeru
z obrazu přední kamery brýlí. Polohu takto detekovaného markeru jsou brýle schopny
uložit prostřednictvím prostorové kotvy (angl. spatial anchor), což zajistí, že nebude nutné
kalibrovat brýle pořad dokola při opětovném spouštění aplikace. Prostorová kotva rovněž
slouží jako „rodič“ všech dalších objektů ve scéně.

Vizualizace je realizována formou animace, která se sestaví „za chodu“ z předem při-
pravených C# tříd. Každá třída reprezentuje jednotlivou instrukci systému ARTable. Díky
tomuto přístupu je možné poskládat na straně systému ARTable jakoukoliv variaci pro-



gramu z existujících instrukcí, která by se měla v brýlích korektně vizualizovat. Brýle kreslí
v rámci vizualizace virtuální objekty a virtuální robotickou ruku přímo do scény. Ta objekty
přemisťuje, pokládá na stůl a celkově „animuje“ to, co by udělal reálný robot. Vizualizace
je ovládatelná hlasem nebo tlačítky promítaného rozhraní na stole. Celý proces je rovněž
komentován řečovým syntetizátorem brýlí v angličtině.

Mimo vizualizaci programů byl implementován interaktivní pomocník, který uživatele
pomocí řečového syntetizátoru a virtuální ruky navede na správné naprogramovaní in-
strukcí. Byla implementována podpora pouze pro dvě základní instrukce – zvedni z polygonu
a polož na pozici. Přínos brýlí je také demonstrován už jen možností vidět to, co vidí robot.
Stávající 2D promítané rozhraní vykresluje ohraničení okolo robotem detekovaných objektů
položených na stole. Senzory však tyto objekty dokáží detekovat i v prostoru, což lze snadno
vizualizovat prostřednictvím 3D ohraničení objektů v brýlích.

Implementované řešení bylo řádně otestováno. Experimentu se zúčastnilo 12 zájemců,
přičemž byli rozděleni do dvou skupin. Jedna skupina nastavovala parametry pro základní
program typu „zvedni z místa A a polož na místo B“ bez použití brýlí. Dále dostala za
úkol pochopit program „zvedni z podavače a polož na stůl“ s již nastavenými parametry,
opět bez použití brýlí. Druhá skupina dělala to samé s tím rozdílem, že používala brýle,
a tedy i interaktivního pomocníka a vizualizační systém. Všem účastníkům byly měřeny
časy dokončení úkolu a počet nutných zásahů z mé strany. Dále byl každý požádán o vy-
plnění dotazníku „System Usability Scale“ (SUS), který měří použitelnost daného systému.
Veškeré hodnoty byly porovnány. Následně si všichni vyzkoušeli brýle Microsoft HoloLens
v rámci vizualizace složitějšího programu, kde byli posléze požádáni o vyplnění dotazníku
zkoumajícího použitelnost těchto brýlí. Z výsledků vyplynulo, že vizualizace programu
v brýlích zkrátila čas potřebný k jeho pochopení o 50%. Naopak použití brýlí pro pro-
gramování robota tento čas prodloužilo o téměř 35%. Skóre ze SUS dotazníku se pro obě
skupiny nijak zásadně nelišilo, při použití brýlí byla jeho hodnota nižší – 67.5, což se ale stále
pohybuje zhruba v průměru standardních hodnot. Největším problém bylo nízké zorné pole
brýlí a jejich váha, která zapříčinila značné nepohodlí na hlavě. Uživatelé naopak ocenili
ovládání hlasem a vizualizaci samotnou.
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Chapter 1

Introduction

As industrial collaborative robots are getting more affordable, it is likely that small and
medium enterprises will soon adopt such robots in order to increase productivity. However,
in such enterprises, production batches are smaller and products may be customized for
a specific contract. This requires reprogramming robots for particular tasks, which could
be challenging due to necessity of robot-specific knowledge. Thus it would be beneficial
to enable ordinary-skilled worker to program these robots easily. Therefore a prototype
of a human-robot collaborative workspace – the ARTable was created, which presents a
novel approach to programming robots based on cognition, spatial augmented reality and
multimodal input and output [17].

Programming of collaborative robots in this approach is based on setting up parameters
for specific instructions which forms the whole program. These instructions are described
only with text identifiers and as experiments showed up, users had difficulties in orienting in
such program topology. There were uncertainties of how instructions follow, what exactly
will specific program do or what is expected from user to program.

This work aims to clarify user’s uncertainties in programming robots by providing pro-
gram visualization system in spatial augmented reality with use of Microsoft HoloLens.
Being able to see what will happen when specific program runs, what specific instruction
means and what is expected from the user to program should rapidly help in understanding
of the whole ARTable system. Further on, it extends capabilities of current 2D projected
user interface by visualizing valuable spatial information through the headset.

Chapter 2 introduces basics of augmented reality (AR), compares virtual reality with
augmented, describes required components for the complete AR system and presents most
common types of devices capable of AR. The Microsoft HoloLens is introduced in Chapter 3,
its advantages, disadvantages or possible use cases are described. Chapter 4 describes
mentioned ARTable and its core components, both hardware and software. In Chapter 5 I
propose an AR-based interface for the HoloLens and the ARTable, which should improve
effectiveness of a collaboration of the user with the robot. Chapter 6 covers implementation
part of proposed interface and Chapter 7 evaluates it.
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Chapter 2

Augmented Reality

This chapter covers basic concepts of the augmented reality (AR), introduces its definition
(Section 2.1) and compares basic differences between virtual, augmented and mixed reality
(Section 2.2). Section 2.3 analyzes three major components of the complete AR system
– tracking, registration and visualization. Last but not least, section 2.4 describes most
common AR devices and display technologies.

2.1 AR Definition
Furht et al. [6] defines AR as “a real-time direct or indirect view of a physical real-world
environment that has been enhanced/augmented by adding virtual computer-generated
information to it”. AR aims to simplify the user’s life by bringing virtual information to
his immediate surroundings or to any indirect view of the real-world environment, such
as live-video streams. AR enhances the user’s perception and interaction with the real
world [6].

First use of the term “Augmented Reality” dates back to 1950s, since then this technol-
ogy has grown on interest and nowadays could be considered as a next step to a modern
future. AR can be used in various fields, from army (head-up displays) to entertainment
(AR games for handheld devices) and its possibilities are endless.

2.2 Virtual vs. Augmented vs. Mixed Reality
Virtual reality replaces real world with a virtual one using 360-degree video, photospheres
or computer-generated environments. The goal is to completely immerse a user into the
virtual world. Bishop et al. [2] defines virtual reality as a “real-time interactive graphics
with three-dimensional models, when combined with a display technology that gives the
user immersion in the model world and direct manipulation.”

On the contrary, augmented reality just adds computer-generated information into the
real world instead of completely replacing it. The goal is to enhance the existing environ-
ment with some computer-generated graphics. However mixed reality mixes real world with
virtual one and creates new environments where physical and digital objects can coexist
and interact with each other.

Milgram [18] describes a taxonomy that identifies how augmented reality and virtual
reality are related (see fig. 2.1). He defines the case at the left of the continuum – Real Envi-
ronment, as any environment consisting solely of real objects that includes whatever might
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Figure 2.1: Milgram’s Reality-Virtuality Continuum

be observed when viewing a real-world scene. The case at the right – Virtual Environment,
is an environment consisting solely of virtual objects, examples of which would include con-
ventional computer graphic simulations, either monitor-based or immersive. Within this
relation he defines generic Mixed Reality environment as one in which real world and virtual
world objects are presented together. Besides displaying real world together with virtual
one, mixed reality also involves environmental input, spatial sound and location [28].

2.3 Major AR Components
To have a complete AR system, at least three major components are required – a tracking
component, a registration component and a visualization component. In such system, a
user’s position is tracked and poses of the real world objects are registered with the virtual
content that is afterwards presented to the user through visualization device [21, Chapter 1].

Tracking

To display virtual objects registered to real objects in real-world space, the position and
orientation of the AR display relative to the real objects must be known. This is accom-
plished with the tracking technique, which is a process of locating a user in an environment.
It continuously measures his position and orientation. Various entities can be tracked, most
commonly a user’s head, eyes or limbs, or any other object in the scene [21, Chapter 3].

Different techniques of tracking will be used depending if the user is indoor or outdoor.
A good tracking option for outdoor environments is considered GPS (Global Positioning
System). This technique computes position of the Earth’s surface from measured time of
flight of coded radio signals emitted by at least four satellites in Earth orbit. The accuracy
can vary from 1 to 100 m, depending on the number of visible satellites, the circumstances
of signal reception, and the quality of the receiver. Use of differential GPS can assure higher
accuracy. For a rotational motions – gyroscopes can be used; for a translational motions –
accelerometers can be used. Both are nowadays common part of mobile devices.

Accuracy of aforementioned techniques is usually not sufficient enough for AR. Thus
both indoor and outdoor tracking combines vision-based approaches. Based on particular
technique, cameras, stereo-cameras or depth cameras are used. Those techniques differ
whether they use markers or features for object detection and tracking. Markers are known
patterns placed on the surfaces of target objects, designed to make detection as easy and
reliable as possible. Marker-based tracking is often used in indoor or preset environments.
Natural feature tracking can be also used, however it typically requires better image quality
and more computational resources. It searches for points of interest in the image, typically
edges or corners, which are used for object tracking [21, Chapter 3].
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Well known algorithm SLAM (Simultaneous Localization and Mapping), used in robotics
field to localize a robot based on the map which it creates by observing its environment,
can be also applied to a camera mounted on the user in an AR context [3]. Lastly, fusion
methods that uses different sensors together can be used in order to achieve high accuracy.

Registration

Registration is a process that maps the virtual objects onto tracked physical real-world
objects. It converts the poses from tracking into the coordinate system of the rendering
application. For proper registration, calibration of the AR device’s components needs to
be done. This involves camera and display calibration.

Camera calibration is the process of estimating the distortion coefficients, intrinsic and
extrinsic parameters of a camera using images of a special calibration pattern. Most popular
type of a calibration pattern is a checkerboard. The intrinsic parameters include the focal
length, the optical center and the skew coefficient. The extrinsic parameters consist of a
rotation matrix and a translation matrix [1]. Proper calibration corrects a lens distortion
(pincushion or barrel distortion effects).

Calibrated camera is sufficient for presenting registered AR overlays on a video see-
through display. However, for an optical see-through display, where head tracking is used
instead of camera tracking, the display calibration needs to be done. Usually, the system
displays calibration patterns, where the user is asked to align a physical structure, for
example his forefinger, with that specific pattern [21, Chapter 5].

Visualization

Visualization determines how virtual information should be shown. For a realistic feeling,
visual coherence needs to be done, which means that real and virtual objects needs to be
combined in a way that the virtual objects are indistinguishable form the real world. In
order to achieve such coherence, following cues of computer graphics must be respected:
relative size (farther objects are smaller), relative height (distant objects have their base
higher), perspective (parallel lines converge as they extend farther), surface detail (closer
objects are more detailed than farther ones), atmospheric attenuation (distant objects ap-
pear more blurred), occlusion (closer objects obscure farther objects), shading (illumination
of objects according to the position and orientation of light sources) and shadows (objects
cast shadows on other objects).

To fulfill these cues, geometric and photometric registration must be obtained. With the
knowledge of the geometry of the real scene, occlusion of virtual objects that are rendered
behind real ones can be solved. Photometric registration is much more complicated, as the
transport of light between real and virtual objects must be simulated. The simplest set of
techniques deals only with shadows between virtual and real objects. For advanced illumina-
tion effects, model of the environment illumination is needed, from which the virtual objects
are illuminated. Number of light sources and their characteristics have a strong influence
on the computational complexity. Their number for AR can be limited by assuming that
all light sources are distant and can be treated as external to the scene. To acquire proper
shadows, standard shadow simulation techniques can be used, such as shadow mapping or
shadow volumes [21, Chapter 6].

When decided on how to draw virtual objects to scene, what to draw needs to be
answered. Principle, where information is attached to real-world objects is called situated
visualization. Examples of this principle include annotation and labeling techniques of
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Figure 2.2: Optical see-through display conceptual diagram.

points of interest (historical buildings, model of a human head, etc.) or use of X-ray
visualization that uncovers hidden or otherwise imperceptible structures (like buildings,
car hoods or human body) [21, Chapter 7].

An interesting part of AR is a Diminished reality. While most applications of AR are
concerned with the addition of virtual objects to a real scene, diminished reality describes
the conceptual opposite – it removes real objects from a real scene.

Devices capable of visualization of virtual information will be described further in sec-
tion 2.4.

2.4 Types of AR Devices
As human vision is the most effective sense in receiving surrounding information, many of
today’s AR devices focuses mainly on providing augmentations to a user’s visual perception.
Some devices combines visual augmentations with spatial sound. According to augmenta-
tion methods, there are three types of displays – optical see-through, video see-through and
spatial projection.

Optical see-through (OST) displays uses an optical element that is partially transmis-
sive and partially reflective to achieve the augmentation of the real world. Simple example
of such element is a half-silvered mirror, which lets a sufficient amount of light from the real
world pass through in order to overlay it with reflected computer-generated images that
are projected from monitors placed above the mirror (see Figure 2.2).

Video see-through (VST) displays captures the real world with a video camera. Such
captured real-world images are combined with computer-generated images in a video com-
positor. This is often achieved by simply drawing the computer-generated elements on
top of the real-world images. Combined images are then presented to the user using a
conventional viewing device (see Figure 2.3).
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Spatial projection casts computer-generated images directly onto real-world objects
using a light projector. Conceptual diagram can be seen in Figure 2.4.

Handheld Displays

Smart phones and tablets are probably the most popular platform for AR. Its back-facing
camera can provide a video see-through experience. These devices houses both the actual
display and the camera rigidly mounted in a casing. Thus the transformation from display
to camera can be precalibrated. Tracking of the device’s pose in the world will be performed
through the camera in most cases, which can be improved with built in accelerometers and
gyroscopes [21, Chapter 2].

Nowadays, there are plenty of AR applications for handheld displays. Most of them
focuses on entertainment, like the widely known Pokémon GO1, developed by Niantic for
iOS and Android devices. In this game, players are walking in the real world, trying to catch
pokémon creatures that are augmented into the real-world environment. An example of
this application in use can be seen in Figure 2.5. All applications don’t have to necessarily
target the entertainment industry, for example, Google Translator has a feature of real-time
signs translation from foreign languages.

Head-Mounted Displays

While handheld displays brought the idea and potential of AR technologies to everybody’s
awareness, head-mounted displays (HMD), through advanced technological and ergonomic
innovations, might represent the next wave of AR. They can differ based on their mounting
options:

1https://www.pokemongo.com/
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Figure 2.4: Projected spatial AR conceptual diagram. Projector casts images directly onto
the real-world objects.

∙ Helmet-mounted display – like Rockwell Collins SimEye that simulates head-up
display functions for aircraft trainers.

∙ Clip-on display – like Google Glass.

∙ Visor display – like Microsoft HoloLens or Meta 2.

Based on the method of augmentation, HMD differs to optical see-through and video
see-through.

Optical see-through HMD requires an optical combiner placed in front of the user’s
eyes to mix the real world with computer-generated images. Most recent displays suffer
from relatively small field of view. They cover only small portion of a human field of view,
which can really break apart desired illusion of joining the real world with the virtual one.
Another problem is how to balance the brightness and contrast. With too much incoming
light from real world, virtual content won’t be visible well. Important factor for OST is to
keep the headsets as light as possible, while maintaining performance and widening field of
view. Most recent representatives of this technology are for example Microsoft HoloLens
(described in detail in Chapter 3) or Meta 2.

Unlike the Microsoft HoloLens, the Meta 2 requires a connection to a traditional com-
puter to function and is designed to be used in a stationary location. Its sensor inputs and
image processing are handled by the connected PC’s processors. It uses a semi-spherical
large combiner optics system, which is able to extend the field of view up to 90 degrees.
Meta 2 offers a collection of sensors thanks to which is capable of creating an environment
map to allow interaction with the real world [19].
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Figure 2.5: Left: Handheld display – example of the Pokémon GO AR game for smart
phones. Right: Optical see-through head-mounted display – Meta 2 in use.
Source: https://www.enkronos.com/why-you-should-start-using-augmented-reality-ar-and-
gamification/, http://www.metavision.com/

Video see-through HMD adds one or more video cameras to a non-see-through
HMD. These cameras serves as a replacement of human sight. This technology has some
advantages over the OST HMD. Virtual content does not suffer from transparency and
ghost-like appearance. In VST, pixel-accurate registration is easier to achieve. On the
other hand, this technology is not suitable for dangerous work because when the display
turns of due to some error, the user becomes practically blind. Latency could also cause
problems.

Projected Displays

Projectors can be used to create spatial augmented reality without any explicit displays.
With this approach, the projector casts images directly onto the real objects, altering their
appearance to the naked eye. The projection cannot change the shape of the object, but
adds surface details, texture, shadows, and shading, and even the impression of dynamic
behavior, if animated content is projected. As long as the real world is static, spatial AR
does not require any tracking. Only the relative position of the projector to the objects,
and the geometry of the objects needs to be known. It is possible to use multiple projectors
for better spatial coverage [21, Chapter 2].
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Chapter 3

Microsoft HoloLens

Microsoft HoloLens is a headset for mixed reality, developed by Microsoft. It’s wireless,
runs Windows 10, has precise spatial mapping, and is capable of 3 ways of interaction –
gaze, gestures and voice. Device draws computer generated holograms into the real world
and has a potential to be used in many scenarios. Developer version was released on 30
March 2016 in United States and Canada. Later in October 2016, HoloLens hit markets in
the United Kingdom, Australia, New Zealand, Ireland, France and Germany [11]. Headset
is shown in Figure 3.1.

Section 3.1 outlines main advantages and disadvantages of the HoloLens. Sections 3.2
and 3.3 describes headset’s hardware details and possible ways of interaction with it. Pos-
sible use of the HoloLens is discussed in section 3.4.

3.1 Key Advantages and Disadvantages
The main innovation of the Microsoft HoloLens over previously available augmented reality
headsets is considered to be precise position tracking and spatial mapping of the surrounding
environment. The inputs from sensors are combined in the Holographic Processing Unit to
build and maintain a model of the surroundings. This allows to create immersive mixed
reality experiences in which the position of virtual objects is fixed in space with centimeter
scale precision, and they naturally react to collisions with the physical world or remain at
their location over multiple sessions [22]. Thanks to that, user shouldn’t get any nausea

Figure 3.1: Left: Microsoft HoloLens – headset for mixed reality. Right: Visualization of
limited field of view of the headset.
Source: https://www.microsoft.com/en-us/hololens, https://www.theverge.com/2015/6/18/8809323/
microsoft-hololens-field-of-view-kudo-tsunoda
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sensation from virtual reality. Another plus could be considered excellent spatial sound
system which can increase user’s AR experience.

Another main feature is sharing holograms, where users can see same holograms on
multiple devices. Microsoft’s development toolkit for Unity (MixedRealityToolkit-Unity1)
provides support for such shared experiences in a form of world anchors. One of the devices
establishes an anchor at a specific location and communicates its position within its model of
the room to all other devices. The anchor is then used as a reference point for the coordinate
system, in which the shared holographic objects are located at the same position to each
user [22].

However, device is suffering with really small field of view – 30∘ x 17.5∘ degrees (aspect
ratio 16:9) [13]. Which can lead to that the user will spend some time finding his holograms
placed all over the room. Limited field of view can be seen in Figure 3.1. Next minus is
high price. Currently, HoloLens commercial version costs $5,000 and developer version is
for $3,0002. Lastly, battery life (2-3 hours of active use) is not a miracle at all.

3.2 Interaction with Device
For interaction with device, you can use 3 ways – gaze, gestures or voice. Hand gestures
allow users to take action in mixed reality. Interaction is built on gaze to target and gesture
or voice to act upon whatever element has been targeted. Currently, there is support for
two core component gestures - Air tap and Bloom. Air tap is a tapping gesture with the
hand held upright, similar to a mouse click or select on a specific UI element after targeting
it with gaze. Bloom is a gesture for invoking the Windows Start Menu. These two basic
gestures are visualized in the figure 3.2. Air tap can be performed also as a gesture for
tap and hold, so user can move with holograms, scroll page or zoom in. It is important to
use the gestures in a range that the gesture-sensing cameras can see appropriately (roughly
from nose to waist, and between the shoulders) [26].

Besides gestures, HoloLens supports voice commands. User can achieve same things
with them, as with gestures, so there are commands such as “select” (equivalent of air tap),
“place” (equivalent of air tapping to place a hologram), “face me” (to turn hologram your
way), “bigger/smaller” (to resize hologram), etc. User can communicate with Cortana,
which is virtual assistant created by Microsoft for Windows 10. In dictation mode, voice
can be used for typing, which can greatly save time, instead of air tapping the virtual
keyboard.

Optional way of interaction with holograms is the clicker. It’s a small device separated
from the headset itself, designed to fit into the human wrist between thumb and forefinger.

3.3 Hardware Details
Optical part of the device contains see-through holographic lenses, followed up with 2 HD
16:9 light engines, that can produce up to 2.3 million total light points of holographic
resolution. Device has various types of sensors, four cameras for environment understand-
ing, two on each side, one depth camera, 2 Mpx photographic video camera, four micro-
phones, ambient light sensor, and lastly, inertial measurement unit (IMU) which includes

1https://github.com/Microsoft/MixedRealityToolkit-Unity
2https://www.microsoft.com/en-us/hololens/buy
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Figure 3.2: Two basic interaction gestures which Microsoft HoloLens recognizes. Left: Air
tap. Right: Bloom.

Source: https://support.microsoft.com/cs-cz/help/12644/hololens-use-gestures

Figure 3.3: HoloLens hardware. Left: Optics. Middle: Sensors. Right: Motherboard.
Source: https://developer.microsoft.com/en-us/windows/mixed-reality/hololens_hardware_details

an accelerometer, gyroscope, and magnetometer [10] [27]. For optical and sensor part, see
Figure 3.3.

Computing performance is ensured by an Intel 32-bit processor (1GHz) with TPM 2.0
support, followed up with custom-built Microsoft Holographic Processing Unit (HPU 1.0)
and 2GB RAM. Internal storage can hold up to 64GB (flash memory). Battery lasts for
2-3 hours of active use or up to 2 weeks on standby mode. Device is fully operational when
charging [27].

Device has standard features, such as 802.11ac Wi-Fi, Bluetooth 4.1 Low Energy (LE),
micro USB 2.0 port, built-in audio speakers and 3.5mm jack. HoloLens runs on Windows
10 operating system [27].

3.4 Possible Future Usages
HoloLens has a potential to take place in many real-world scenarios, from teaching at
universities to designing a new cars. Since its official release, HoloLens already has been
adopted by industries keen to change the way they work [7]. Currently, many companies
has already shown proof of concept, that use of the HoloLens in their industry might work
and could ease their everyday tasks.

Main use case is visualizing holograms and specific information in 3D. User can observe
models of some real scene, buildings or vehicles, from which he can get a way better percep-
tion and more information, than from 2D photography or computer. This use case could
find its place in architecture, where architects could easily see how a new structure would
fit into its environment; army, where soldiers would plan actions better with informations
from 3D model, rather than from 2D photographies; and many others. Even in home design
would headset find its usage. Customers could design their own apartments with virtual
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Figure 3.4: Use cases for Microsoft HoloLens in real-world environments. Top left: Edu-
cation purposes. Top right: Home design. Bottom: Game industry – the Fragments.
Source: http://jewishbusinessnews.com/2015/07/09/hololens-may-be-used-in-research-on-human-
testing-medication/, https://blogs.microsoft.com/transform/feature/lowes-innovates-with-sci-
fi-to-expand-and-enhance-its-microsoft-hololens-mixed-reality-kitchen-design-experience-
for-customers/, https://www.microsoft.com/en-us/hololens/apps/fragments

furniture to see how it would fit into the apartment before they buy any real furniture
(see Figure 3.4). Volvo is using HoloLens to change the experience of buying a car. They
allow customers to visualize how safety features work with use of the HoloLens. They also
allow to adjust color and fabric of a car and visualize it as 3D holograms, which is more
prominent than flat computer images [7].

Another use case for the HoloLens, is to augment skilled workers and technicians in the
field. Instructions and data can be overlaid on the screen and if the system has good object
recognition software then the headset can recognize what needs to be done and assist the
user. This is especially helpful when the user is working in an area with too many systems
for them to effectively learn. Rather than memorizing a series of pictures and instructions,
the headset can show how things need to be manipulated to achieve the desired goal [24].

In the field of medicine, surgeons can have something close to X-Ray vision that makes
it possible to see inside a patient [7]. Detectives and police could find HoloLens useful
for crime investigations when recreating crime scene or registering evidences. Universities
could use HoloLens for a new and more fun way of education, where students could observe
models of human organs, planets in space or wild animals (Fig. 3.4). The mixed reality with
Microsoft HoloLens can be used for gaming and entertainment. Currently, there are already
available games such as RoboRaid3 – a first-person shooter that changes user’s room into
the battlefield of robot invasion or Fragments4 – a game where you become the detective
solving a crime (Fig. 3.4).

3https://www.microsoft.com/cs-cz/hololens/apps/roboraid
4https://www.microsoft.com/cs-cz/hololens/apps/fragments

14

http://jewishbusinessnews.com/2015/07/09/hololens-may-be-used-in-research-on-human-testing-medication/
http://jewishbusinessnews.com/2015/07/09/hololens-may-be-used-in-research-on-human-testing-medication/
https://blogs.microsoft.com/transform/feature/lowes-innovates-with-sci-fi-to-expand-and-enhance-its-microsoft-hololens-mixed-reality-kitchen-design-experience-for-customers/
https://blogs.microsoft.com/transform/feature/lowes-innovates-with-sci-fi-to-expand-and-enhance-its-microsoft-hololens-mixed-reality-kitchen-design-experience-for-customers/
https://blogs.microsoft.com/transform/feature/lowes-innovates-with-sci-fi-to-expand-and-enhance-its-microsoft-hololens-mixed-reality-kitchen-design-experience-for-customers/
https://www.microsoft.com/en-us/hololens/apps/fragments
https://www.microsoft.com/cs-cz/hololens/apps/roboraid
https://www.microsoft.com/cs-cz/hololens/apps/fragments


Chapter 4

The ARTable – Augmented Reality
Collaborative Workspace

In the following chapter, the ARTable and its components will be introduced. Section 4.1
describes what the ARTable is, the motivation for it, introduces its supported programs
and core components. These components will be further described in detail in sections 4.2
and 4.3. Last but not least, in section 4.4 will be described the software part of the ARTable
system – ROS (Robot Operating System).

4.1 ARTable Description and Motivation
The term “ARTable” stands for a prototype of an augmented reality-based collaborative
workspace (Fig. 4.1), created by the research group Robo@FIT1 at Brno University of
Technology. The prototype focuses on small and medium enterprises where it should en-
able ordinary-skilled workers to program a robot on a high level of abstraction and perform
collaborative tasks effectively and safely [17]. It aims to show possibilities of the collabora-
tion of a human and robot in the near future. The source code and technical documentation
of this prototype is available at github2.

Materna et al. [17] claims that with the emergence of affordable industrial collaborative
robots it seems likely that small and medium enterprises will widely adopt such robots
in order to achieve higher precision for specific tasks, free experienced employees from
monotonous tasks, and increase productivity. He says that would be beneficial for such
enterprises to enable ordinary-skilled workers to program robots easily, without robot-
specific knowledge, due to the fact that such enterprises may produce various products
for which they may want to customize their robots without a help of an expert. Thus the
ARTable was created.

Core Components

The ARTable setup uses the PR2 robot (described in section 4.2), which is located behind
the table (from user’s perspective) and serves as a demonstrator of a near-future collabo-
rative robot. However, the setup is robot independent.

1http://www.fit.vutbr.cz/research/groups/robo/index.php.en
2https://github.com/robofit/artable
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The table itself has a touch-sensitive layer onto which an interface is projected using
Acer P6600 projector mounted on the construction above the table. The projected interface
contains various elements to visualize state of the robot and current task. Together with
the touch-sensitive layer, the table serves as the main source of input for the system and
feedback for the user. Another possible way of passing input into the system is by direct
manipulation with robotic arm. The table is complemented with speakers on each sides,
which serves as supplementary source of feedback for the user.

The system uses several sensors mounted on a stable tripods, which will be described
in section 4.3. Each tripod has its own processing unit (Intel NUC) where the projector
and sensors are connected. This units are connected to the central computer. AR codes,
attached to objects, are used for better tracking. They are also used for calibration of the
whole system. Regarding to software setup, the ARTable uses the Robot Operating System
(ROS), further described in section 4.4.

Supported Programs and Instructions

Programs are sets of instructions which are collected into blocks. These instructions are
linked together based on the result of specific instruction (success or failure). Currently,
the system supports parametric instructions as pick from polygon (to pick an object from
specified polygon on the table), pick from feeder (to pick an object from gravity feeder),
place to pose (to place previously picked object to selected place on the table) and apply
glue (to simulate gluing). User sets parameters in these instructions, such as object type
to pick, place position of picked object or robots gripper position for picking objects from
feeder.

Besides mentioned instructions, there are also few non-parametric instructions: get ready
(which moves robot arms to a default position), wait for user (which pauses the program
execution if user moves away from the table) and wait until user finishes (which pauses the
program execution until user finishes current interaction with objects on the table).

4.2 PR2
PR2 (Personal Robot) is a robot developed by Willow Garage, it runs ROS and is mainly
used for research purposes. Original intent was to use the robot as a collaborator for home
environment. The robot itself consist of the omni directional base, telescopic torso, two
arms with eight degrees of freedom (DOFs) and the head. PR2 can be seen in Figure 4.1.

On the robot base are attached four Casters wheels enabling omni directional movement
and Hokuyo UTM-30LX laser scanner. The base is quipped with two Quad-Core i7 Xeon
processors, 24 GB memory, externally removable hard drive with capacity of 1.5 TB and
500 GB internal hard drive. The robot can reach up to 1 m/s speed [29]. However in the
ARTable setup, the robot is always stationary.

Height range of the torso from floor to top of head is 1330 mm to 1645 mm. Two arms,
attached to torso, are composed of arm with four DOFs, wrist with two DOFs and gripper
with one DOF. Arm payload is 1.8 kg. Forearm is equipped with camera and gripper is
equipped with accelerometer and fingertip pressure sensor [29].

The head is equipped with 5-megapixel color camera, wide-angle color stereo camera,
narrow-angle monochrome stereo camera and LED texture projector. Above the shoulders is
placed tilting Hokuyo UTM-30LX laser scanner [29]. Head is complemented with Microsoft
Kinect 1.0, which is used in ARTable setup for objects detection and tracking.
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Figure 4.1: Setup of the human-robot collaborative workspace – the ARTable. In this
example the user sets program parameters using robot’s arm and gestures. Courtesy of
Michal Kapinus.

4.3 Used Sensors
The ARTable setup uses two Kinect 2.0 sensors fixed on a stable tripod on each side of
the table and one Kinect 1.0 sensor fixed on the robot’s head. These sensors are used for
object detection and tracking. Objects are detected with use of the sensors HD cameras
and AR codes attached to the objects. All sensors try to find all AR codes in scene and
calculate its position in the real world. Final position of AR code is determined with use of
weights, which are assigned with respect to distance of the AR code from specific camera.
This means, that Kinect to which are objects closer, has a higher decision weight.

The Kinect 1.0 uses a structured light principle, which is a method of projecting a known
pattern onto the scene and inferring depth from the deformation of that pattern. So the
depth map is constructed by analyzing a speckle pattern of infrared laser light [15]. The
Kinect 2.0 uses a Time-of-Flight camera which constantly emits infrared light in order to
measure the time this light takes to travel from the camera to the object and back. With
this principle the depth map is constructed [25]. Main improvement of Kinect 2.0 over 1.0
is increased resolution of RGB camera (Kinect 1.0 has 640 x 480 pixels resolution, Kinect
2.0 has 1920 x 1080 pixels resolution) [25].
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4.4 ROS - Robot Operating System
The Robot Operating System (ROS) is a flexible framework for writing robot software. It
is a collection of tools, libraries, and conventions that aim to simplify the task of creating
complex and robust robot behavior across a wide variety of robotic platforms [30].

System was developed by Willow Garage, is open source and has a large community,
which develops new tools, packages and libraries, which publishes and maintains. Currently,
the system is under maintenance of the Open Source Robotics Foundation3. As the system
is still being developed, new distributions are gradually released primarily targeted for
Ubuntu operating system. The latest LTS4 version is Kinetic Kame. However the ARTable
setup uses an older version – Indigo Igloo.

Architecture of ROS is based on the existence of nodes, which are mutually communi-
cating processes doing specific task. Nodes can communicate by messages or services [32].

Nodes

A node is a process that performs computation and sub-action of a whole application. Nodes
are combined together into a graph and communicate with one another using streaming
topics or RPC5 services. These nodes are meant to operate at a fine-grained scale; a robot
control system will usually comprise many nodes. For example, one node controls a laser
range-finder, one node controls the robot’s wheel motors, one node performs localization,
one node performs path planning, and so on [32].

The use of nodes in ROS provides several benefits to the overall system. There is
additional fault tolerance as crashes are isolated to individual nodes. Code complexity is
reduced in comparison to monolithic systems. Implementation details are also well hidden
as the nodes expose a minimal API to the rest of the graph and alternate implementations,
even in other programming languages, can easily be substituted [32].

The ARTable has many such nodes. The main is art_brain, which is a “brain” of
a whole system. Next, there are nodes for calibrating the cameras (art_calibration), AR
codes detection (art_arcode_detector), projecting the user interface (art_projected_gui),
and others.

Messages and Services

Nodes communicate with each other by publishing messages to topics [31]. Topics are
named buses over which nodes exchange messages. Topics have its publishers and sub-
scribers. This way of communication between nodes is only unidirectional. Example of
such communication could be transition of data from camera, when a node – publisher,
which implements camera’s drivers publishes captured data by camera to specific topic
from which another node – subscriber, subscribes the data for another processing.

For a bidirectional communication, there is a possibility to use a Service. Services are
communication of a type request and reply, which is done by a pair of messages: one for the
request and one for the reply. A providing ROS node offers a service under a string name,
and a client calls the service by sending the request message and awaiting the reply [33].

The ARTable uses some basic ROS messages and defines its own messages and services.

3https://www.osrfoundation.org/
4Long Term Support
5Remote Procedure Call
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Chapter 5

Proposed Augmented
Reality-based User Interface

The goal of this thesis is to use the potential and possibilities of Microsoft HoloLens, create
graphical user interface (projected through HoloLens) which will extend already existing
one (projected by projector onto the table) and integrate it to the ARTable system. Firstly,
background and related works to the ARTable and use of the HMD in industrial robotics is
analyzed in section 5.1. The motivation for use of augmented reality in the ARTable system
is outlined in section 5.2. In sections 5.3 and 5.4, I introduce a proposal of an interface for
visualization and programming guidance of the ARTable programs. Section 5.5 describes
a proposal of how could augmented reality help in learning robots and covers some other
possible beneficial use cases that could enhance the work with the ARTable.

5.1 Existing Solutions
There are several approaches of end-user robot programming. One of the main techniques
are Programming by Demonstration and Visual Programming. Both approaches are com-
bined in a robot programming system – Code3 [12], which enables a non-roboticist pro-
grammers to create a complex robot programs using landmarks detection, programming
by demonstration and visual drag-and-drop programming interface that lets users define
control flow logic of their programs.

Usage of AR in industrial robotics may lead to decreased workload throughout robot
control by showing useful information to users [23]. A concept and architecture for pro-
gramming industrial robots with use of AR is presented in [8]. In [16], authors developed
an application that augments an industrial robot for shop floor tasks and evaluated differ-
ent approaches of augmentation – using mobile phone or smart glasses (Epson Moverio).
Glasses suffered from need of continuous marker tracking and limited field of view. However,
usage of handheld devices might be limiting because it prevents usage of both hands.

Use of the mixed reality head-mounted displays frees user’s hands and as Rosen et al. [20]
proved, 3D visualization of valuable information is more effective than 2D visualization.
They used Microsoft HoloLens to visualize robot arm motion intent and asked participants
to determine which robot motions are going to collide with obstacles on the table. They
reached up to 16% increase in accuracy and 62% decrease in time it took participants to
complete the task when using HoloLens.
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5.2 Motivation for Use of the Microsoft HoloLens in the
ARTable Setup

Programming of collaborative robots in the ARTable approach is based on setting up pa-
rameters for specific instructions which forms the whole program. These instructions are
described only with text identifiers and as previous experiments showed up, users had diffi-
culties in orienting in such program topology. There were uncertainties of how instructions
follow, what exactly will specific program do or what is expected from user to program.

Use of the Microsoft HoloLens could clarify user’s uncertainties in programming robots
by providing program visualization system in spatial augmented reality. Being able to see
what will happen when specific program runs, what specific instruction means and what
is expected from the user to program should rapidly help in understanding of the whole
ARTable system.

Besides detecting objects that are placed right on table, the ARTable sensors are able to
detect objects that are out of the table, like in robot’s gripper or in feeder. This functionality
is used for the user to see what exactly robot sees. However, with current 2D projected
user interface it can be visualized only for objects placed onto the table. HoloLens would
surpass this limit and extend this functionality from 2D to 3D space by rendering 3D
bounding boxes around detected objects.

Another reason why to use AR in ARTable system is because of the possibility of
programming the robot through it. Or just to show places where the robot is learned to
grab objects for example. It could also warn the user if anything goes wrong with the
system. HoloLens would pop up error messages or warnings, which would direct the user
to the source of the problem, e.g. jammed robot arm.

Overall, the headset could be used to visualize anything that current projected interface
can’t do.

5.3 User Interface for Programs Visualization
The HoloLens interface for robot programs visualization should contain a brief description
of a program itself, possibility of controlling the visualization (stop button, pause button,
play button, etc.) and a description of single steps of the program. This interface will get
triggered after clicking on specific button (called for example visualize) of the projected
interface.

Visualization of specific program will consists of specific steps, which will depend on
a number of instructions of that program. It could be considered as an projected animation.
However, the animation will be in 3D space, realized with holograms of robot’s arm, objects
for manipulation, etc. It is a question of user testing, if it would be better to have fluent
animation, where user just observes what will happen if he runs current program on the
real robot, or to have a stepped animation, where he can pause it, go step backwards and
so on. Another approach to consider, whether it would be better to show animation, where
one step is shown at exact time, or to have a possibility of showing all steps at once in
static mode (without animating them). On the first thought, showing all steps at once
could produce messy and unclear visualization. Thus, it seems that the first approach with
controllable animation is the right way.

Proposal of such visualization interface can be seen in Figure 5.1. In the picture is
shown visualization of the program feeder-training, where the robot picks an object from
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Figure 5.1: Augmented reality user interface proposal of the ARTable programs visualiza-
tion for Microsoft HoloLens

the feeder and places it onto specified position of the table. Animation of this program
could be done in three steps – robot grabs the object, robot places the object onto the
table, robot gets into default position (retracts arms etc.). Further on you can see buttons
for controlling the visualization, which would be controlled by clicking on them with an air
tap gesture, and some text boxes with the information about current program.

5.4 User Interface for Robot Programming
Possibility of visualizing an existing program would be good to quickly see what that
program does. However, it does not fully speeds up the programming process. This means
the speed and overall understanding of setting parameters for specific programs by new
and ordinary skilled users. Thus some kind of interactive guider should be provided by
the headset. This guider would help the user with the robot programming by displaying
animated virtual elements, such as human hand that would point to the point of interest.
Additional text elements would be displayed, similarly as in the programs visualization
system (see Figure 5.1).

There are two possible ways of implementing this interactive helper. One way would
guide the user within individual instructions separately, where the helper would start when
individual instructions are edited. The other way would guide the user within a context of
a whole program. This means that the helper would start immediately when the program is
edited. Second approach brings questions, like how to behave when the program is partially
set or is completely set and user just wants it to reprogram. From this point of view it
seems easier to use the first approach.
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Figure 5.2: Left: Programming by Demonstration – user manually moves the robot arm
directly to the feeder. Right: Learning with use of AR – user clicks on the exact position
on the feeder through the headset.

Figure 5.3: Left: Visualization of robot’s learned positions for apply glue instruction.
Right: Situation when some error of the ARTable system occurs.

5.5 Robot Learning Using Augmented Reality and Other
Possible Use Cases

One of the possible ways of programming robot is known as Programming by Demonstra-
tion. In this method, programmer manually moves the robot to desired positions, where
the robot records the internal joint coordinates corresponding to that position. Afterwards,
the robot is able to repeat such sequence of joint coordinates in order to achieve previously
learned move [14]. Similar approach is used in the ARTable setup, where programmer man-
ually navigates robot’s arm to desired position and the robot saves the end position of its
gripper. It afterwards computes joint coordinates real-time. This manual programming is
used for instance to show the robot from where exactly to grab the objects from the feeder
(see Figure 5.2).

Use of AR in this field could eliminate the need of manual assistance of the programmer.
User would just point to desired area and virtual robot would compute joint coordinates
with use of inverse kinematics. This way the position of the virtual gripper would be
transformed into the real robot’s coordinate system and saved. AR interface would then
render virtual robot’s arm showing the animation of the learned move as can be seen in
Figure 5.2.

When the pick from feeder or apply glue instruction is set, it is not possible to visualize
exact position of the robot gripper (where exactly will be the robot grabbing the object or
where exactly will be simulating “gluing”). With use of the HoloLens, those positions could
be visualized for example by rendering hologram arrows pointing to them (see Fig. 5.3).
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Last use case I propose is visualization of errors and warnings. When anything goes
wrong with the ARTable system, user would get notified with an error or warning message
popping right in front of him. As user could be confused of what happened, it is necessary
to navigate him with use of arrows to location of occurred problem, e.g. to jammed robot
arm or to robot gripper when it’s unable to grab an object. Error message and navigation
arrow would be pinned to a user’s view until he reaches or looks at the location of occurred
problem. Example of how this error occurrence could look can be seen in Figure 5.3.
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Chapter 6

Implementation

This chapter describes implemented mixed reality extension with Microsoft HoloLens for
the ARTable. Integration steps, which are needed to be done in order to integrate Microsoft
HoloLens into the ARTable system, are described in section 6.1. When both systems are
mutually calibrated, the headset can visualize spatial holograms, such as 3D bounding
boxes representing robot’s perception (see section 6.2). In order to help the user better
understand robotic programs of the ARTable system, the program visualization system was
implemented, which is further described in section 6.3. To help the user with programming
the robot, the interactive helper is introduced in section 6.4. Lastly, in section 6.5, I will
describe more in depth developed application details, its components and their behavior.
Not all proposals from previous chapter were implemented. For example the warning system
was rejected due to poor HoloLens field of view or an alternative way of programming the
robot by demonstration is discussed later on as a possible future work.

For development, the Unity1 was chosen, which is a cross-platform game engine used
mainly for developing 3D and 2D video games or simulations. Unity has native build support
for UWP2 applications, which are used on HoloLens. Microsoft even released Unity package
– MixedRealityToolkit-Unity3 – which is a collection of scripts and components intended to
accelerate development of applications targeting Microsoft HoloLens and Windows Mixed
Reality headsets. It contains various modules, such as gestures or voice input handling,
spatial mapping or spatial sound, that I used in this work.

6.1 Integration of Microsoft HoloLens into the ARTable Sys-
tem

In order to successfully integrate the HoloLens into the ARTable system there were two
major steps to take – make communication between these two systems work and calibrate
the HoloLens with respect to the ARTable.

Communication via rosbridge

The ARTable system runs on ROS with Ubuntu but HoloLens runs on Windows. So there
is a problem of how to transport data from one operating system to another. This problem

1https://unity3d.com/
2Universal Windows Platform
3https://github.com/Microsoft/MixedRealityToolkit-Unity
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Figure 6.1: Left: Calibration of the HoloLens with respect to the ARTable. Colored cube
visualizes how well the calibration was done and has an option button for recalibration. Red
side of the cube represents positive 𝑥 axis, green side represents positive 𝑦 axis and blue
positive 𝑧 axis. Right: Mesh of the workplace created by HoloLens sensors that contains
a spatial anchor which represents the origin of the ARTable’s coordinate system.

is solved by ROS tool – rosbridge, which is a tool that provides a JSON API to ROS
functionality for non-ROS programs.

For such communication I used and extended existing Unity library – ROSBridgeLib4

(author Michael Jenkin, edited by Mathias Ciarlo Thorstensen). This library uses SimpleJ-
SON 5 parser for parsing JSON messages. However, due to differences in scripting backends
of Unity editor (Mono) and UWP applications (.NET), functionality of this library had
to be extended to support the UWP format which is used by HoloLens. With inspiration
from Unity library holoROS6, created by Gabriel Santos Solia, who successfully integrated
Microsoft HoloLens with ROS via rosbridge, in order to simulate a holographic turtlesim7

environment, I was able to extend the ROSBridgeLib functionality to support communica-
tion between the ARTable (ROS) and Unity along with HoloLens (Windows).

Having this type of communication enables to connect multiple headsets with the
ARTable, where all of them receive same data.

HoloLens Calibration with Respect to the ARTable

The ARTable is calibrated with use of three markers placed into corners of the table. Origin
of coordinate system is estimated in bottom left corner of the table. The HoloLens also needs
to know where that corner is. This is accomplished by detection of a marker placed in that
spot with use of HoloLens world-facing camera (see Figure 6.1). For detection purposes,
the HoloLensARToolKit8 was used, which is a Unity library that integrates ARToolKit9

functionality with UWP applications, created by Long Qian.
If marker detection is successful, colored cube is drawn on this marker spot which helps

to visualize how well the calibration was done. This cube is afterwards wrapped with an
4https://github.com/MathiasCiarlo/ROSBridgeLib
5https://github.com/Bunny83/SimpleJSON
6https://github.com/soliagabriel/holoROS
7http://wiki.ros.org/turtlesim
8https://github.com/qian256/HoloLensARToolKit
9https://github.com/artoolkit/artoolkit5
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Figure 6.2: Difference of used coordinate systems. After HoloLens calibration, the 𝑦 axis
needs to be inverted and rotations adjusted in order to convert from one system to another.

Figure 6.3: Visualization of robot’s perception. Left: Detected objects on the table and
above the table visualized by 3D bounding boxes. Right: Detected objects in the feeder.

empty Unity GameObject which is then stored as a spatial anchor and set as a parent to
every other visual object in the scene. Thus it represents origin of the table. Spatial anchors
are persistent during sessions, so calibration process needs to be done only once. Mesh of
the workplace created by HoloLens sensors that contains this spatial anchor can be seen in
Figure 6.1. There is also possibility of recalibration by clicking the Recalibration button as
can be seen in Figure 6.1.

After calibration, one last step has to be made. There is a conflict in coordinate systems,
the ARTable uses right-handed (see Figure 6.2a) while Unity and therefore HoloLens uses
left-handed (see Figure 6.2b). To solve this problem, every object position and rotation
that came from ARTable needs to invert its 𝑦 axis and Euler 𝑥 and 𝑧 angle as shown in
Figure 6.2.

6.2 Visualization of Robot’s Perception
Current 2D projected user interface is limited in visualization of spatial information. For
instance, it draws bounding boxes around detected objects placed on the table, that indi-
cates what robot actually sees. However, sensors are able to detect these objects even if
they are not placed directly on table, e.g. when they are in gravity feeder.
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Figure 6.4: Spectator’s view of the workspace extended by virtual holograms seen through
the headset. In this situation the user observes visualization of “Stool assembly” program.
Image was created in external tools to demonstrate how it would look from spectator’s view
and does not correspond precisely to reality (bounding boxes of detected objects would be
slightly off the real objects due to imperfect calibration).

Provided solution eliminates limitations of 2D projected interface. With use of the
headset, drawing of 3D spatial bounding boxes around detected objects is easily solved.
The HoloLens just loads the data about position, size and type of currently detected objects
from the ARTable system. Being able to see what the robot sees can be helpful in various
situations, e.g. when user wants him to pick some object from the feeder that is physically
present but the robot doesn’t see it.

This visualization can be seen in Figure 6.3 where green 3D bounding boxes are drawn
around detected objects. There are notable inaccuracies in fitting the virtual bounding box
onto real object. These inaccuracies result from small inaccuracies of partial calibrations of
the whole system – calibration of Kinects, projector, touch-table and HoloLens. Summing
these up creates a notable inaccuracy.

6.3 User Interface for Robot Programs Visualization
In order to eliminate user’s uncertainties in programming the robot, programs visualization
mode was implemented. This mode extends current 2D projected interface by Visualize
button, which starts the visualization itself. Only programs with set parameters are able
to be visualized (see Figure 6.5). After hitting this button, the interface checks if HoloLens
are running, otherwise visualization won’t start. Visualization is fully controllable with
projected buttons – Pause/Resume, Stop and Replay (as shown in Figure 6.5).

As described in subsection 4.1, ARTable programs are compounded of various instruc-
tions that are linked together. Instruction set of currently visualized program is loaded
from ROS environment into HoloLens which then dynamically builds this program from
internally implemented classes representing these instructions. With this approach any pro-
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Figure 6.5: Widgets of projected ARTable GUI extended by visualization mode. Left: List
of programs, where green programs are ready to visualize or run and red programs need
to set parameters. Middle: List of instructions of currently visualized program. Visual-
ization is fully controllable with provided buttons – “Pause”/“Resume”, “Stop”, “Replay”.
Visualization can be also controlled with voice by saying same keywords as are names of
those buttons. Right: Rectangles defining areas on the table onto which the grabbed ob-
jects of different type will be placed. Dashed polygon defines area in which the robot will
apply glue to corresponding objects. All these supplementary elements of projected GUI
are displayed at the same time when program visualization runs.

gram variations built from supported instructions should visualize correctly. After build,
execution starts.

Example usage of the headset is shown in Figure 6.4, where the user observes visualiza-
tion of “Stool assembly” program. Visualization of this program is further demonstrated in
Figure 6.6. Whole process visualizes individual instructions which are connected together
in a context of the program. For example, when visualizing pick from feeder instruction,
virtual object is created, which is then picked by a virtual robot gripper from the feeder
and placed on the preset position on the table. This object then stays active in the scene in
case that another instruction could want to manipulate with it (e.g. to apply glue to it or
to move it somewhere else). Whole process is commented by Microsoft Zira text-to-speech
voice. In this case, it would say: “The robot is grabbing the object from feeder on your
left/right side”, “The robot is placing the object to preset place pose” and so on. This voice
commenting replaces the original idea of displaying text boxes that would describe current
state of the visualization.

Besides provided buttons for controlling the visualization, which I had to implement,
user can use his voice. Introduced system recognizes couple of basic keywords: “pause”/“re-
sume”, “stop”, “replay”, “next” (to immediately move to next instruction) and “back” (to
immediately move to previous instruction). These keywords are insured against unexpected
behavior. For example if users says “stop” when visualization is already stopped, he gets
notified by speech synthesizer. Proposal of this programs visualization described in sec-
tion 5.3 suggests to control the visualization using holographic buttons. This idea was
dropped due to low field of view of the HoloLens and replaced with the voice commands.
The buttons would be rather disruptive than useful. With use of the voice controls, user
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(a) Virtual robot gripper is
grabbing virtual object from the
feeder.

(b) The robot gripper moves
grabbed object to specified
place pose.

(c) The robot is placing virtual
object into preset position.

(d) The robot goes for smaller
virtual objects – stretchers.

(e) Simulation of glue applica-
tion to virtual objects within de-
fined area.

(f) Result of “Stool assembly”
program running on the real
robot.

Figure 6.6: An example of program visualization. In this case – first block of “Stool
assembly” program which consists of a total of three blocks. In this block the robot will
pick the objects from the feeder, place them onto the table and apply glue into the holes
in order to prepare these components for user to assembly. This block consists of eleven
instructions – wait until user finishes, four pick from feeder and consequent place to pose
instructions, apply glue and lastly get ready.

can fully focus on the visualization itself, without the need of coming closer to the table
and looking on the projected UI in order to hit some button.

During whole visualization process, the HoloLens and the ARTable keeps communicat-
ing using aforementioned rosbridge. Both systems synchronizes their states about which
instruction is visualizing, whether it’s playing or is stopped and so forth. This continu-
ous communication ensures scrolling down in instruction list of projected 2D interface or
enabling and disabling projected buttons. Lastly, supplementary elements of projected in-
terface – such as object place pose rectangles, polygons defining areas from which to pick
or in which to apply glue to objects – are displayed at once to help the user get an instant
overview of an outcome of current program (see Figure 6.5).

It is important to mention that whole visualization should be rather understand as an
animation, not simulation. It correctly visualizes initial and end state of every instruc-
tion. However the robot gripper movements are just animated to approximately match the
movements of the real robot. Thus it cannot be considered as a simulation of the real robot
movements. While simulation would allow proper verification of correctness of programmed
program, chosen animation approach is sufficient enough for its purpose, namely to help
the user faster understand robotic programs.
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6.4 Interactive Helper for Robot Programming
In order to enhance the human-robot collaboration even more, the interactive helper for
robot programming was implemented. This helper guides the user throughout whole pro-
gramming process. With use of the HoloLens voice and 3D holograms, the user is instructed
in what to do when he is programming the robot. He is also warned of occurred errors.

The helper mode was implemented for pick from polygon and place to pose instruction.
It starts immediately after the user starts editing one of these two instructions. For pick
from polygon instruction the object type and pick polygon needs to be set. Thus the user
needs to do two main actions – click on the outline of some detected object placed on the
table and drag the outline of pick polygon to specify the area from which the robot will be
picking up objects. With the HoloLens put on, he is guided by Microsoft Zira’s voice, which
tells him meaningful advices such as “Select object type to be picked up by tapping on its
outline.” or “Adjust pick area as you want – or you can select another object type. When
you are finished, click on done.” Zira’s voice is complemented by animated 3D holograms of
hand with raised forefinger, which points to the object or polygon outline to visually help
the user understand what needs to be done. In case of selecting the object type, the virtual
hands appear above every detected object and moves up and down to indicate clicking
movement. In case of adjusting the pick polygon, the virtual hand moves back and forward
above the polygon outline to indicate dragging movement (see Figure 6.7). Only one major
mistake can appear within programming this instruction, namely the absence of any object
placed on the table. If so, the user will not be able to select the object type to be picked
up. If this happens, the headset warns the user about absence of objects and asks him to
put some of them on the table.

For place to pose instruction, the user needs to specify position on the table where the
robot places picked object from previous pick from polygon instruction. He is guided by
Zira’s voice and animated 3D hologram of hand, similarly as in the case of above discussed
instruction (see Figure 6.7). The user gets warned if he tries to program place to pose before
the corresponding picking instruction because the system doesn’t know which object type
is going to be placed.

After the user successfully programs one of the instructions or partial tasks, he is com-
mended with simple “Perfect!” or “Good job!” praise. In case that he didn’t understand
everything what Zira said, he can say “repeat” keyword, to force Zira to immediately repeat
lastly spoken advice.

6.5 Application Components
As mentioned at the beginning of this chapter, whole application was implemented in
Unity, which is a multipurpose game engine that supports 2D and 3D graphics, drag-
and-drop functionality within its editor and scripting using C# language. Implemented
application, named – ARTableHoloLens, was divided into a couple of main components
handling specific functionalities – communication with ARTable (ROS), headset calibration,
program visualization, interactive helper for robot programming, handling detected objects
or user voice input. These components are realized as singletons.

I tried to use existing tools and packages as much as possible, to stay focused on main
goal of this work and not reinventing the wheel. Thus I used Microsoft’s Unity package
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Figure 6.7: An example of interactive helper for robot programming. Left: User is setting
parameters for pick from polygon instruction and is guided by device’s voice and 3D holo-
gram of the hand to select some object type to be picked up by the robot. Middle: User
is specifying polygon from which the robot will pick up previously specified object and is
guided by device’s voice and animation of virtual hand. Right: User is adjusting place
pose area for place to pose instruction.

MixedRealityToolkit-Unity10 that has a bunch of basic stuff for head-mounted displays al-
ready implemented, such as gestures or voice input handling, spatial mapping, spatial sound
or hologram sharing modules.

Calibration and Communication Component

When the application starts, a SystemStarter script tries to load previously stored spatial
anchor from the HoloLens local database. If spatial anchor doesn’t exists, script calls the
Calibration manager that starts the calibration process as described in 6.1. This man-
ager encapsulates the HoloLensARToolKit11 library (integration of ARToolKit with UWP
applications), which handles detection of preset marker. It takes images from HoloLens
world-facing camera in order to detect black borders of potential markers with use of a
threshold. By thresholding, connected groups of pixels are found, from which the con-
tours are extracted. Those contours are surrounded by four straight lines, which form four
corners, from which a homography matrix is calculated in order to remove perspective dis-
tortion and to transform potential marker to a canonical front view in order to compare it
to a library of known markers by feature vectors [9]. With successfully detected marker,
virtual cube, which is stored afterwards as a spatial anchor, is displayed above this marker.
This spatial anchor will serve as a root GameObject for every other object displayed in
scene.

The Communication manager uses extended ROSBridgeLib12 Unity library, as described
in 6.1. From the very beginning of application start, it creates a WebSocket connection
with the ARTable’s rosbridge server and subscribes to ROS topic to receive messages con-
taining information about current states of the ARTable system. Every received message
is distributed among other components that somehow reacts to them (e.g. starts program
visualization or starts functions of interactive helper). Besides this type of message, the
Communication manager receives messages containing position, rotation and type of de-
tected objects by ARTable’s sensors. Manager is even publishing its own message, about

10https://github.com/Microsoft/MixedRealityToolkit-Unity
11https://github.com/qian256/HoloLensARToolKit
12https://github.com/MathiasCiarlo/ROSBridgeLib
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the activity of the headset device, every 5 seconds; and is ready to inform the ARTable
about changes in application states to keep coherency with both systems.

Program Visualization Component

When the ARTable system switches into a visualization state, meaning that user started
visualization of an existing program, this component loads that specific program structure
from the ARTable system over the rosbridge. It dynamically builds this program from pre-
prepared C# classes representing individual program instructions. Those classes are linked
together into a linear list that is afterwards sequentially traversed in a coroutine in order to
execute the visualization of whole program. This approach has an advantage that the ap-
plication doesn’t need to have exact order of every program’s instructions stored internally.
It also allows to have multiple programs variations without the need of reimplementing
application code.

Component supports all known instructions (described in 4.1). Only pick from polygon
and pick from feeder are allowed to create GameObjects that represents real objects to be
picked up by robot. Those are passed by reference to place to pose or apply glue instructions
to enable the virtual robot gripper to manipulate with them. This gripper is created only
once at the start of the application and is shared between the individual instructions.

During the visualization, the Communication manager keeps sending messages to the
ARTable system about its progress (which instruction is currently visualizing or whether
the user used some of the voice commands for controlling the visualization state). For
recognizing voice inputs, the Windows Speech Recognition API that is a part of the Unity
engine was used. When the user decides to stop the program’s execution, every GameObject
belonging to that program is marked as inactive. Thus all virtual objects and robotic gripper
are hidden (not destroyed), which has an advantage of that the program and all related
objects doesn’t need to be created all over again, they are just activated and refreshed to
their initial positions, if the user chooses to replay that program. They are destroyed only
once the user decides to leave the visualization mode. “Pause” sets the Unity’s timeScale
to 0, which basically freezes motion of every object in scene. “Resume” sets this property
back to 1. The Windows Speech Synthesizer, which converts text to speech, was used for
commenting the visualization steps.

Interactive Helper Component

This component is comprised of two singleton C# classes representing program instructions
– pick from polygon and place to pose. Both are waiting until the ARTable system switches
into an edit state of one or another instruction. Both are using the Windows Speech Synthe-
sizer and are allowed to create the GameObject of a virtual hand with pointing forefinger to
guide the user throughout the edit process. The place to pose creates one virtual hand only
once, when the user is asked to set the place pose, while pick from polygon creates virtual
hand twice. Firstly, when the user is asked to pick desired object type (in this scenario,
for every real object placed on the table is created virtual hand that points to that object)
and secondly, when he is asked to set the pick polygon (only one virtual hand is created).
When the user finishes current task, every such created hand is destroyed.

The component does not interact with the ARTable system. It only reacts to received
messages about the system state within the headset (e.g. when the user tries to select the
object type but no objects are placed on the table – which means that there are no detected
objects at all and if so, 𝑧 coordinate is checked to be approximately zero).
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Objects Manager Component

The Objects manager parses received data from the Communication manager about de-
tected objects ID, position, rotation, size and type. It creates list of GameObjects repre-
senting such detected objects. With every newly received data, it updates their position
and rotation based on their ID. Those objects are rendered with custom wireframe shader
that colors the object to black (this has an effect of transparency) and draws green lines on
the object’s outline representing its wireframe.

Besides the list of detected objects, it even holds the list of all virtual objects, cre-
ated during visualization of some program. This is useful for a check of presence of any
virtual object within given area or to easily destroy all virtual objects when the program
visualization ends.
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Chapter 7

Experiments

The aim of this work was to extend the ARTable workspace over the mixed reality headset
– Microsoft HoloLens and to create user interface which will enhance the human-robot
interaction. Thus the visualizer of robotic programs and the interactive helper for
robot programming were implemented.

In order to validate proposed approach and to determine whether the use of the headset
in the ARTable setup is valuable, a user experience testing has been carried out. Description
of performed experiments is described in section 7.1, its results are described in 7.2 and in
section 7.3 I discuss suggestions for further work.

7.1 Experiments Description
I prepared a set of three tests in which the participants tried to set parameters for a robot
program, tried to estimate what a program with already set parameters would do and
tried to use the Microsoft HoloLens in more complex visualization scenario. Participants
were divided into two groups – group X and group Y. Participants in group X were
performing designed tests without the use of the headset, while participants in group Y
were performing same tests using the headset. Participants were tested one by one.

As measures, I chose the System Usability Scale (SUS) [4], and I created my own custom
questionnaire for determining the usability of Microsoft HoloLens in the ARTable setup.
I also recorded task completion times and corresponding number of needed interventions.
Those values were afterwards averaged within the individual groups and compared to each
other. Results indicated whether proposed solution in this work is useful or not. For
detailed results, see section 7.2.

Testing of each participant was done in the following steps:

1. Introduction of the ARTable, involving its motivation, what is it good for and very
basic description of projected GUI.

2. Assigning the first task – set parameters for polygon-training program.

3. Filling the SUS questionnaire.

4. Assigning the second task – estimate what exactly would already programmed feeder-
training program would do.
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5. Assigning the third task – try to visualize stool assembly program using the headset
and use the voice commands and provided buttons for controlling the visualization
(both groups were using the headset for this task).

6. Filling the custom questionnaire.

Before the proper testing, a pilot experiment with one participant from each group took
place. This helped me to verify the functionality of proposed solution and to create the
final experiment design.

First Task – User Robot Programming

Within the first task, participants were asked to set parameters for polygon-training pro-
gram, which consists of a total of four instructions, two programmable – pick from polygon
and place to pose and two non-programmable – get ready and wait until user finishes. For
the pick from polygon, the user is supposed to set the object type to be picked up by robot
by clicking on the detected object’s outline of desired type and to set the pick area by
adjusting projected polygon. For the place to pose, the user is supposed to set the place
pose by dragging the projected outline of previously selected type.

I designed a simple scenario in which the participants were told to set parameters for
the robot to pick up the ShortLeg object from marked place on the table – marker A, and to
place it on marked place on the table in specified rotation – marker B. Those two markers
were placed on the table along with three objects of different type – Stretcher, ShortLeg
and LongLeg. In order to correctly set parameters for this program, these steps needs to be
reproduced:

1. Select the first instruction of the program – pick from polygon.

2. Find the ShortLeg object type by clicking on the objects outline.

3. Click on the Edit button.

4. Select the ShortLeg object type.

5. Move the projected pick area to the marker A and adjust it to match the assigned
shape.

6. Click on the Done button.

7. Select the second instruction of the program – place to pose.

8. Click on the Edit button.

9. Move the projected place pose to the marker B and rotate it to match the assigned
pose.

10. Click on the Done button.

Participants were trying to figure out these steps on their own, without any further
interventions from my side (except the critical ones and those that were initiated by users).
Users in group X were using just the projected user interface. The course of this first
task can be seen in Figure 7.1. Users in group Y were using the projected user interface
along with the headset’s interactive program helper (described in section 6.4), see Figure
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(a) User finds the ShortLeg
object type and moves it on
marked position A.

(b) User selects the ShortLeg ob-
ject type by tapping on its out-
line.

(c) User adjusts pick area by
dragging it on the table to
match the desired pose.

(d) User selects place to pose in-
struction from list.

(e) User adjusts place pose to
desired position.

Figure 7.1: The first task of the experiment – the user from group X sets parameters for
one pick from polygon and one place to pose instruction of the polygon-training program
without the use of the headset.

7.2. Both groups had none previous experience with the ARTable nor Microsoft HoloLens
and none demonstration example of how to set parameters for robotic program was showed
to them. After completion of this task, the SUS questionnaire was filled in.

Second Task – User Understanding of Robotic Program

Withing the second task, participants were asked to estimate, what the program feeder-
training with parameters already set would do if run on the real robot. In other words,
how fast they can understand this program without any previous knowledge of it. The
program consists of a total of six instructions, four programmable – two pick from feeder
(second is a copy of the first instruction) and corresponding two place to pose and two non-
programmable – get ready and wait until user finishes. The program was set as follows:

1. The robot grabs the LongLeg object from the feeder on user’s left side (first pick from
feeder).

2. The robot places grabbed object on marked position on the table, approximately in
the middle of it (first place to pose).

3. The robot grabs another LongLeg object from the feeder on user’s left side (second
pick from feeder – copy of 1).

4. The robot places grabbed object on marked position on the table, approximately
10 cm next to the previously placed object from its left side (second place to pose).
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(a) User is going to select the
ShortLeg object type by tapping
on its outline.

(b) Animated virtual hand is
suggesting the user to drag the
pick area.

(c) User adjusts pick area by
dragging it on the table to
match the desired pose.

(d) Animated virtual hand is
suggesting the user to drag the
place pose.

(e) User adjusts place pose to
desired position.

Figure 7.2: The first task of the experiment – the user from group Y sets parameters for
one pick from polygon and one place to pose instruction of the polygon-training program
using the headset. User is guided by the voice advices and 3D holograms of animated
pointing hand from the application’s Interactive Helper.

5. The robot arm moves back to its default position (get ready).

6. The robot waits for the user to finish current task (wait until user finishes – just
simulation).

Group X was allowed to use the edit mode only. Within this mode they could traverse
through all of the listed instructions by selecting them in order to examine their text
descriptions and visual elements displayed on the table, or by running them on the robot.
This task was kind of tricky because currently it is not possible to clearly estimate (just
from the text description) from which feeder will the robot grab the object (whether the
one on the user’s left side or the other on his right side). User has to run the pick from
feeder instruction to see where the robot goes for the object. Once he knows which feeder
is used in this program, it should be easy to estimate the rest without the need of running
it on the robot.

Group Y was allowed to use the visualization mode only (described in section 6.3). A
commented animation of the program using spatial 3D holograms and speech synthesizer
was played in the headset. User should get a clear overview of the program workflow thanks
to the animation.
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Third Task – HoloLens Usability Testing

Participants from both groups were asked to put on the headset and oversee the stool
assembly program visualization. They were asked to try out all commands for controlling
the visualization, both projected and voice, within this visualization and to focus on the
headset-related attributes, like its field of view, its comfortness or a quality of the speakers.

Participants from group X tried out again the first task, but this time using the
headset. All users filled the custom questionnaire afterwards. This questionnaire examines
the usability of the HoloLens within all of those three tasks.

Participants

All volunteers are university students, in the age of 19 to 26 years old. They are labeled
with letters A – F (six participants in the group X) and K – P (six participants in
the group Y). None of them had previous experiences with the ARTable nor Microsoft
HoloLens. Demographic data of the participants can be seen in the Table 7.1.

Participant Gender Age Education Group
A M 26 higher

group X (without the
headset)

B M 24 higher
C M 24 higher
D M 24 higher
E M 19 secondary
F M 23 higher
K M 23 higher

group Y (with the
headset)

L M 21 secondary
M M 24 higher
N M 23 secondary
O F 23 secondary
P M 25 higher

Table 7.1: Demographic data of participants.

7.2 Results
The Table 7.2 shows qualitative and quantitative data per participant of the group X. Mean
time to complete the first task was 2 minutes and 48 seconds with 2.5 interventions. This
task consisted of setting parameters for one pick from polygon and place to pose instruction.
Mean time to complete the second task was 3 minutes and 4 seconds with 2.5 interventions.
Second task involved understanding of the feeder-training program using only the edit mode
of the projected interface. Mean SUS rating was 70.8.

Results of the group Y participants is showed in the Table 7.3. Mean time to complete
the first task was 3 minutes and 41 seconds with 2.7 interventions and mean time to complete
the second task was 1 minute and 32 seconds with 0.7 interventions using the visualization
mode in the headset. Mean SUS rating was 67.5. This score is within the range of average
usability, which, according to research, is around 68 [5]. Interestingly, to complete the first
task using the headset took almost a minute longer than without the headset. Reasons
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what could cause this delay are discussed below. However, the second task completion
time was reduced by half when using the headset. Number of needed interventions also
reduced significantly – from previous 2.5 down to 0.7 interventions. SUS ratings are nearly
the same, although the SUS score when using the headset is slightly lower. This could be
caused by targeting this SUS just for the first task where group Y participants didn’t fully
appreciate added value of the headset and in some cases it rather confused them.

Measure A B C D E F Average
System Usability Scale 60.0 72.5 82.5 80.0 37.5 92.5 70.8
Time to set polygon-training
program (first task)

1:34 1:38 1:45 2:32 4:02 4:58 2:44

Interventions 1 1 1 1 5 6 2.5
Time to understand feeder-
training program (second task)

4:20 3:43 2:58 1:43 3:08 2:37 3:04

Interventions 3 4 1 2 3 2 2.5

Table 7.2: Qualitative measures, task completion times and number of needed interventions
for participants that weren’t using the headset (group X). Time is in the “minutes:seconds”
format.

Measure K L M N O P Average
System Usability Scale 47.5 90.0 70.0 60.0 57.5 80.0 67.5
Time to set polygon-training
program (first task)

4:20 3:13 3:07 2:43 5:06 3:38 3:41

Interventions 4 2 1 2 5 2 2.7
Time to understand feeder-
training program (second task)

2:27 1:53 1:09 1:00 1:05 1:41 1:32

Interventions 1 1 0 0 1 1 0.7

Table 7.3: Qualitative measures, task completion times and number of needed interventions
for participants that were using the headset (group Y). Time is in the “minutes:seconds”
format.

From the custom questionnaires (see Table 7.4 for group X participants and Table 7.5
for group Y participants) it seems that the main issue about the headset that participants
didn’t liked is its low field of view. Interestingly, the users from the group X mostly
complained about discomfort of wearing the headset but the users from the group Y mostly
didn’t mind wearing it. Both groups agreed on easy understanding of the spoken word of
the headset’s speech synthesizer and easy voice controlling. They also mostly preferred
controlling the visualization by voice rather than projected buttons, however, there were
two participants that preferred buttons over voice. After seeing the program visualization,
all participants immediately knew what a real robot would do. Use of the headset’s helper
for robot programming wasn’t that straightforward, participants appreciated it, but there
were some users that didn’t use it or felt neutral about it.
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Statement A B C D E F Average Mode
I didn’t like low Field of View of the
headset. I had to look for holograms
for a while.

5 5 4 4 5 4 4.5 5

The headset was uncomfortable, and
I would definitely mind wearing it for
a long period.

5 3 4 5 5 4 4.3 5

The headset’s speech synthesizer was
easy to understand.

5 5 4 4 4 5 4.5 5

Controlling by voice was easy and in-
tuitive.

4 5 5 5 5 5 4.8 5

I would rather control the system
with buttons than by voice.

1 4 2 4 1 1 2.2 1

After seeing the program visualiza-
tion, I knew what a real robot would
do.

5 5 5 5 5 5 5.0 5

I used the headset helper when pro-
gramming the robot. Thanks to it, I
have been able to program the robot
easily.

5 5 3 2 5 4 4.0 5

Sometimes I didn’t know what to do. 1 3 4 4 4 2 3.0 4

Table 7.4: Custom questionnaire for participants that tried the headset after they completed
all testing tasks without the use of the headset (group X). 1 – totally disagree, 5 – totally
agree.

User Robot Programming

Regarding the first task, most common issues for both groups were mostly projected inter-
face related, like double presses of buttons, where user tried to click on the Edit button or to
select instruction which was immediately unselected. There also sometimes occurred other
issues with the touch table, namely wrong touch detection due to imperfect calibration of
the projector with the table and none touch detection on a non-touchable margins of the
table. Almost all participants tried to run the program they programmed directly in edit
mode that allows to run individual instructions separately, for fluent run, edit mode must
be exited. This caused that five participants tried to run firstly place to pose instruction
without previous picking instruction, which resolved in error because the robot didn’t held
any object.

Following issues occurred just at participants in group X. Participant B tried to select
the object type by touching the object itself, not its outline. He also complained about
user interface colors. He said that it took him some time before he got used to it (that
grayed buttons are inactive, green ones are active, etc.). E had problems with object type
selection. He wanted to select it by lifting it up with his hand. He most probably thought
that he would teach the robot polygon-training program by demonstrating it by himself.
After he was instructed that he needs to use the Edit button and other displayed elements
on the table, he started setting parameters for the place to pose instruction without having
the corresponding pick from polygon instruction set. This resulted in error because object
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Statement K L M N O P Average Mode
I didn’t like low Field of View of the
headset. I had to look for holograms
for a while.

5 2 5 2 2 5 3.5 5

The headset was uncomfortable, and
I would definitely mind wearing it for
a long period.

2 3 3 2 4 4 3.0 2

The headset’s speech synthesizer was
easy to understand.

5 5 4 5 4 5 4.7 5

Controlling by voice was easy and in-
tuitive.

5 5 4 5 5 4 4.7 5

I would rather control the system
with buttons than by voice.

1 3 2 2 2 3 2.2 2

After seeing the program visualiza-
tion, I knew what a real robot would
do.

5 5 5 5 4 5 4.8 5

I used the headset helper when pro-
gramming the robot. Thanks to it, I
have been able to program the robot
easily.

4 4 5 4 3 3 3.8 4

Sometimes I didn’t know what to do. 4 1 2 2 4 4 2.8 4

Table 7.5: Custom questionnaire for participants that completed all testing tasks using the
headset (group Y). 1 – totally disagree, 5 – totally agree.

type wasn’t set from previous picking instruction. This specific error is handled by text
warning projected on the table, but in this case the text warning was insufficient and I had
to interrupt. If E was using the headset, the speech synthesizer would warn him, which
could be more effective. Participant F had troubles with setting the place pose. He forgot
to hit the Edit button and tried to move the place pose, which was inactive. Once he
figured out how to move with it, he set it to unreachable pose where the robot can’t reach,
which he afterwards tested himself by running it.

Participants in group Y had slightly different issues. Those were mostly caused by
confusing holograms of pointing hand. Three participants did not understand that they
must select the object type by clicking on its projected outline on the table. They tried
several times to touch the virtual object’s bounding box they saw in the headset. Thus
they were basically reproducing the virtual pointing hand movement. This problem was
basically design-related where the animation of the virtual hand wasn’t clear enough (see
the section 7.3 where I discuss how to solve this problem). Participant O also tried to
select the object by lifting it. Two participants probably overlooked the place pose which
displayed in the middle of the table and tried to set it by dragging the outline of selected
object. M tried to program grayed non-parametric instructions before he realized that they
are not programmable. Most of the participants had troubles with putting on the headset
right.
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User Understanding of Robotic Program

The second task which consisted of understanding the feeder-training program was tricky
for participants that weren’t using the headset (group X). All of them had to run the
pick from feeder instruction on the robot to determine whether the robot will be grabbing
the objects from the left or right feeder. Participant B was unsure about what the feeder
actually is. When one of two place to pose instructions are selected, both place poses are
displayed where outline of the corresponding place pose to selected instruction is filled while
the other one is dashed. This mistaken three participants when they thought that dashed
outline corresponds to selected instruction. E thought that the robot will pick up the object
from the table instead of the feeder because the object’s outline of the type to be grabbed by
the robot from the feeder highlighted. F complained about bad readability of the selected
instruction description (white text on green background).

Participants in group Y had this task quite easier. They just observed animation of the
program. None of them had to run the robot. Only two users had to replay the animation
because they missed the beginning of it. One of them tried to scroll up the list first before I
instructed him that he needs to use the Replay button or voice command. M had constant
complains about poor field of view of the headset. All participants understand the program
without any major problems.

HoloLens Usability

All participants tried out the HoloLens. Biggest issue was its poor field of view and discom-
fort when wearing it. Participant A had problems wearing it along with eyeglasses. Two
participants said that the headset is too heavy and it pushes the nose.

Other two participants appreciated voice controlling. They said that it has an advantage
where they could afford to stand a few steps back from the table in order to focus on the
visualization. One of them even suggested the extension of full voice controlling of the
whole ARTable system.

Based on the quantitative results from presented tables where was reached up to 50%
decrease in time it took participants to understand the robotic program, it can be said that
the Microsoft HoloLens is worthwhile using. Once the Microsoft improves the headset’s
field of view and lightens its weight, it will become much more price-acceptable.

7.3 Suggestions for Future Work
There are plenty of possible extensions of this work. I divided the major suggestions into
categories listed below. Those are based on carried out user experience testing and my
personal point of view.

Calibration Improvement

Current form of the HoloLens calibration is sufficient but not perfect. As described in sec-
tion 6.1, it uses only one marker, which often results in imprecise rotation of the coordinate
system. These inaccuracies could be eliminated with the use of two additional markers
where the current marker is placed in the left bottom corner of the table, the first addi-
tional is placed in the left top corner of the table and the second additional is placed in the
right bottom corner of the table. These markers would form perpendicular angle where the
additional two markers would be used for rotation stabilization of the coordinate system.
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Simulation of the Robot Trajectory

As mentioned in section 6.3, current robotic programs visualization is rather an anima-
tion than simulation of precise robot movements. Though the robot plans his trajectory
real-time, it should be possible to extract the trajectory in advance in order to use it for
visualization purposes. Mesh of the robotic virtual gripper could be replaced with the mesh
of a whole arm (right and left arm) or even with complete virtual robot. Thanks to cali-
brated systems, it should not be problem to get exact positions of the robot arms and to
render the virtual arms over the real ones.

Proper simulation of robot movement would open new use case for the headset. This
would allow the user to verify the correctness of programmed program, which could prevent
damaging the real robot, if any undetected obstacles occurred during program execution.

Improvement of the Interactive Helper

Current interactive helper supports only the pick from polygon and place to pose instruc-
tions. Reasonable extension would be the support of all parametric instructions. This
helper works only within individual instructions. It would worth trying to connect them
into a complex program helper, which would guide the user throughout whole programming
process. This would eliminate for example forgotten Edit button press.

As the user testing showed up, virtual animated hand was rather confusing than helpful.
It should probably display some additional animation when the hand reaches the table (for
example some ripple effect to indicate direct touch on the table) and it should be definitely
pointing on the object outline, not the object itself.

Other Various Enhancements

Following suggestion are mostly minor patches. This involves support of voice commands
for all projected buttons. Object type selection by clicking on the virtual 3D bounding
box would be also possible. Or when the user just looks on the virtual 3D bounding box,
additional information about it would pop up (its ID, object type, etc.).

As described in section 5.5, the HoloLens could be used as an alternative way of pro-
gramming the robot. When the robot looks on the feeder in order to detect objects in it,
it could be possible to mark a position on such detected object. This position could be
transformed into the robot’s coordinate system and saved as an initial point for the robot’s
gripper.
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Chapter 8

Conclusions

In this thesis, usage of mixed reality head-mounted display was integrated into a human-
robot collaborative workspace – the ARTable. Current 2D projected interface was extended
over the visualization mode, which adds new buttons and functionality in order to success-
fully communicate with the headset. A visualization system that enhances user under-
standing of robotic programs in the ARTable workspace was implemented. This system
enables the user to visualize learned programs by a form of animation, allows him to con-
trol this animation by his voice or buttons of the projected interface and guides him by
speech synthesizer through whole visualization process. With possibility of controlling the
visualization, even an experienced user might find it usable, when he can quickly see pro-
gram’s outcome without the necessity of running the real robot. Use of the headset allows
to visualize valuable spatial information, such as robot perception, which was realized by
drawing 3D spatial bounding boxes around detected objects.

In order to enhance the human-robot collaboration even more, the interactive helper
for robot programming was implemented. This helper guides the user throughout the
programming process by speech synthesizer and by drawing animated virtual elements that
suggests moves for the user.

Provided solution enables to use multiple headsets, where all of them are synchronized
through the ARTable. Thanks to that, they use same information and render same holo-
grams. Solution of the ARTable’s part is headset independent.

In order to evaluate provided solution, user experience testing was carried out. It was
reached up to 50% decrease in time it took participants to understand the robotic program
when using the headset. However, using the headset for robot programming increased nearly
up to 35% in time it took users to set the parameters for it. Mean SUS score resolved in
67.5, which is within the range of average usability. Biggest downsides of the Microsoft
HoloLens appears to be its poor field of view and discomfort of wearing it. However, based
on the achieved results, it can be said that the headset is worthwhile using in the ARTable
system.
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Appendix A

Contents of the DVD

/
thesis.pdf .................................................. Text of the thesis.
tex/ ......................................................... LATEX source files.
src/....................................................Application source files.

ARTableHoloLens/..............Unity source files of the HoloLens application.
artable/ .............................. ROS packages of the ARTable system.

poster.pdf.................................................Poster of the thesis.
video.mp4 .................................................. Video of the thesis.
video_long.mp4.....................................Longer version of the video.
README.txt...Text file with instructions of how to install and run the application.
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Group: without headset / with headset 

Name: ___________________________           Age: _____ 

System Usability Scale (SUS) 
 
This is a standard questionnaire that measures the overall usability of a system.  Please 
select the answer that best expresses how you feel about each statement. 
 

 Strongly 
Disagree 

Somewhat 
Disagree 

Neutral Somewhat 
Agree 

Strongly 
Agree 

1. I think I would like to use this 
tool frequently.      

2. I found the tool 
unnecessarily complex.      

3. I thought the tool was easy 
to use.      

4. I think that I would need the 
support of a technical 
person to be able to use this 
system. 

     

5. I found the various functions 
in this tool were well 
integrated. 

     

6. I thought there was too 
much inconsistency in this 
tool. 

     

7. I would imagine that most 
people would learn to use 
this tool very quickly. 

     

8. I found the tool very 
cumbersome to use.      

9. I felt very confident using the 
tool.      

10. I needed to learn a lot of 
things before I could get 
going with this tool. 

     

 

Would you like to have any additional comments? 

  

Figure B.1: System Usability Scale questionnaire.
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 Strongly 
Disagree 

Somewhat 
Disagree 

Neutral Somewhat 
Agree 

Strongly 
Agree 

1. I didn’t like low Field of 
View of the headset. I 
had to look for 
holograms for a while. 

     

2. The headset was 
uncomfortable, and I 
would definitely mind 
wearing it for a long 
period. 

     

3. The headset’s speech 
synthesizer was easy to 
understand. 

     

4. Controlling by voice was 
easy and intuitive.      

5. I would rather control the 
system with buttons than 
by voice. 

     

6. After seeing the program 
visualization, I knew 
what a real robot would 
do. 

     

7. I used the headset 
helper when 
programming the robot. 
Thanks to it, I have been 
able to program the 
robot easily. 

     

8. Sometimes I didn’t know 
what to do.      

 

Would you like to have any additional comments? (what bothered you, suggestions for 

improvement,..) 

 

Figure B.2: Custom questionnaire.
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