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Featured Application: The potential applications of the research results, particularly the models
utilizing ensembles of neural networks, offer the feasibility of early cost estimates for sewerage
projects. The cost estimates of construction works, derived from the developed models, can be
generated based on the essential features of sewerage projects that are accessible for analysis
prior to the commencement of detailed design.

Abstract: This paper presents research results on the development of an original cost prediction
model for construction costs in sewerage projects. The focus is placed on fast cost estimates applicable
in the early stages of a project, based on fundamental information available during the initial design
phase of sanitary sewers prior to the detailed design. The originality and novelty of this research
lie in the application of artificial neural network ensembles, which include a combination of several
individual neural networks and the use of simple averaging and generalized averaging approaches.
The research resulted in the development of two ensemble-based models, including five neural
networks that were trained and tested using data collected from 125 sewerage projects completed in
the Czech Republic between 2018 and 2022. The data included information relevant to various aspects
of projects and contract costs, updated to account for changes in costs over time. The developed
models present satisfactory predictive performance, especially the ensemble model based on simple
averaging, which offers prediction accuracy within the range of ±30% (in terms of percentage errors)
for over 90% of the training and testing samples. The developed models, based on the ensembles of
neural networks, outperformed the benchmark model based on the classical approach and the use of
multiple linear regression.

Keywords: sewerage project; sanitary sewer networks; construction costs; construction project; early
cost estimates; fast cost estimates; neural networks ensembles; artificial intelligence

1. Introduction

Sanitary sewerage systems, as a part of built infrastructure, are unquestionably of
high significance for modern societies. The role of sewer networks is to collect and transfer
wastewater from buildings (residential, commercial, or industrial) and all kinds of public
and private establishments to a point of treatment and disposal. These systems are the
results of construction projects aiming to either build new or renovate existing sewerages.
Most of such projects—one may even dare to say that the overwhelming majority—are
financed from public funds.

Sewer projects, regarding their specificity, require careful analyses, design, and plan-
ning so that the technical requirements (especially flow capacity) are met. When planning
is concerned, cost analyses are of key importance as completion of a project within a budget
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is one of the “hard” goals and key measures of any construction project success. Thus,
there is a need for realistic cost predictions, analyses, and estimates, which make the goal
achievable. These predictions should reflect the progress of the design process and avail-
able information, which evolves from basic and fundamental to definite and accurate. The
estimates that play a specific role are called early estimates. These rely on basic information
and some essential parameters of a project and are provided in the early stage of the design
process. On the one hand, the expected accuracy is low; on the other hand, this is when
the impact on the construction cost is great, as the essential choices and decisions for the
project are made.

In the construction industry, cost estimates play a pivotal role in project planning
and execution. These estimates provide a closely approximated assessment of expected
expenses, empowering project stakeholders to make well-informed decisions. The accuracy
of cost estimates holds paramount importance in activities such as budgeting, securing
financial resources, and ensuring the successful completion of construction projects. The
precision of cost estimates can vary, spanning from rough order of magnitude estimates at
the project’s conceptual inception to highly detailed assessments during the design and pre-
construction phases. These estimates undergo continual refinement as additional project-
specific information becomes available. It is imperative to acknowledge that erroneous cost
estimates can result in budget overruns, project delays, and disputes within the construction
process. Hence, the development of precise, well-informed cost estimates emerges as a
critical factor for the effective and economically viable execution of construction projects.

Advances and progress in data sciences and artificial intelligence tools for processing
information—especially for prediction problems—opened possibilities for the development
of cost estimation methods based on the use of collected data, learning from experience,
and knowledge generalization. Specifically, artificial neural networks (ANN) are tools
that have significant capabilities that make them useful for early construction cost esti-
mation; however, they are hardly reported in the literature to be applied in the case of
sewerage projects.

The aim of this work is to introduce a method and model of estimating construction
costs for sewerage projects based on a specific artificial intelligence tool—namely ensembles
of neural networks (later referred to as EoNN). The objective of the research, the results
of which are presented herein, was to develop a model capable of predicting construction
costs in the early stage of a sewerage project with satisfactory accuracy.

For the purpose of model development, numerous sewerage construction projects
involving the construction of new sections or the renovation of existing parts of the external
gravity sewage network completed in the Czech Republic between 2018 and 2022 were
analyzed. These projects served as a source of data for training artificial intelligence tools.

The paper’s content includes concise literature and state-of-the-art review; a presenta-
tion of the research assumptions, data, and methods applied for the development of the
fast cost estimation model; introduction of the model itself along with the results of the
research; discussion of results along with comparison with a linear regression model as a
benchmark; summary and conclusions.

2. Literature Review
2.1. Sewerage Construction Projects Management

When considering sewerage construction projects, management problems become
subjects of research and study, similar to other types of construction projects. Some note-
worthy examples of general problems presented in the literature include the following: an
optimization model for sewage rehabilitation aiming to achieve maximum effectiveness
at the lowest cost, utilizing genetic algorithms [1]; a methodology for selecting and priori-
tizing sewerage projects within available funds and system capacity, based on dynamic
programming principles [2]; a study on the risk of cost overruns in water and sewerage
system construction projects [3]; the development of a new method to enhance the accuracy
of Monte Carlo simulations and its validation in predicting the success likelihood of sewer-
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age build–operate–transfer projects, based on eight case studies [4]; research on culturally
appropriate organization of projects implemented through public–private partnerships [5];
theoretical and empirical analysis of issues arising in public–private partnership projects
within the sewerage sector [6]; and an investigation into delay factors in sewerage projects
using simulations and a dynamic systems approach [7].

Cost-related challenges within sewerage projects constitute a distinct area of focus
in the research literature. In one study [8], sewerage project cost estimates are examined
using two alternative approaches. The first approach integrates component cost ranges and
probability values established by a panel of estimators. In contrast, the second approach
involves simulating costs based on random numbers, where component values are selected
randomly within specified ranges. The study [9] introduces a model that relies on the
utilization of prior information for the estimation of operational costs within sewerage
systems. Specifically, the authors delve into the process of modeling prior information
to furnish preliminary assessments of investment requirements. To facilitate subsequent
estimation, the Bayes linear estimator was employed. Another research endeavor [10]
centers on the intricacies of cost comparison in wastewater treatment. The authors delve
into equitable methods for comparing and allocating costs in municipal sewage treatment
concerning their structure and origin. Another study [11] conducts an in-depth analysis of
factors responsible for variations and the resulting costs in sewerage construction projects.
The work of [12] discloses research outcomes on benchmarking sewerage systems, par-
ticularly emphasizing the analysis of investment costs. This also involves an exhaustive
examination of intangible variables such as economic fluctuations and tendering strategies
and how they influence construction cost calculations. A notable contribution by [13]
presents an Excel-based model capable of evaluating costs associated with sewerage system
environmental impact. This model comprehensively assesses investigation, investment,
design, operation, maintenance, supervision, and overall annual costs. The study seeks
to provide a tool to facilitate environmentally informed decisions when selecting wastew-
ater systems. The determination of capital costs for conventional sewerage systems in
developing countries is scrutinized in [14]. The analysis involves the examination of unit
construction costs expressed as ranges of capital cost values. Ref. [15] presents a literature
review on the lifecycle costs of complete sanitation chain systems within developing cities.
Moving forward, ref. [16] conducts an analysis of time–cost models that aid in forecasting
project durations of different types. The research explores how construction technology
influences the relationship between time and cost, particularly focusing on trenchless
and open-cut technologies. In the realm of public–private partnership sewerage projects,
ref. [17] delves into transaction costs. The study employs an exploratory multi-case study
method to identify potential transaction costs within these projects. Lastly, ref. [18] ad-
dresses maintenance costs in sewer systems, particularly emphasizing cost estimation. The
study underscores the significance of maintenance costs within the lifecycle of construction
projects and proposes a linear regression model to facilitate sewer system maintenance
cost estimation.

The range of problems presented above confirms that the costs and cost manage-
ment of sewerage construction projects are of significant interest and importance from a
research standpoint.

2.2. Cost-Estimating Models for Sewerage Construction Projects

In the context of the focus of this paper, the most crucial aspects are the attempts to
develop models that assist in estimating construction costs for sewerage projects. The early
work [19] investigated the application of nonlinear regression for sewer cost modeling. The
study focused on estimating the empirical parameters within separable and generalized
cost functions. To model the sewer cost function, the applied technique required the
optimization of the values of the nonlinear parameters. The two types of analyzed nonlinear
parametric cost models are reported to exhibit relative insensitivity to minor errors in
the estimated values of their model parameters. The development of cost functions for
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open-cut and jacking methods in sanitary sewer system construction is the subject of
another work [20]. The research resulted in the formulation of cost functions applicable
to open-cut and jacking methods, which are construction techniques for sewer systems.
These cost functions were derived using linear regression and expressed as functions of
pipe size and excavation depth. The derived functions were validated using data from
several actual sewer system construction projects to verify the accuracy of cost predictions.
Another work [21] presents nonlinear unit cost functions for estimating costs associated
with elements of waterborne sewer infrastructure, including gravity pipes, rising mains,
pump stations, and wastewater treatment facilities. As a result, a model that combines
several cost functions was developed to predict the unit cost of various sewer elements.
Modeling the costs related to sewer systems has also been explored in the study [22]. The
approach outlined in this research relies on the utilization of multiple linear regression
techniques. The authors devised and validated cost functions that pertain to various
components of sewer systems, including gravity and rising pipes, manholes, and pumping
stations. The costs are delineated as functions of the principal physical attributes of
these components. The process of estimating the cost functions involved the application
of multiple linear regression analysis. In another work [23], a parametric approach for
modeling the construction costs of sewer systems is presented. The authors aimed to
establish an initial cost model on a municipal level, with population size serving as the
primary variable for the cost functions. By maintaining population size as an independent
factor, an empirical correlation has been deduced between population size and the expenses
associated with sewerage systems. Various forms of cost functions were experimented with,
encompassing both linear and nonlinear formulations. The matter of early cost estimates
for sewerage lines is also present in [24]. The authors employed regression analysis to
formulate models for predicting early-stage costs. The study devised models grounded
in linear regression, featuring the technical attributes of sewerage lines as independent
variables and the estimated costs as the dependent variable.

It can be observed that several works are based on an approach in which the form
of the cost function is assumed ex-ante. Both linear and nonlinear functions have been
employed to model the costs of sewer systems; however, linear regression appears to be the
most popular tool among researchers. Nonetheless, there are works that present attempts
to employ artificial neural networks for the purpose of cost estimates in sewerage projects.
In [25], a neural network is utilized as the cornerstone of a cost-estimating model designed
for a budget estimation system focused on repair and/or replacement costs of sewer
and water projects. The model incorporates 23 project-related factors, derived through
Pareto analysis, as input variables (independent variables), while the budget estimate
serves as the output (dependent variable). The authors emphasize that the proposed
model not only saves time but also enhances the precision of estimates, offering clients
a means to compare cost alternatives and facilitating decision-making processes in cases
involving the rehabilitation of sewer and water systems. Similar work [26] deals with
the problems of conceptual cost estimating for water supply and sewerage projects. This
paper presents a backpropagation neural network-based model that is supposed to assist
municipal authorities in the development of more accurate cost estimates for their water
supply and sewer projects. Cost predictors, representing project technical parameters and
serving as the model’s input, were identified on the basis of contractors’ bids analysis and
covered 80% of construction work costs. The benefits of the presented model include but
are not limited to, better utilization of financial resources, the provision of decision-making
guidelines, and the ability to compare alternatives. Additionally, the authors claim that the
model fulfills the needs of funding entities for more accurate cost estimates.

In comparison to the parametric approach, modeling costs using neural networks elim-
inates the need for assumptions about the equation that binds the independent variables of
the models to the cost, which serves as the dependent variable.
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2.3. Applications of Neural Networks and Ensembles of Neural Networks for Construction
Management Problems and Cost Estimation in Construction

Artificial neural networks (ANN) are a subset of artificial intelligence tools inspired
by the learning and knowledge storage patterns observed in neurobiology. They can be
employed to address various classification or regression challenges. The concept and
theory of neural networks have been extensively discussed in numerous works [27–30].
Neural networks possess the capacity to process data with the aim of uncovering concealed
patterns. The procedure of data processing to acquire knowledge, referred to as training,
is executed through specific algorithms. Following the training phase, these networks
are anticipated to possess the ability to generate predictions for novel data that were not
utilized in the training process. The ability to generalize knowledge is a key attribute of
artificial neural networks, rendering them valuable for a range of engineering problems.

Particularly, ANN has found application in addressing cost-related challenges within
the construction sector. An exemplary illustration of this is a fuzzy neural network model
aimed at aiding contractors in estimating and selecting a suitable markup [31]. Investigative
efforts in other work [32] centered on the evaluation of multilayer perceptron and general
regression neural networks for their potential in early cost estimation for road tunnel
projects. In [33], the outcomes from the utilization of general regression neural networks
to predict maintenance costs associated with construction equipment are shared. Another
work [34] delved into the utilization of multilayer perceptron neural networks to estimate
building construction costs during the initial design phase. In [35], research results on
optimizing both the cost and timeline of construction projects through the implementation
of neural networks are introduced. A hybrid approach, combining multivariate regression
and multilayer perceptron neural networks, was employed in another research [36] to
estimate capital costs for earthmoving, loading, and unloading equipment. There are also
some interesting works that explore the utilization of ANN and machine learning in the
analysis of wind speed and wind direction [37,38], settlement prediction [39], and the
assessment of their impact on existing structures, that is, bridges and metro, respectively.

Ensembles (also called committees) of neural networks (EoNN) have their origins in
the realm of ensemble learning systems. The foundational principles of this approach can
be traced back to earlier referenced works that comprehensively delve into neural network
concepts [28,30], as well as works dedicated to the study of ensembles [40]. EoNN consists
of individual trained artificial neural networks (ANN), each providing predictions that
are subsequently aggregated, with the aim of reducing errors in comparison to standalone
neural networks. The utilization of neural network ensembles within classification and
regression models, as opposed to employing standalone neural networks, is anticipated to
yield enhanced performance and precision [41].

Engineering applications that utilize EoNN encompass a range of engineering chal-
lenges. Some noteworthy examples include predicting the performance of substantial
construction equipment, specifically tunnel boring machines [42], day-ahead electricity
load forecasting for buildings [43], or forecasting heating energy consumption [44]. In
the context of structural engineering, ensemble models are reported to be used for pre-
dicting high-performance concrete compressive strength [45] and identifying structural
damage [46]. Finally, an example of an EoNN application for risk analysis in the maintain-
ability of high-rise buildings in specific tropical conditions [47] can be provided.

Due to the distinctive capabilities and advantages of EoNN, their exploration within
the domain of construction cost analysis is increasingly reported for different types of
projects. Attempts at developing models capable of aiding various cost analyses using
an ensemble approach have been reported in recent years. In the study [48], the develop-
ment of a model to assist in predicting project cost and schedule success by utilizing early
planning status as inputs is presented. The results obtained validate that the proposed
artificial intelligence models yield satisfactory predictive outcomes. Another publica-
tion [49] explores the application of EoNN for Macro BIM cost estimates. This research
develops estimation models for the structural frames of building floors, demonstrating
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satisfactory accuracy. Authors of [50] center their attention on cost prediction for a specific
category of objects—sports fields. The construction cost forecasting model based on EoNN
is proven to outperform linear regression and models relying on single neural networks.
Furthermore, an analysis of estimate errors and accuracy establishes the applicability of
the proposed model in the early stages of construction projects. In [51], the text delves
into predicting the construction costs of buildings’ structural elements with the use of
artificial intelligence tools. The introduced models are, among others, based on multiple
artificial neural networks combined into an ensemble. The EoNN-based models meet
expectations for knowledge generalization and the accurate prediction of buildings’ struc-
tural frames. Furthermore, an ensemble algorithm application [52] is also employed to
predict the cost of highway construction projects. The study presents a model that employs
artificial intelligence tools—neural networks included—in a stacking ensemble model for
cost prediction.

2.4. Literature Review Summary

A literature review allows for a justifiable assumption that EoNN, when applied as
the core of a construction cost estimation model for a specific type of construction object,
will yield better results compared to models based on linear regression or single neural
networks. On the other hand, works reporting the application of EoNN for predicting
construction costs in the context of sewerage projects have not been found thus far. This
paper aims to address this gap.

3. Methodology

Regarding public works tenders, the investor is required to disclose the expected
value of the contract [53]. Additionally, information about the approximate value of the
sewerage project is crucial during the design phase to select the optimal solution, not
only from a technical standpoint but also from an economic perspective. Estimating the
value of construction works poses a significant challenge, particularly when detailed
project documentation is unavailable and only basic data and parameters are known.
These estimates are typically provided by cost engineers and often rely on the use of
technical–economic indicators, which may result in significantly inaccurate estimates [54].
The starting point of the research was the idea of a cost prediction model capable of
providing estimates for sewerage construction projects utilizing information about the
project available in the early design phase.

The following note aims to provide a concise overview of the broader context of the
research. The construction industry in the Czech Republic is a vital sector of the country’s
economy, contributing to infrastructure development, residential and commercial building
projects, and employment opportunities. The industry has witnessed steady growth and
modernization in recent years. The construction sector plays a significant role in the
country’s economy. It contributes to GDP and provides jobs for a considerable portion
of the workforce. In the context of the research presented herein, it is worth mentioning
that infrastructure development, which encompasses sewerage construction projects, in
the Czech Republic reflects the broader European trend of modernization, sustainable
development, and ecology. It continues to play a pivotal role in the country’s development.
In the Czech Republic, the percentage of the population supplied with water from the
public water supply reached 94.6% in 2020. In the case of connection to the sewage system,
this percentage reached a value of 86.1% [55]. Although this figure may appear satisfactory,
in reality, sewerage systems are readily available in larger agglomerations, and significant
gaps exist in smaller settlements. It is worth noting that construction works related to
sewers encompass not only the renovation of old networks and the establishment of new
networks for new buildings but also the expansion of sewerage systems in already existing
built-up areas.

The research’s general ideogram is depicted in Figure 1, illustrating the successive
steps taken by the authors.
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On the basis of the steps covering the state-of-the-art and literature review, as well as
analyses of sewerage construction projects completed in the Czech Republic between 2018
and 2022, an initial set of cost predictors (potential independent variables serving as input
for the EoNN-based model to be developed) was proposed.

As the research focused on projects aimed at constructing new sections or upgrading
existing sections of external gravity sewage networks, the cost predictors were expected
to reflect the specificity of such construction projects. The analyzed projects involved
separated sewer systems, with wastewater and stormwater runoffs in separate pipes. (An
important point to note is that the analyzed projects did not incorporate combined runoffs;
that is, the runoffs for wastewater and stormwater in a single pipe). Despite the fact
that wastewater systems are connected to the existing sewage treatment plant, the plants
themselves were not part of the analyzed projects, and thus, no related cost predictors
were considered.

The mentioned set of cost predictors is presented in Table 1, which includes selected
types of cost predictors and descriptions of the information that is supposed to be input
into the model (this information is succinctly explained in the table). Moreover, the ta-
ble presents raw values of cost predictors, as they were collected before pre-processing,
ordering, and scaling.
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Table 1. Initial set of cost predictors.

Cost Predictor Input Information Description Value

Type of project New construction or renovation Descriptive

Sewer pipe’s length Size of a project, complexity
of a project, quantity of works Numerical (length)

Type of sewer pipe material Technical parameter, material parameter, applied
solution Descriptive

Sewer pipe’s diameter Technical parameter, applied solution, capacity
of a sewer Descriptive

Average depth of trench Technical parameter, temporary works, safety
issues

Numerical
(depth)

Groundwater table level Technical parameter, ground conditions,
temporary works, safety issues Descriptive

Class of soil Technical parameter, ground conditions
parameter, safety issues Descriptive

Number of manholes Size of a project, complexity of a project, safety
issues

Numerical
(count)

Number of crossings with other services Complexity of a project, temporary works, safety
issues

Numerical
(count)

Works on unpaved surface Conditions of works, complexity of works, soil
type waste production, quantity of works

Numerical
(length)

Works on paved surface Conditions of works, complexity of works,
rubble type waste production, quantity of works

Numerical
(length)

Debris removal distance Conditions of works, waste management
parameter

Numerical
(length)

In the next step, data for the purposes of the cost prediction model were collected.
This step involved the analysis of technical and design documentation, quantity surveys,
cost estimates, as well as public client queries for 135 sewerage projects. This provided data
reflecting the raw values of cost predictors (as presented in Table 1), along with real-life
contract net costs (excluding value-added tax) of sewerage project construction works.

It is noteworthy that, through the systematic analysis of sewerage construction projects
(which constituted the second phase of the research), it was observed that the previously
mentioned type of runoff, whether wastewater or stormwater, did not impact the costs.
From both technological and construction cost perspectives, it does not matter which type
of runoff is being constructed. Therefore, this information is excluded as a predictor of costs.

Due to changes in the value of money and cost variability over time, the values of
contract net costs were updated for the end of the first half of the year 2023. The updated
rule is provided below.

UCC = ACCt·
n

∏
i=t

CIi (1)

where:

UCC—updated contract net cost of a sewerage project;
ACCt—actual contract net cost of sewerage projects, which was awarded in the t-th half-year
period between the beginning of 2018 and the end of 2022;
CIi—cost index for i-th half-year period between the beginning of 2018 and the first half of
the 2023 year;
n—stands for the first half of the 2023 year.

Cost index values that were used to update contract net costs are published periodically
by a Czech company, RTS®, a developer and provider of a price information system for
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the construction industry in the Czech Republic. (It is worth mentioning that there are two
main pricing systems that provide various cost information for construction cost estimation
practice in the Czech Republic. These are RTS® and URS®.) Based on the structural and
material characteristics of sewerage systems, the cost indexes used for calculations were
derived from the RTS® system. More specifically, price indicators that reflect the changes
in costs in sewerage construction projects between 2018 and 2023 were used. The obtained
cost indexes were also compared with the second pricing system, URS®, to verify their
correctness and applicability. In the Czech Republic, this procedure is commonly used
for indexing the prices of construction works between different time periods and is also
permissible for the needs of court evidence.

Outlier analysis was applied to the updated values of contract net costs for sewerage
project construction works. The concept and fundamentals of outlier analysis can be found
in the statistical literature, such as [56–58]. The purpose was to eliminate data points that
deviated significantly from others, essentially excluding unusual cost values from the
dataset. The approach used in this study relied on the concept of the interquartile range
(IQR). The IQR was calculated as the difference between the values of the third quartile
(Q3) and the first quartile (Q1), representing the range of values between these quartiles:
IQR = Q3 − Q1. The rule below allowed us to identify and eliminate outlying values, as
well as entire records for certain project cases from the dataset:

• If the j-th value (in the j-th record in the dataset) of updated contract net costs does
not belong to the range: <Q1 − 1.5·IQR; Q3 + 1.5·IQR>→ eliminate the j-th record
from the dataset.

The rationale for this approach, based on the authors’ prior experiences, is that outliers
can be problematic when developing cost prediction models for various construction
projects, facilities, and structures, as they often represent specific, high-cost projects that
are sparsely represented in datasets. Such data can distort the predictive performance of a
developed model.

The collected data underwent further pre-processing. Numerical values of cost pre-
dictors were linearly scaled, while descriptive values were processed differently based on
their nature; they were pseudo-fuzzy scaled, coded as one-of-n values, or converted into
binary values.

Detailed information and outcomes of this step are presented in Section 4.
The next stage of the research involved computations and simulations of artificial

neural networks (ANN), as well as the combination of these networks to create an ensemble.
The development of models based on ensembles of neural networks (EoNN) designed to
predict costs involves solving regression problems. Let the dependent variable y of such
models represent the construction cost for a sewerage project. Also, let the independent
variables be the cost predictors, with the vector of these variables denoted as x. The EoNN-
based models are expected to approximate the mapping x→ y. Importantly, in the case of
employing EoNN, the approximation function h is implicitly defined as follows:

y = h(x) + ε (2)

where ε corresponds to the prediction error. Consequently, the formal notation for predict-
ing costs ŷ can be expressed as follows:

ŷ = h(x) (3)

The utilization of EoNN as the core of a cost estimation model relies on combining
a set of trained neural networks to form an ensemble. As outlined in [28], this set might
encompass various types of networks or similar networks trained to different local minima.
The two methods built on this premise, which were applied during research presented
herein, are (1) ensemble averaging and (2) generalized averaging. A summary of the core
principles behind the two ensemble-based methods mentioned is provided based on [28,30].
The general idea is schematically depicted in Figure 2.
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At level 0, the tools consist of K experts, which are individually trained artificial neural
networks (ANN), each providing cost predictions:

ŷk = fk(x) (4)

The cost predictions ŷk serve as inputs for the level-1 tool, which combines the predic-
tions generated by the K experts to obtain a more objective final prediction of construction
costs ŷ.

For ensemble averaging and generalized averaging, the combination of ŷk values is
based on a linear combination:

ŷ =
K

∑
k=1

αk fk
(
xj
)
=

K

∑
k=1

αk ŷk (5)

where:

ŷ—level-1 cost prediction made by the ensemble of neural networks;
ŷk—level-0 cost predictions by the k-th ANN—an expert belonging to the ensemble;
fk—mapping function implemented by k-th member network;
αk—linear combination weight for k-th expert;
under the condition:

K

∑
k=1

αk = 1 (6)

In the case of ensemble averaging, also referred to as simple averaging, the assumption
is that the weights αk are equal. In other words, cost predictions ŷk provided by all ensemble
members equally contribute to the cost prediction of ŷ provided by the ensemble:

αk =
1
K

(7)

In the case of generalized averaging, the weights αk are optimized based on the
training results and training errors of the ANN member networks. In this case:

αk =
∑K

l=1

(
C−1

)
kl

∑K
h=1 ∑K

l=1

(
C−1

)
hl

(8)
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where:

C—correlation matrix of errors produced by the members of an ensemble;
k, h, l—are indexes of ANN member networks (used for clarity).

Matrix C elements, denoted as ckl are computed using a finite-sample approximation:

ckl
∼=

1
N ∑

p

(
ŷp

k − yp
)(

ŷp
l − yp

)
(9)

where:

p—denotes the sample for which predicted values ŷk and expected values ŷ;
N—cardinality of a set of samples;
k, l—are indexes of ANN member networks (used for clarity).

Below are the performance and error measures employed throughout the research,
used for assessing both individual trained ANNs and EoNN cost predictions (R—Pearson’s
correlation coefficient, 1

2 MSE—half of mean squared error, RMSE—root mean squared
error, MAPE—mean absolute percentage error, PE—percentage error).

R =
cov(y, ŷ)

σyσŷ
(10)

1/2MSE = 1/2

(
1
M∑

p
(yp − ŷp)2

)
(11)

RMSE =

√
1
M∑

p
(yp − ŷp)2 (12)

MAPE =
1
M∑

p

∣∣∣∣yp − ŷp

yp

∣∣∣∣ (13)

APEp =

∣∣∣∣yp − ŷp

yp

∣∣∣∣·100% (14)

PEp =
yp − ŷp

yp ·100% (15)

where:

p—index of a sample;
M—cardinality of subsets used in the course of the training process: for learning (subset L),
validating (subset V), and testing process (subset T).
(Division into L, V, and T subsets is explained in Section 5).

The proposed EoNN-based models are intended to assist in what are commonly
known as early cost estimates for construction projects, often referred to as conceptual
estimates. Based on the literature [59–61] and practical considerations, certain expectations
regarding prediction accuracy were established. In the literature, expected accuracy for
conceptual estimates typically varies, primarily between ±20% and ±30%. For the purpose
of this study, it was cautiously assumed that the model’s cost predictions should not deviate
by more than ±30% from actual contract costs.

The results of the development of EoNN-based models are presented in Section 5.
To assess the proposed models, benchmark models based on the linear regression

approach were constructed. The comparison between the EoNN-based and benchmark
models is presented, along with a discussion of the research results, in Section 6.
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4. Data—Analyses and Presentation

As discussed in the previous section, data were collected for 135 sewerage construction
projects. Data processing began with updates to sewerage construction costs, and Equation
(1) was applied accordingly. The range of UCC values is presented in Table 2, with costs
provided in both CZK and EUR currencies. The table also includes the characteristics
necessary for outlier analysis and elimination, namely, Q1, Q3, and IQR values.

Table 2. Values range of contract costs for sewerage projects after the update. Characteristics of
updated contract cost values distribution for outliers analysis and elimination.

UCC CZK
(Thousands)

EUR 1

(Thousands)

Min 247.08 10.41
Max 44,677.63 1882.75

Range = max −min 44,430.55 1872.34
Average 3458.49 145.74

1st quartile Q1 845.02 35.61
3rd quartile Q3 3698.97 155.88

IQR 2853.96 120.27
1 exchange rate according to the Czech National Bank for 30 June 2023 1 EUR = 23.730 CZK.

Following the rule for outlier analysis elimination, as discussed in Section 2, the
upper and lower boundaries for the range of values were computed in CZK <−3,435,919;
7,979,909> and in EUR <−144,792; 336,279>. As the negative values of UCC were not
possible, these ranges were finally adopted—in CZK <0; 7,979,909> and in EUR <0; 336,279>.
UCC values exceeding the upper boundary (and, consequently, entire records in the dataset,
including values of cost predictors for relevant projects) were eliminated from further
processing, analyses, and model development. After the removal of outliers, the dataset
consisted of 125 records. Table 3 presents the descriptive statistics for UCC values after
outlier elimination.

Table 3. Descriptive statistics of updated contract cost values after outliers elimination.

UCC CZK
(Thousands)

EUR 1

(Thousands)

Min 247.08 10.41
Max 7531.92 317.40

Range = max −min 7284.85 306.99
Average 2130.52 89.78
Median 1522.22 64.14

Standard deviation 1792.95 75.56
1 exchange rate according to the Czech National Bank for 30 June 2023 1 EUR = 23.730 CZK.

Comparing Tables 2 and 3, it is evident that the elimination of the 10 outliers from
the dataset led to a significant narrowing of the UCC value range. Consequently, high-cost
projects, which were underrepresented in the dataset, were excluded from further data
processing and model development. In accordance with the general assumptions for the
development of the EoNN-based models, UCC is assumed to be the dependent variable,
denoted later as y.

Simultaneously, the pre-processing of cost predictors, which included data analysis,
ordering, scaling, and coding, was carried out. The cost predictors were assigned to the set
of independent variables, denoted as xj, as follows:

• Type of a project: x1;
• Sewer pipe’s length: x2;
• Type of sewer pipe material: x3;
• Sewer pipe’s diameter: x4;
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• Average depth of trench: x5;
• Groundwater table level: x6;
• Class of soil: x7;
• Number of manholes: x8;
• Number of crossings with other services: x9;
• Works on unpaved surface: x10;
• Works on paved surface: x11;
• Debris removal distance: x12.

Descriptive statistics for cost predictors that originally had numerical values are
presented in Table 4. These original numerical values were linearly scaled to the range <0.1,
0.9> for the purposes of computations and computer simulations of the artificial neural
network (ANN).

Table 4. Descriptive statistics for independent variables (cost predictors) that took numerical values.

Cost Predictor Min Max Range
Max −Min Average Median Standard

Deviation

Wewer pipe’s length: x2 (m) 12 1871 1859 163.51 116.00 199.11
Average depth of trench: x5 (m) 0.58 3.68 3.10 2.41 2.41 0.55

Number of manholes: x8 0 18 18 4.63 4.00 3.50
Number of crossings with other services: x9 0 40 40 7.30 4.00 8.77

Works on unpaved surface: x10 (m) 0 1600 1600 49.79 15.00 155.07
Works on paved surface: x11 (m) 0 615 615 113.38 82.00 114.20
Debris removal distance: x12 (m) 1 30 29 11.07 5.00 11.34

Data characteristics, including the original descriptive values and relevant cardinalities
for cost predictors that originally had descriptive values, are presented in Table 5. For the
purposes of computations and computer simulations of the ANN, the original descriptive
values were ordered and pseudo-fuzzy scaled into the range <0.1, 0.9>. This scaling
was performed with regard to the association of the descriptive values with the costs of
construction works, following the general assumption that the greater the value taken from
the range, the higher the costs.

Table 5. Cardinalities of values for independent variables (cost predictors) that took descriptive
values, along with scaled and coded values.

Cost Predictor Original Descriptive Value Cardinality
(Count)

Accumulated Cardinality
(Count)

Type of project: x1
New construction 94 94

Renovation 31 125

Type of sewer pipe
material: x3

PE 2 2
PVC 58 60
PP 42 102

Stoneware 10 112
Glass 9 121

Concrete 4 125

Sewer pipe’s diameter: x4

110–200 mm 5 5
250 mm 86 91
300 mm 17 108

400–600 mm 13 121
800–1000 mm 4 125

Groundwater table level: x6
Below the trench bottom level 102 102
Above the trench bottom level 23 125

Class of soil 1: x7

I/2–I/3 28 28
I/3 53 81

I/3–II/4, I/3–II/5 3 84
I/3–III/6 41 125

1 original descriptive values according to the Czech standards.
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Table 6 presents a sample of the dependent variable y values alongside the scaled and
coded values of independent variables xj. The whole dataset pre-processed in such a way
was utilized for further computations, computer simulations of the ANN as candidates to
become the members of the ensemble, and model development.

Table 6. Sample of dependent and independent variables values as prepared for computations and
computer simulations of ANN.

p y x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

6 335.99 0.90 0.10 0.26 0.10 0.56 0.10 0.37 0.10 0.10 0.10 0.11 0.35
14 466.37 0.10 0.13 0.26 0.30 0.44 0.10 0.90 0.19 0.10 0.12 0.15 0.13
19 534.00 0.10 0.13 0.26 0.10 0.83 0.10 0.37 0.10 0.10 0.14 0.10 0.10
25 619.74 0.10 0.11 0.42 0.30 0.65 0.10 0.10 0.19 0.16 0.10 0.15 0.90
40 842.48 0.90 0.12 0.26 0.10 0.52 0.10 0.37 0.19 0.12 0.13 0.11 0.35
47 987.58 0.90 0.12 0.74 0.50 0.38 0.90 0.37 0.19 0.22 0.12 0.14 0.35
49 1043.62 0.10 0.14 0.42 0.30 0.52 0.90 0.10 0.28 0.12 0.10 0.22 0.90
64 1642.20 0.10 0.19 0.26 0.30 0.47 0.10 0.90 0.41 0.14 0.11 0.36 0.13
76 2200.33 0.10 0.17 0.42 0.30 0.56 0.90 0.10 0.28 0.42 0.11 0.30 0.90
88 2668.12 0.90 0.14 0.74 0.50 0.42 0.10 0.37 0.14 0.58 0.11 0.23 0.21

101 3690.71 0.10 0.90 0.10 0.10 0.36 0.10 0.90 0.10 0.10 0.90 0.45 0.46
110 4515.71 0.90 0.17 0.74 0.50 0.63 0.10 0.37 0.32 0.14 0.12 0.27 0.76
119 5768.77 0.10 0.21 0.42 0.30 0.51 0.10 0.63 0.68 0.52 0.11 0.41 0.49
123 7102.82 0.10 0.29 0.26 0.30 0.81 0.90 0.37 0.59 0.78 0.11 0.67 0.16

For the purpose of model development, the entire dataset, consisting of 125 records,
was divided into two main subsets. The first subset included data used for supervised
training, while the second was reserved for testing.

The testing subset was carefully selected to ensure that the included records were
representative of the entire dataset, equivalent to the data used during the supervised
training of individual ANN candidates considered for membership in an ensemble. This
testing subset, later referred to as T, comprised 15% of the data records. Data from the
testing subset were not involved in the training process, as the primary aim of the testing
was to assess the knowledge generalization capabilities of both individually trained ANNs
and ensembles combining selected ANNs. This approach allowed for testing with data that
had not been presented to the ANNs during supervised training.

The remaining 85% of the dataset was divided into two subsets for the purposes of
learning, (referred to as L) and validation (referred to as V) during the supervised training
of individual ANNs, which were considered candidates for ensemble membership.

The division ratio into the learning, validating, and testing subsets equaled:

L/V/T = 70%/15%/15%

The division into L and V subsets was repeated five times, resulting in five folds of data
available for the supervised training of candidate ANNs. The fundamental assumption
was to conduct the training process five times using different learning and validating
subsets. Depending on the fold, the data records belonging to the L or V subsets were
rotated between the learning and validation processes and contributed to the training
process accordingly.

5. Results

According to the dataset division into five folds, as discussed in the previous section, it
was assumed that the structures of the developed EoNN models would consist of five ANN
multilayer perceptron networks, hereinafter referred to as MLP, each with one hidden layer.

The selection of each of the five member networks was preceded by training 100 dif-
ferent ANN of MLP types for each fold of L and V subsets. It was assumed that the
five member networks may vary in terms of their structure or activation functions. (The
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general structure of the considered MLP networks was 12–H–1, including an input layer
with 12 neurons reflecting the number of independent variables, a hidden layer with a
varying number of neurons symbolized by H, and an output layer with 1 neuron). Possible
activation functions in both the hidden and output layers included sigmoid, hyperbolic
tangent, exponential, or linear functions. All networks were trained using the quick and
effective Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

The selection of ensemble members from the 100 candidate networks was based on
the analysis of network performance. The final choice depended on the following:

• High values of the coefficient R, reflecting the correlation between the predicted and
actual values of the dependent variable for learning, validating, and testing subsets;

• Close values of the 1
2 MSE error measures computed for learning, validating, and

testing subsets, denoting equivalence of the three processes;
• Analysis of MAPE and RMSE values, along with the distribution analysis of PE

error measures.

The characteristics of the ANN selected to be the members of the ensemble EoNN are
presented in Table 7. (The subscripts in the table stand for the successive folds of L and V
subsets—e.g., F1 for fold 1).

Table 7. Characteristics of the ANN selected to be the ensemble members.

ANN MLP Structure Activation
Function Hidden Layer

Activation
Function Output Layer

Number of
Training Epochs

ANNF1 12–9–1 Exponential Linear 22
ANNF2 12–12–1 Hyperbolic tangent Exponential 34
ANNF3 12–12–1 Exponential Hyperbolic tangent 15
ANNF4 12–9–1 Hyperbolic tangent Hyperbolic tangent 42
ANNF5 12–11–1 Hyperbolic tangent Linear 65

The five selected ANNs became EoNN members and provided level-0 predictions of
UCC values, that is, updated sewerage project construction costs. Selected performance
measures are presented for the EoNN members, including RMSE, MAPE, and maximum
values of APEP in Table 8.

Table 8. Selected performance measures of the ANN selected to be the EoNN members.

ANN RMSEL&V RMSET MAPEL&V MAPET
max

{APEP
L&V}

max
{APEP

T}

ANNF1 453 594 19.6% 15.0% 92.1% 41.5%
ANNF2 508 521 19.2% 14.7% 80.2% 58.3%
ANNF3 533 506 22.0% 16.9% 93.9% 54.7%
ANNF4 457 391 17.6% 16.9% 67.8% 50.9%
ANNF5 402 460 15.2% 15.9% 81.5% 27.0%

After the selection of EoNN members, computations of the combined predictions of
the entire EoNN were performed. As mentioned earlier, two variants of ensembles were
considered in the course of the research:

• Model based on simple averaging—later referred to as SAVENS;
• Model based on generalized averaging—later referred to as GAVENS.

Firstly, the weights αk were computed. For SAVENS, the computations based on
Equation (7) were straightforward, resulting in the following:

α1 = α2 = α3 = α4 = α5 = 0.2
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For GAVENS, computations relied on Equations (8) and (9) and required more ef-
fort. The weights for combining outputs provided by the members of the ensemble are
presented below.

α1 = 0.109; α2 = 0.242; α3 = −0.185; α4 = 0.170; α5 = 0.664

For both SAVENS and GAVENS models, further computations based on the respective
weights αk and Equation (5) were conducted to obtain level-1 predictions of sewerage
project construction costs. Figures 3 and 4 present scatter plots that represent real-life
values of updated construction costs of sewer projects y and, on the contrary, values
predicted by the developed models ŷ. Scatter plots, which are alternatively referred to
as scattergrams or scatter charts, serve the purpose of providing a visual representation
of data points within a two-dimensional Cartesian coordinate system. Each data point is
depicted as a point or dot, facilitating the observation of the relationship between the actual
values y and the predicted values ŷ. In essence, each data point on the plot corresponds
to a pair of associated values. Through the utilization of scatter plots, the assessment of
correlations between real-world values and values predicted by a model, as well as the
evaluation of prediction quality, is carried out;
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Figures 3 and 4 depict results for SAVENS and GAVENS models, respectively. The
points in the graphs represent the results of the training (L&V subset) and testing (T subset)
processes. The distribution of points indicates that, in general, the quality of cost prediction
is comparable for both ensemble-based models. There are no significant deviations, and
the points are distributed along the lines of a perfect fit;

On the basis of real-life values y and values predicted by the developed models ŷ as
well as Equation (10), correlation coefficients R were computed;

• For SAVENS: R = 0.976 for the L&V subset and R = 0.988 for T subset;
• For GAVENS: R = 0.972 for the L&V subset and R = 0.987 for T subset;

Correlation of y and ŷ is very high, and no significant differences between the models
can be identified.

Figures 5 and 6 present distributions of percentage errors PEp, computed using Equa-
tion (15) and categorized within the ranges shown on the horizontal axes for the SAVENS
and GAVENS models, respectively;
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An analysis of the PEp distributions allows us to select the SAVENS model as the one
that is slightly more stable when comparing training and testing errors. The shares of PEp

within the range <−30%; 30%> were as follows:

• For SAVENS: 90.6% for the L&V subset and 94.7% for the T subset;
• For GAVENS: 84.0% for the L&V subset and 94.7% for the T subset.

Table 9 presents a summary and performance measures of the two developed models,
specifically RMSE and MAPE values, as well as the maximum values of APEp. The maxi-
mum values of APEp, which are lower for the SAVENS model, confirm that its predictive
performance is slightly better than that of the GAVENS model.

Table 9. Values of general predictive performance measures for the EoNN models.

EoNN RMSEL&V RMSET MAPEL&V MAPET
max

{APEP
L&V}

max
{APEP

T}

SAVENS 436.8 344.5 15.1% 9.3% 57.6% 29.6%
GAVENS 266.3 257.5 14.9% 9.9% 64.6% 31.3%
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In general, it can be concluded that the obtained results are satisfactory. The developed
predictive models provide cost estimates within the assumed and preferred range of
accuracy for the majority of both training and, most importantly, testing cases. The model
based on simple averaging performs slightly better and offers higher accuracy.

6. Discussion

As evident from the literature analysis, attempts to develop cost analysis models for
sewerage projects have been made [19–26]. In comparison to the analyses presented in
this article, it can be noted that the selection of cost predictors, in terms of their nature, is
similar. However, it should not be forgotten that local construction market conditions and
data availability also influence the research. The final set of cost predictors and their values
strongly depend on the possibility of obtaining them, which results in some differences
between the models presented in the literature.

Among the mentioned works, some are based on the use of ANN [25,26]. Unfortu-
nately, it is challenging to compare the results of these studies with the findings of this
research. The cited works used less data for training and testing, and the models are based
on single networks. Most importantly, there is a lack of precise information about the types
of neural networks used and essential details regarding the training and testing processes
of ANN and the analysis of their performance.

Thus, it was decided, for the purpose of further assessing research results, to develop
a benchmark model based on multiple regression using the classical least square method.
The benchmark model is hereinafter referred to as MR. The general formula for predictions
based on the MR model is provided below.

ŷ = β0 + ∑
j

β jxj (16)

where:
β0, βj—regression coefficients.
To ensure the comparability of the MR benchmark model with the models based

on the EoNN approach developed during the research, the computation of coefficients
β0 and βj was performed with the use of subset C, equivalent to the training subset for
ANNs that became members of SAVENS and GAVENS (including cases used for learning
and validation processes). For testing the MR model, subset T was used. Below are
the coefficients obtained from the regression analysis, along with the standard errors of
estimation provided in the brackets.

β0 = −5588.5 (1420.85); β1 = 1064.6 (376.12); β2 = −39,347.1 (62,376.80);

β3 = 1414.0 (1025.67); β4 = 2416.5 (727.67); β5 = 2821.5 (548.23);

β6 = 30.8 (235.41); β7 = 240.0 (358.94); β8 = 3329.0 (763.03); β9 = 1340.1 (635.74);

β10 = 38,154.7 (53,700.36); β11 = 18,397.4 (20,636.69); β12 = 36.9 (449.73)

Figure 7 displays the results for the MR model in the form of a scatter plot of y and ŷ
values (compare with Figures 3 and 4).

Correlation coefficients R were computed in a similar manner as in the case of the
SAVENS and GAVENS models;

• For MR: R = 0.926 for the C subset and R = 0.940 for the T subset;

When compared to the correlations computed for the developed EoNN-based models,
the differences that occur are relatively insignificant. However, an analysis of the scatter
plots and a comparison with those presented for EoNN-based models reveal greater disper-
sion and deviations from the line of perfect fit in the case of the MR benchmark model;
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An analysis of the PEp distributions for the MR benchmark model reveals the superi-
ority of EoNN-based models. For MR, the shares of PEp within the range <−30%; 30%>
were as follows:

• 68.9% for the C subset and 73.7% for the T subset;

Table 10 provides a summary and performance measures for the MR benchmark
model (compare with Table 9).
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Table 10. Values of general predictive performance measures for the MR model.

RMSEC RMSET MAPEC MAPET
max

{APEP
C}

max
{APEP

T}

MR 647.04 743.31 29.5% 19.3% 81.9% 111.5%

Figure 8 depicts the distributions of percentage errors PEp, similar to those presented
for the SAVENS and GAVENS models (compare Figures 5 and 6).

A comparison of the values in Tables 9 and 10 reveals that the overall prediction
performance of the MR model based on linear regression is weaker than the performance
of EoNN-based models (specifically, the SAVENS and the GAVENS models) developed by
this study for the purposes of sewerage projects construction costs prediction.

As described in the preceding section, the research results are satisfactory. The models
developed using EoNN have demonstrated their ability to predict construction costs for
sewerage projects, for either stormwater runoffs or wastewater runoffs, with acceptable
accuracy, meeting the requirements of the expected range of errors in over 90% of the test
cases. The SAVENS and GAVENS models exhibit improved predictive capabilities when
compared to individual ANNs, selected to be the ensemble members, used as standalone
models. This improvement can be attributed to the effective compensation of errors inherent
in single ANNs when they are combined within the ensemble. Moreover, combining several
ANNs provides more objective cost predictions, as a certain bias of single ANNs acting in
isolation is inevitable due to the size of the training set used in the course of research.

The two applied approaches, specifically simple averaging for the SAVENS model
and generalized averaging for the GAVENS model, differ in terms of the computational
effort required to determine the weights of the member ANNs. The first approach is
straightforward—in fact, it involves taking the arithmetical average of predictions as the
EoNN output. In contrast, the second approach demands more effort. However, this can be
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efficiently accomplished using a calculation sheet or through programming and automation
of computations. The generalized averaging approach, with its weight optimization, allows
for a more nuanced differentiation of the influence of individual member ANNs on the
final cost prediction. In summary, both approaches are user-friendly and easily applicable.
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The key advantage of an ensemble-based approach, as affirmed by the research pre-
sented, lies in the efficient utilization of training and testing efforts across ANNs rather than
focusing solely on a single network. This observation carries particular significance in the
contemporary context, where rapid progress in computer technology and the availability
of efficient software enables the exploration of numerous networks within a relatively
short timeframe.

It is also essential to acknowledge the limitations of the developed models. Firstly, the
models are explicitly tailored to the specific local conditions. This is a consequence of the
evident fact that the data used for training and testing were collected in the Czech Republic.
However, it is worth noting that the application of the proposed approach in other locations
is feasible, making the conceptual framework broadly applicable. The second significant
limitation stems from the data update scheduled for mid-2023. In this regard, the proposed
model and approach do not provide dynamic and automatic adjustment to cost variations
over time. This issue will be the subject of further research.
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In summary, the novelty of the proposed model lies in its use of AI tools, specifically
ANNs, and the combination of trained ANNs in the form of an ensemble to achieve objective
cost predictions for sewerage construction projects. The literature review indicates that this
approach is original, with no prior research reporting the development of similar models
for such projects.

7. Summary

The research resulted in the development of two original predictive models capable
of forecasting the construction costs of sewerage projects based on ensembles of neural
networks. Based on the applied artificial intelligence tool’s training capacity, influenced
by the collected data, features, and characteristics of the analyzed projects, as well as
the underlying assumptions, the developed models demonstrate the capability to forecast
construction costs for either wastewater or stormwater runoffs, excluding combined runoffs.

The ensembles mentioned above consist of five different MLP-type ANNs. The outputs
of these ANNs are combined using two alternative approaches: simple averaging and
generalized averaging. Although the predictive performances of the two EoNN-based
models are comparable, the one based on simple averaging appears to offer slightly better
results. The accuracy of cost predictions is satisfactory. Especially for the model based
on simple averaging, that is, the SAVENS model, more than 90% of cost prediction cases,
both for training and testing, meet the accuracy requirements with percentage errors
falling within the acceptable range of <−30%; 30%>. While the developed model has
its limitations, it holds potential applications in estimating the costs of construction for
sewerage projects in the Czech Republic. Furthermore, the proposed general approach may
find applicability in other countries, although the models should be adapted and trained
using locally collected data.

Future studies will involve further data collection and the development of models
based on AI tools. Additionally, future research will focus on incorporating cost variability
over time into these models in order to overcome existing limitations.
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