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Background
Heart frequency in humans can vary between around 0.67 to 3 Hz (40–180 beats/min) 
depending on age, sex, stress, health state and a number of other factors. The lower limit 
of the range can be found in only a small number of physically trained persons in rest, 
usually in supine position. The upper limit is usually reached only in extreme physical 
stress. Heart frequency is usually denoted as heart rate (HR) measured by the number of 
contractions of the heart/min.

Baseline wander is a noise with slow and usually large changes of the signal offset. Its 
frequency spectrum interferes with the frequency spectrum of the useful part of the sig-
nal—the ECG including its main waves and intervals: PR, ST, TP intervals, PQ segment, 
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Background:  The paper presents a method of linear time-varying filtering, with 
extremely low computational costs, for the suppression of baseline drift in electrocar-
diographic (ECG) signals. An ECG signal is not periodic as the length of its heart cycles 
vary. In order to optimally suppress baseline drift by the use of a linear filter, we need a 
high-pass filter with time-varying cut-off frequency controlled by instant heart rate.

Methods:  Realization of the high-pass (HP) filter is based on a narrow-band low-pass 
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is an extremely low computational cost Lynn’s filter with rectangular impulse response. 
The optimal cut-off frequency of an HP filter for baseline wander suppression is identi-
cal to an instantaneous heart rate. Instantaneous length of heart cycles (e.g. RR inter-
vals) are interpolated between QRS complexes to smoothly control cut-off frequency 
of the HP filter that has been used.

Results and conclusions:  We proved that a 0.5 dB decrease in transfer function, 
at a time-varying cut-off frequency of HP filter controlled by an instant heart rate, is 
acceptable when related to maximum error due to filtering. Presented in the article are 
the algorithms that enable the realization of time-variable filters with very low compu-
tational costs. We propose fast linear HP filters for the suppression of baseline wander 
with time-varying cut-off frequencies controlled by instant heart rate. The filters fulfil 
accepted professional standards and increase the efficiency of the noise suppression.
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ST segment, and QRS complex (see Fig. 1). The main goal of filtering is to suppress the 
noise, while the useful signal cannot be distorted more than specified in a standard rec-
ommendation. If the ECG signal is (hypothetically) periodic, its first harmonic frequency 
would be identical with the heart frequency. Lower frequency components would only 
be composed of noise. Removing these components would not distort the shape of the 
ECG signal.

However, the ECG signal is not periodical but quasiperiodic (repetitive). Its heart fre-
quency varies due to physiological or pathological reasons, thus it does not allow for 
the use of ideally set filters. Van Alsté et al. recommend attenuation of −0.5 dB at heart 
rate. In the case of on-line processing of longer signals, they recommend −0.5 dB at a 
fixed cut-off frequency 0.8 Hz [1]. The used filter may not introduce phase distortion. 
Cardiac electrophysiology societies recommend the use of a linear HP filter with cut-off 
frequency of 0.67 Hz and 3 dB attenuation. The AHA reports [2] and [3] recommend 
an amplitude response flat within <−0.5, 0.5> dB, within the range of 1.0–30 Hz. The 
reports recommend that low-frequency cut-off be 0.05 Hz to avoid possible distortion of 
ST segments, but this frequency can be relaxed up to 0.67 Hz (−3 dB) for linear digital 
filters with zero phase distortion. Abacherli et al. refers in [4] to standards which rec-
ommend an HP filter without phase distortion with −3 dB at 0.67 Hz to suppress base-
line drift during monitoring. In diagnostic devices, standards recommend attenuation 
of −0.9 dB, at the same cut-off frequency of 0.67 Hz. Luo et al. refers in [5] to the same 
values and recommends attenuation not more than 0.5 dB at 1 Hz for stress-test ECG.

All mentioned recommendations and standards only deal with baseline wander sup-
pression by linear filters with the fixed cut-off frequency. However, the main disadvan-
tage of such filtering is that it sets a universal cut-off frequency which causes a lower 
efficacy in filtering ECG signals with a higher HR. It is generally known that baseline 
drift spectrum can significantly overlay spectrum of the useful part of ECG signals. 
Thus, it is desirable to use the highest possible cut-off frequency of the high-pass filter 
but acceptable regarding distortion of the useful part of ECG signals. This has been the 
reason for development of a number of alternative (non-linear) filtering methods.

Meyer et al. approximated baseline drift by generating cubic splines from knots in PR 
intervals where we expect zero line of the ECG signal [6]. The main disadvantage of this 
method was the necessity of PR interval detection. The method became more efficient 
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Fig. 1  Main peaks (Q, R, S), waves (T, P), time intervals (PR, ST, RR) and segments (PQ, ST) in an ECG signal
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with increasing HRs when we obtained higher density of knots, while useful parts of the 
signal remained uncorrupted.

Thakor et al. used a simple adaptive filter with a constant reference signal and a single 
weight [7]. However, this filtering method was a source of certain ST segment distortion. 
Jane et al. [8] described a method based on a cascade of two adaptive filters. The first, 
simple, adaptive filter with a constant reference input and a single weight represented 
a simple HP filter with cut-off frequency of about 0.3 Hz. Its output fed a QRS complex 
detector that produced impulses derived from a rhythm of detected QRS complexes. 
The impulses entered the reference input of the second adaptive filter with a number 
of weights equal to a number of samples of the ECG cycle. The filter suppressed signals 
not correlated with the useful part of the ECG signal. ST segments were not distorted 
thanks to their direct relation to QRS complexes. A cascade adaptive filter was also used 
by Laguna et al. [9].

Blanco-Velasco et  al. exploited methods based on empirical mode decomposition 
(EMD) [10]. EMD decomposed the signal on a sum of intrinsic mode functions. These 
were derived directly from an analysed signal and represented a simple oscillatory mode 
as a counterpart to the simple harmonic function used in Fourier analysis.

Shusterman et al. developed a two-step procedure to correct baseline drift [11]. Firstly, 
two infinite impulse response filters were applied in a backward and forward direction to 
avoid phase distortion and obtained ECG signals free of large baseline wander. Secondly, 
QRS complexes were detected and the rest of the baseline drift was interpolated from 
determined PQ and TP intervals.

Shin et al. used modified non-linear methods originally designed for the detrendiza-
tion of heart rate variability signals to suppress baseline drift [12]. The resulting trend 
was derived from an estimation of overlapping short-time trends and was based on a 
smoothness prior approach.

Fasano et  al. applied an approach of baseline wander estimation and its removal in 
ECG signals based on the approximation of quadratic variation (measure of variability 
for discrete signals) reduction. Baseline wander was estimated by solving a constrained 
convex optimization problem where quadratic variation entered as a constraint [13].

Sharma et al. [14] described a method based on Hilbert vibration decomposition. The 
method considered the first component of the decomposition when applied to an ECG 
signal that corresponds to baseline wander of the signal.

Zivanovic et al. introduced a baseline wander modelling using low-order polynomials 
[15].

Hao et al. designed in [16] filtering based on an estimation of baseline wander using 
the mean–median filter and discrete wavelet transform.

This paper presents an application of a linear filter with a time-varying impulse 
response. This allows us to fulfil accepted professional standards and to increase the effi-
ciency of the noise suppression. The main aim is to reach a maximum possible attenua-
tion based on an instant HR.

Linear filters provide the correct filtering and it is widely accepted by the biomedical 
engineering community. At the same time, this filter cannot be considered as optimal 
due to its variable heart frequency. For more effective suppression of baseline drift, an 
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HP filter with time-varying cut-off frequency related to instant heart frequency should 
be used.

Sörnmo proposed in [17] and [18] a time-varying filter. In [17], he used a bank of low 
pass filters with cut-off frequencies 0.5, 0.75, 1.0, 1.25 a 1.5 Hz (at −6 dB), the output of 
the filters were subtracted from the delayed input signal. Selection of a filter from the 
bank was based on the length of RR interval, or estimation of drift. Sampling frequency 
was decimated from 500 to 12.5 Hz to decrease computational cost of the filtering. How-
ever, decimation and interpolation caused a higher phase delay of the filter.

We propose a time-varying linear HP filter which does not introduce any phase distor-
tion and excels with an extremely low computational load. The frequency response of 
the filter is adapted to an instant (interpolated) HR in each signal sample.

Methods
Filter design

Linear phase frequency characteristics beginning at the origin of axes of the phase fre-
quency response are a strict requirement to prevent phase distortion that could decline 
the ST segment. This requirement can be fulfilled by using a finite impulse response 
(FIR) linear filter with symmetric impulse response.

The considered filters are a relatively narrow-band; thus their impulse responses are 
relatively long (up to hundreds samples). Direct realization of classical FIR filters leads 
to a high load of signal response computation which is not mainly suitable in real time 
applications incorporating signal processors. Low computational costs can be achieved 
by an elegant solution employing Lynn’s LP filters. These are called simple moving-aver-
age filters with a rectangular impulse response [19]. Realization of the required HP fil-
ter HHP is based on a narrow-band LP filter HLP of which output is subtracted from the 
delayed input

Lynn’s LP filter is a comb filter with N zeroes uniformly positioned on the unit circle in 
z-plain. The first zero is at z = 1. The LP filter is constructed by inserting a single pole to 
z = 1. It results in a recursive FIR filter G with rectangular impulse response. Its transfer 
function is

The filter may be described in its non-recursive form with the transfer function H

Lynn’s LP filter as defined by (2) has a high stop-band ripple. Thus, it is recommended to 
use a cascade of two identical filters with transfer function GLP (see Fig. 2).

(1)HHP(z) = z−τ − HLP(z).

(2)G(z) =
zN − 1

NzN−1(z − 1)
=

1− z−N

N
(

1− z−1
) .

(3)H(z) =
(

1+ z−1 + z−2 + · · · + z−(N−1)
)

/N .

(4)GLP(z) = G(z)G(z) =

(

1− z−N

N
(

1− z−1
)

)2

.
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Module of the transfer function GHP has an acceptable passband ripple from 0.0 to 
−0.4 dB according to [2]. Module of transfer function GHP reaches 1 at fs/N, where fs is 
the sampling frequency.

The cascade GLP can be realized in a non-recursive form with transfer function HLP.

Both the recursive and non-recursive realizations of the cascade of two identical filters 
GLP, or HLP respectively, have a triangular impulse response.

The fundamental frequency of an idealized periodic ECG signal is

where NRR is a number of samples of an ECG cycle that ideally has a constant length, and 
TS is a sampling period. When module frequency response of an HP filter is expected to 
be 1 at frequency fECG, then

where fs is a sampling frequency. If fS >> fECG , then

(5)HLP(z) = H(z)H(z) =

(

1+ 2z−1 + · · · + Nz
−(N−1) + · · · + 2z−2(N−1)−1 + z

−2(N−1)
)

/N 2.

(6)fECG =
1

(NRR − 1)TS
,

(7)NRR =
fS

fECG
+ 1,

(8)N = round

(

fS

fECG

)

≈ NRR.
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Fig. 2  Example of a cascade of two identical Lynn’s LP filters. The amplitude frequency response GLP (HLP) for 
fs = 500 Hz, N = 500, and fc = fs/N = 1 Hz
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Thus, N can be directly derived from a number of samples of a RR interval provided 
that the RR interval represents the ECG cycle. A number of samples of the symmetric 
impulse response of the HP filter realized using a cascade of two identical LP filters and 
subtraction are always odd

and the phase delay of the HP filter is an integer

In this case, the module frequency response value will be 1 at frequency fC ≈ fECG. If 
we require the filter gain to be equal to −0.5 dB at the frequency fC (transfer 0.9441), 
we need to decrease the value of N  that leads to widening the stop-band of the HP filter. 
Considering that N  corresponds to the frequency fC =  fECG for zero gain decrease, the 
required value of NC at frequency fC for 0.5 dB gain decrease is computed by multiplica-
tion or division by an appropriate constant.

As we can consider the ratio of two frequencies with transfers 1 and 0.9441 (−0.5 dB) 
constant, we can write according to Fig. 3

The constant c can be evaluated as follows. The high-pass filter HLP is derived from 
a low-pass filter with recursive realization described by (4). Its amplitude frequency 
response GLP is

(9)NHP = 2N − 1,

(10)τHP =
NHP − 1

2
= N − 1.

(11)c =
f1

f0
=

f2

f1
→ f2 = cf1.

(12)
∣

∣

∣
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(

e
jωTs

)∣

∣

∣
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Fig. 3  Graphical representation of the ratio of a couple of frequencies with transfers 1 and 0.9441 (−0.5 dB). 
The amplitude frequency response GHP (HHP) of the derived HP filter GHP(z) = z−τ − GLP(z) for fs = 500 Hz and 
fc ≈ 1 Hz
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For ω = ωc

Then

where 0.0559 is transfer of a low-pass filter GLP (HLP) at fc and corresponds to transfer 
0.9441 of a high-pass filter HHP at fc = fECG (gain equals to −0.5 dB).

As fc ≪ fs, we can write

We can easily derive that fc
f0
= c = 1.253.

As the cut-off frequency and the length of the impulse response are inversely related, 
we can write

Fixed filter realization

Presented above was the idea of an optimal HP filter with its impulse response length 
controlled by the instant length of an ECG cycle. Such a filter has a maximum possible 
attenuation in a frequency band below fECG that can be reached by a linear system of this 
type. Further, the proposed filter is linear and it has linear phase frequency characteris-
tics that are required for the processing of ECG signals.

Recursive realization of the Lynn’s filter is not an appropriate solution. Although the 
single pole on a unit circle counteracts with a zero at the same position, there are round-
ing errors due to division by a large number N2. This negatively influences filtration.

Non-recursive realization of the convolution leads to large impulse responses, thus 
it can be computationally expensive and slow. However, non-recursive realization can 
be represented by a cascade of two non-recursive (moving-average) filters with a low 
number of necessary operations per sample interval. The idea is based on the use of a 
filter H with a rectangular impulse response where we add a new input sample to a sum, 
then we subtract the oldest input sample and finally divide by a constant N in each sam-
pling interval. Two such filters in a series represent an LP filter with triangular impulse 
response. The needed HP filter requires one more subtraction.

The realized filter represents a fixed system based on Lynn’s filter with a low number 
of required operations. Its cut-off frequency can be chosen in advance. However, such a 
solution is the appropriate basis to design an elegant filter with a time-varying impulse 
response (and thus time-varying cut-off frequency).

(13)ωTSN = 2πN
fc

fs
= 2π

fc

f0
.

(14)

∣

∣

∣

∣

∣

∣

sin
(

π
fc
f0

)

Nsin
(

π
fc
fs

)

∣

∣

∣

∣

∣

∣

2

= 0.0559,

(15)

∣

∣

∣

∣

∣

∣

sin
(

π
fc
f0

)

π
fc
f0

∣

∣

∣

∣

∣

∣

2

∼= 0.0559.

(16)Nc =
N

c
≈ round

(

N

1.253

)

.
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Time‑varying impulse response filter realization

An ECG signal is not periodic—the length of its heart cycle(s) vary. To suppress base-
line drift optimally, we need an HP filter with time-varying cut-off frequency controlled 
by an instant HR. The heart frequency in each time instant can only be estimated as 
we usually measure heart cycles from detected QRS complexes. However, the instant 
length of heart cycles (e.g. RR intervals) can be interpolated to obtain a signal NRR(n) 
to smoothly control the cut-off frequency of the HP filter being used. We use simple 1st 
order interpolation (by a line).

Fundamental frequency of the ECG signal is then varying

When the module frequency response of an HP filter is expected to be equal to 1 at 
frequency fECG(n), then the number of samples of the rectangular impulse response in 
n-th cycle is

Thus, we can compute N(n) for each n directly from interpolated values of RR inter-
vals. In other words, we design a new LP filter that always has an odd number of impulse 
response samples NLP(n) for each n by the above simple procedure

The impulse response is triangular; its values can be easily derived.

Direct realization of an LP filter with minimum delay

The designed HP filter must possess a constant phase delay despite the time-vary-
ing length of its impulse response. Therefore, the phase delay τ of the final HP filter is 
adapted to the maximum desirable delay that corresponds to the longest expected RR 
interval. The longest expected RR interval is derived from the lowest expected heart rate 
40 beats/min (i.e. 0.67 Hz) [2, 3].

Interpolated instant values of RR intervals are stored in a circular buffer that contains 
Nmax samples corresponding to the longest possible impulse response of the Lynn’s filter.

The transfer function of the LP filter for current N in each n

It is obvious from (17) that the LP filter impulse response has always an odd number of 
samples.

The corresponding difference equation in non-casual form for l = n − τ is

(17)fECG(n) =
1

(NRR(n)− 1)TS
.

(18)N (n) = round

(

fS

fECG(n)

)

.

(19)NLP(n) = 2N (n)− 1.

(20)τ =
NHPmax − 1

2
= Nmax − 1.

(21)
HLP(z) = z

−τ
H(z)H(z)

= z
−(Nmax−1)

(

z
−1 + 2zN−2 + · · · + N + · · · + 2z−(N−2) + z

−(N−1)
)

/N 2.
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where we used N = N(l) = N(n − τ) for simplicity of equational notation.
The principle of computation of the output sample is presented in Fig. 4. We should 

note that if N(n) varies with time, the impulse response can be gradually extended or 
shortened with a minimum step of two samples to keep its symmetry along the middle 
sample.

Direct realization of the LP filter with the triangular impulse response with 2N −  1 
samples (see Fig. 4) has no advantage of low computational complexity due to constantly 
changing all weights of the filter in time.

Realization of an LP filter by a cascade of two Lynn’s filters (knot inside QRS complexes)

Using a cascade of two LP filters is more beneficial because both filters in a series have 
the same rectangular impulse responses (see Fig. 5). A new sample is added if we con-
sider a fixed length of the impulse response and the oldest sample is subtracted from a 
sum in each cycle. Under the condition that both impulse responses must be symmetri-
cal along their middle sample (as required for integer delay of the final filter), i.e. N must 
be odd, the impulse response of each filter will vary with a minimum step of two sam-
ples. This results in a minimum step of four samples for two filters in a series.

(22)

yLP(l) = [x(l + N − 1)+ 2x(l + N − 2)+ · · · + Nx(l)+ · · · + 2x(l − N + 2)+ x(l − N + 1)]/N 2,

Fig. 4  Schematic representation of direct realization of the LP filter with minimum delay. Buffer A buffer of RR 
intervals (Nmax length), buffer B buffer of the input signal samples (2Nmax − 1 length), filter a filter with impulse 
response h(n) = {1, 2, 3,…, N,…, 3, 2, 1}, NRR number of sampling intervals, NRRmax number of samples of the 
longest expected RR interval, x(n) current input sample
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We need to use a buffer of input signal samples (input for the first filter) and a buffer 
of first filters output samples (input for the second filter) besides a buffer of values of RR 
intervals.

The maximum length of the impulse response of each of the used filters is equal to 
Nmax. Delay of the first filter must also be Nmax to be able to interpolate all needed values 
of the longest possible RR interval. Total delay of the final LP filter (as well as the HP 
filter) is.

Realization of an LP filter by a cascade of two Lynn’s filters (knots between QRS complexes)

Impulse responses of LP filters can vary in time differently based on how we interpolate 
RR intervals. Intuitively, we could place knots in the middle between neighbour QRS 
complexes, instead of placing them into QRS complexes as described in part “Realization 

(23)τ = 1.5Nmax.

Fig. 5  Schematic representation of realization of the LP filter by a cascade of two Lynn’s filters with knots 
inside QRS complexes. Buffer A a buffer of RR intervals (1.5Nmax length), buffer B a buffer of the input signal 
samples (1.5Nmax length), buffer C a buffer of the output signal from filter A (Nmax length), filter A a filter with 
impulse response 1h(n) = {1, 1, 1,…, 1}, filter B a filter with impulse response 2h(n) = {1, 1, 1,…, 1}, N1 and 
N2 odd numbers
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of an LP filter by a cascade of two Lynn’s filters (knot inside QRS complexes” section  of 
methods.

Then the buffer with interpolated values of RR intervals must be longer by a half of the 
longest expected RR interval (see Fig. 6). Thus total delay of the final filter will increase 
to.

Results
Computational complexity

The algorithm realizing the final filter provides interpolation of RR intervals and compu-
tation of the output sample that contribute to total computational load.

We need to determine a step ΔRR after detecting a k-th QRS complex, i.e. deduction of 
NRR(k) to interpolate RR intervals.

The step ΔRR will be successively added to the previous value NRR(k − 1). In each cycle 
of computation of the output signal sample, we can compute interpolated value of the 
RR interval by adding value of round(mΔRR) to the current value. Index m is defined as 
m = 1, 2, …, NRR(k) − NRR(k − 1).

The complexity of computation of output samples of the used LP filters depends on 
how N varies. For each filter, we need to add one sample value and to subtract one sam-
ple value if N is constant. For varying N, we will add and subtract two samples at maxi-
mum, because it applies.

(24)τ = 2Nmax.

(25)�RR =
NRR(k)− NRR(k − 1)

NRR(k)
.

(26)|�RR| =

∣

∣

∣

∣

1−
NRR(k − 1)

NRR(k)

∣

∣

∣

∣

≤ 2.

Fig. 6  Schematic representation of RR interval interpolation for the LP filter realized by a cascade of two 
Lynn’s filters with knots between QRS complexes. Buffer A a buffer of RR intervals (2Nmax length)
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Both LP filters also require single division by a current number of samples of a corre-
sponding impulse response. The final HP filter requires one more subtraction of LP filter 
output from a delayed input signal.

The advantage of the proposed algorithm lies in the extremely fast computation of its 
response due to simplicity of the used filter. As mentioned in the part Computational 
complexity in "Results" section, the filter requires 6 additions (or subtractions, respec-
tively) and 2 divisions only to compute one output signal sample. Extremely low com-
putational demands together with the highest possible efficiency of baseline wander 
suppression regarding to instant heart rate favour the proposed filter against the other 
time-varying systems presented in “Background” section. One of the most advanced 
adaptive filter to suppress baseline wander was presented in [17]. However, the used 
bank of low pass filters requires simultaneous computation of responses of many filters 
in order to deliver smooth output signal when switching between filters. Further, deci-
mation and interpolation filters are never ideal and they are sources not only of higher 
phase delay but also of errors.

The algorithms were tested on MA1 set signals from The common standards for 
electrocardiography (CSE) database [20]. The signals were of 10  s length, sampled at 
fs = 500 Hz with quantization step 5 µV (4.8828125 µV). Artificial signals of CSE data-
base were derived from real signals with common noise (without baseline wander) and 
periodized. The spectrum of each artificial signal is discrete, the first spectral line is 
located at the signal’s fundamental frequency fECG. The signals do not contain any base-
line drift. Thus, a linear HP filter with transfer = 1 at fECG does not distort the signal. 
Hence, the MA1 signals were ideal for evaluation of signal distortion due to application 
of an HP filter with cut-off frequency equal to instant fECG. The higher attenuation of the 
filter allows for more efficient suppression of the drift concerning its spectrum is usually 
partially overlapped with the lower spectrum of the useful signal.

A set of 125 12-lead (1500 in total) artificial signals MA1 of the CSE database with 
constant RR intervals were chosen for testing. We evaluated distortion after filter-
ing with a linear HP filter caused by various attenuations at cut-off frequency equal to 
heart frequency fECG. As a compromise, we accepted cut-off frequency for attenuation 
by 0.5 dB at fECG. Figure 7 show a histogram of errors in all tested signals filtered by such 
a filter. The histogram includes only values of a single cycle of each periodic signal. The 
resulting mean error is 0.0124 µV with standard deviation 6.1418 µV. The value of stand-
ard deviation is comparable to the quantization step of the input signals. Attenuation by 
0.5 dB corresponds to transfer 0.9441 so that the used HP filter decreases amplitude of 
the first harmonic by 5.6%.

The highest error for attenuation −0.5 dB at cut-off frequency were found in lead V2 of 
signal No. MA1_065_12. The result is depicted in Fig. 8. Such high error is caused by an 
unusually high S-wave (−4.7 mV) and T-wave (1.5 mV). Figure 8 (middle panel) shows 
a distortion of low R-wave and its neighbourhood. T-wave peak has been decreased by 
71 µV (about 5%) and S-wave peak by 107 µV (about 2%).
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Discussion
Real ECG signals show a time-varying heart frequency; thus the signal is not periodic. 
Actual length of the period (ECG cycle) can be measured in non-equidistant knots 

Fig. 7  Histogram of errors after filtering with HP filter with attenuation −0.5 dB at cut-off frequency equal to 
heart frequency

Fig. 8  Input signal No. MA1_065_12 (lead V2) x(n) and output signal y(n) are visually identical in standard 
scale (upper panel) for the time-varying HP filter with −0.5 dB at fc = fECG. Vertical detail of x(n) (light grey line) 
and y(n) (black line) (middle panel). Error signal e(n) = x(n) − y(n) (lower panel)
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only—i.e. at the points where QRS complexes are identified. The idea of a time-varying 
filter considers the fact that the period length does not change suddenly when a new 
QRS complex is detected. Thus, cut-off frequency of the designed HP filter changes 
gradually. At each time instant, linear interpolation is applied in between neighbour-
ing RR intervals derived from QRS detection. Then the actual length of an RR interval 
is computed at each time instant, i.e. between QRS complex detection points. Instant 
heart frequency (and thus cut-off frequency of the filter) is estimated as reverse value of 
RR interval estimation. Figure 9 shows an example of baseline drift suppression in a real 
ECG signal No. MO1_023_12 (lead V3) from CSE database.

The method introduced for suppression of baseline drift in ECG signals using a lin-
ear time-varying HP filter represents optimal linear filtering with regard to setting its 
cut-off frequency. The cut-off frequency is controlled with instant (interpolated) heart 
frequency; thus the main disadvantage of a traditional linear filter in this application is 
the necessity of using a fixed cut-off frequency while the heart frequency physiologically 
varies. As it is well known, the fixed cut-off frequency is set to a certain value. This is in 
order to reach a maximum allowed distortion of the useful part of the signal under the 
worst conditions. Such an approach must be based on the lowest considered heart fre-
quency. However, a more efficient baseline wander suppression requires a higher cut-off 
frequency in most cases. We proved that a 0.5 dB decrease in transfer function at cut-off 
frequency is acceptable when related to maximum error due to filtering.

The presented filter was evaluated by testing on a set of ECG signals of standard CSE 
database. The resulting mean error and standard deviation was low at the level of quanti-
zation step of the input signals.

The proposed method depends on reliable detection of QRS complexes. However, a 
QRS complex detector is a standard basic part of all ECG processing systems and its out-
put is used for pre-processing and delineation of ECG signals. Impact of false positive 

Fig. 9  Input signal No. MO1_023_12 (lead V3) (upper panel). Vertical detail of HP output for fc = 0.67 Hz 
(−0.5 dB) (light grey line) and time-varying HP output (−0.5 dB at fc = fECG) with knots between QRS com-
plexes (black line) (middle panel). Constant (0.67 Hz) and time-varied HP cut-off frequency (lower panel)
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or false negative detections of heart cycles on the filter efficacy is as follows. When any 
QRS complex is missed by the detector, only the length of the filter is effected and its 
cut-off frequency is decreased. Baseline wander removal may be less efficient, the useful 
part of the processed ECG signal is not distorted. When false QRS complex is detected 
(false extra heart beat “found”), cut-off frequency of the filter increases by shortening 
its length. Baseline wander removal is more efficient. However, the useful part of the 
processed ECG signal is not distorted if we prevent the situation by setting minimum 
length of the filter to highest expected heart rate. The highest expected rate has to be set 
according to clinical application: rest electrocardiography, stress test electrocardiogra-
phy, etc.

Conclusion
A linear time-varying HP filter for optimal suppression of baseline drift was presented. 
The filter controls its cut-off frequency using an estimation of an instant HR. Such 
an approach allows us to reach the maximum possible attenuation of the filter while 
accepted professional standards on maximum allowed distortion are fulfilled. Further, 
there is no need to set a fixed cut-off frequency that would limit the highest possible fre-
quency of a passband. The filter is suitable for standard ECG devices but also for smart/
wearable solutions due to its simplicity and low computational demands.
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