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Destructive Photon Echo Formation in Six-Wave Mixing
Signals of a MoSe2 Monolayer

Thilo Hahn, Diana Vaclavkova, Miroslav Bartos, Karol Nogajewski, Marek Potemski,
Kenji Watanabe, Takashi Taniguchi, Paweł Machnikowski, Tilmann Kuhn, Jacek Kasprzak,
and Daniel Wigger*

Monolayers of transition metal dichalcogenides display a strong excitonic
optical response. Additionally encapsulating the monolayer with hexagonal
boron nitride allows to reach the limit of a purely homogeneously broadened
exciton system. On such a MoSe2-based system, ultrafast six-wave mixing
spectroscopy is performed and a novel destructive photon echo effect is
found. This process manifests as a characteristic depression of the nonlinear
signal dynamics when scanning the delay between the applied laser pulses.
By theoretically describing the process within a local field model, an excellent
agreement with the experiment is reached. An effective Bloch vector
representation is developed and thereby it is demonstrated that the
destructive photon echo stems from a destructive interference of successive
repetitions of the heterodyning experiment.

1. Introduction

The spin echo[1] is an essential effect in nuclear magnetic res-
onance spectroscopy and the basis for all sorts of complex ra-
dio pulse sequences[2] that are routinely applied in medicine,[3]

chemistry,[4] or physics.[5–7] While spin resonances are driven by
radio frequencies, optical frequencies are required to resonantly
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excite typical charge transitions; in this
regime the analogous phenomenon is
called photon echo.[8] First demonstrations
were performed on ruby crystals,[8,9] but
the photon echo spectroscopy also has a
long standing history in semiconductor op-
tics. It has been used to study different
types of exciton dynamics, ranging from
exciton-exciton scattering[10–13] to exciton-
phonon coupling,[14,15] and it has been
applied to 3D bulk,[10,16,17] 2D quantum
well,[18,19] 1D nanowire,[20] and 0D quan-
tum dot structures.[21–24] However, the tech-
nique is not restricted to solid state samples;
it has also been applied to liquids.[25–27] In
its classical form, the photon echo is based
on a four-wave mixing (FWM) process and
therefore it constitutes a nonlinear process

of third order (𝜒 (3)) in the low excitation limit.[28] Especially
in single low-dimensional systems like quantum dots, it re-
quires large effort to detect such nonlinear optical signals.[29,30]

Interestingly, due to their strong excitonic optical response,
monolayers of transition metal dichalcogenides (TMDCs) show
a remarkable signal strength in FWM spectroscopy.[31–34] So far,
the direct correspondence between inhomogeneous spectral
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Figure 1. Sample structure consisting of a multilayer hBN, monolayer MoSe2, multilayer hBN stack. (Left) Four-wave mixing (FWM) generated by two
laser pulses with tunable delay 𝜏. (Right) Six-wave mixing (SWM) with three excitation pulses having a tunable delay 𝜏 between pulses 2 and 3. The FWM
and SWM dynamics are measured in real time t.

broadening and photon echo duration has been used to map the
inhomogeneity of TMDC monolayers.[31,32,34,35]

We here exploit the strong excitonic optical response of TMDC
monolayers, and explore six-wave mixing (SWM) signals from
a MoSe2 monolayer in the low excitation limit, which here rep-
resents the 𝜒 (5)-regime.[36–39] We find that the signal dynamics
exhibit a characteristic temporary suppression depending on the
delay between the pulses. Supported by a theoretical model based
on the local field effect describing exciton-exciton interaction, we
explain that this suppression can be understood as the formation
of a destructive photon echo.

2. Results

2.1. Sample and Four-Wave Mixing Dynamics

We perform multi-wave mixing experiments on an
hBN/MoSe2/hBN heterostructure as schematically depicted
in Figure 1. By radio frequency modulating the incoming
beams, the different pulses are labeled by phases ϕj.

[40] After
heterodyning the emitted light with a specific N-wave mixing
(NWM) phase, that is a particular phase combination of the
form ϕNWM = ∑jajϕj (aj ∈ ℤ, ∑j|aj| = N − 1, ∑jaj = 1), we re-
trieve the corresponding nonlinear signal from the investigated
monolayer.[41] Details are given in the experimental section.
We use the same sample as investigated in ref. [35] where the
echo formation in two-pulse FWM signals with ϕFWM = 2ϕ2 −
ϕ1 was used to study the inhomogeneity of the structure. The
well known photon echo appears due to the dephasing impact
of the structural inhomogeneity on the exciton’s coherence as
schematically depicted via Bloch vectors in Figure 2.[42] For the
sake of simplicity in the illustration we show a combination of
a 𝜋/2 and a 𝜋 pulse, which results in a photon echo in the full
coherence. However, when considering the FWM coherence
characterized by the phase ϕFWM the photon echo appears for
any combination of pulse areas. The first laser pulse in Figure 2a

having a pulse area of 𝜃1 = 𝜋/2 and arriving at the time t =
−𝜏 generates an exciton coherence. Because of the presence of
different transition energies, originating from strain and dielec-
tric variations, the coherences generated by the first laser pulse
oscillate with different frequencies resulting in a dephasing of
the total coherence. As depicted in Figure 2b, after a delay 𝜏,
that is, at the time t = 0, a second laser pulse with the pulse area
𝜃2 = 𝜋 inverts all Bloch vectors. This is followed by a rephasing
of the different coherences. The rephasing takes the same time
as the dephasing and therefore the FWM signal is significantly
enhanced due to constructive interferences at the time precisely
given by the delay time t = 𝜏 between the two pulses.

In Figure 3a we show the measured FWM signal from our
sample as a function of the real time t after the second pulse
and the delay 𝜏. The pulse alignment is such that the pulse with
phase ϕ1 arrives at t = −𝜏 and the pulse with ϕ2 at t = 0. We
find that the amplitude is not concentrated along the diagonal,
which would represent a photon echo. Instead, starting from its
maximum around (𝜏, t) = (0, 0) it basically decays to positive de-
lays and times. This demonstrates that the investigated sample
position is virtually homogenous because the photon echo is not
present. Figure 3b shows the corresponding simulated FWM am-
plitude |SFWM| within a few-level system where we take the ex-
citon transfer into the optically uncoupled valley as well as the
exciton-exciton interaction in terms of the local field model into
account. It describes the optically induced dynamics of the exci-
ton’s coherence p and its occupations n and n′ via[11,43,44]

dp
dt

= i(1 − 2n)[Ω(t) + Vp] − (𝛽 + i𝜔0)p (1a)

dn
dt

= 2Im[Ω∗(t)p] − Γn − 𝜆(n − n′) (1b)

dn′

dt
= −Γn′ − 𝜆(n′ − n) (1c)
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Figure 2. Schematic Bloch vector image of the photon echo process. a) 1st laser pulse excitation with following dissipation. b) 2nd excitation inverting
all coherences and following rephasing. Laser pulse rotations are depicted in green, initial and final Bloch vectors in grey and blue, respectively, and the
inhomogeneity induced coherence dynamics in red.

Figure 3. Four-wave mixing dynamics as a function of real time t and delay 𝜏. a) Experiment and b) simulation.

Here, n and n′ are the occupations in the optically coupled and
uncoupled valleys, respectively, Ω(t) is the time dependent Rabi
frequency describing the optical excitation by co-circlarly polar-
ized pulses, 𝛽 and Γ are the dephasing and the decay rate, respec-
tively, ℏ𝜔0 is the exciton energy in the absence of the local field
coupling, and V is the strength of the local field coupling. Com-
pared to ref. [44] we do not find a significant impact of excitation
induced dephasing as discussed in more detail in the Support-
ing Information. As recently studied in ref. [44] we additionally
take an intervalley scattering contribution with the rate 𝜆 into ac-
count. In the special case 𝜆 = 0, the system reduces to a two-level
system. We have recently investigated the local field model in the
context of nonlinear optical signals focussing on FWM[43] and
pump-probe spectroscopy,[44] showing that the handy description
produces resonant optical spectroscopy signals that are consis-
tent with experiments. In a nutshell, the local field effect leads
to energy shifts of the exciton depending on the its occupation.

In the limit of ultrafast optical pulses Equation (1) can be solved
analytically relating the coherence p+ and the occupation n+ after
the pulse to the respective values p− and n− immediately before
the pulse

p+ = p− cos2
(
𝜃

2

)
+ i

2
sin(𝜃)(1 − 2n−)ei𝜙 + sin2

(
𝜃

2

)
p−∗ei2𝜙

≈ p− + i𝜃
2

(1 − 2n−)ei𝜙 (2a)

n+ = n− + sin2
(
𝜃

2

)
(1 − 2n−) + sin(𝜃)Im

(
p−e−i𝜙

)
≈ n− + 𝜃 Im

(
p−e−i𝜙

)
, (2b)

where 𝜃 is the pulse area and ϕ its phase. The approximations
in Equation (2) describe the light-field induced contributions of
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a single pulse in first order of the pulse area, which is sufficient
for reproducing the contributions of the order V2 to the SWM
signal, discussed in the main text of this work (other contribu-
tions, involving terms up to the second order in the pulse areas,
are discussed in the Supporting Information).

Starting from the excitonic ground state characterized by n =
n−

1 = 0, p = p−
1 = 0 the first pulse in the linear order creates

p+
1 ≈ i

𝜃1

2
ei𝜙1 (3a)

n+
1 ≈ 0 (3b)

which shows that relevant exciton occupations will only be cre-
ated by a second laser pulse from p+

1 . Our goal is to derive the
nonlinear optical response in the lowest order of the pulse area
𝜃 because the experiments are performed with low pulse pow-
ers. In the case of the SWM signal this is the fifth order (𝜃5)
(𝜒 (5)-regime).

Once optical pulses have generated coherences p0 and occu-
pations n0 the corresponding free propagation [Ω = 0, in Equa-
tion (1)] is governed by pure dephasing of p, exciton decay and
intervalley scattering of n(′), and local field coupling between p
and n. The corresponding dynamics can also be calculated ana-
lytically. Focusing on the optically addressed occupation first, its
time-dependence reads

n(t) =
n0 + n′

0

2
e−Γt +

n0 − n′
0

2
e−(Γ+2𝜆)t (4a)

which leads to a balanced occupation between the two valleys n
and n′ on the timescale 1/(2𝜆) and a decay of both occupations
with the rate Γ. As known from literature[44–46] and as considered
in this work the intervalley scattering is typically significantly
faster than the decay, that is, Γ ≪ 2𝜆. As a simplifying approx-
imation for the sake of interpreting the results we can therefore
assume that the occupations are balanced rapidly after an optical
pulse, that is,

n(t) ≈
n0 + n′

0

2
e−Γt (4b)

This step might lead to slight deviations for short delays in the
range 𝜏 ≈ 1/(2𝜆) which are however hardly visible for the pa-
rameters chosen here as shown in the Supporting Information.
Further we can only optically manipulate the occupation n, while
n′ remains unchanged by the applied laser pulses. According to
Equation (3a) these pulses moreover add phase labels ϕ. As ex-
plained at the beginning of this section and as practically applied
below, we are only interested in specific phase combinations that
describe the considered wave-mixing signal. Consequently, any
change of the occupation n is labeled by phase factors which do
not apply to the other valley n′. Therefore, the latter is irrelevant
for the final optical signal and we can consider n′

0 = 0 in Equa-
tion (4b) resulting in

n(t) ≈
n0

2
e−Γt (4c)

We want to remark that in the opposite limit of a very slow scatter-
ing rate 2𝜆 ≪ Γ the occupation dynamics would directly be given
by n(t)= n0e−Γt. In this case all later discussions would work in the
same way. By replacing V → 2V in all the following derivations,
one can even directly retrieve the corresponding equations.

Based on this approximation for the occupation dynamics we
can calculate the coherence dynamics in the frame rotating with
𝜔0−V

p(t) = p0 exp
⎡⎢⎢⎣−i 2V

Γ

t

∫
0

dt′ n(t′)
⎤⎥⎥⎦ e−i𝛽t

≈ p0 exp
[
−i 2V

Γ
n0

2

(
1 − e−Γt

)]
e−i𝛽t

≈ p0eiVn0te−i𝛽t

≈ p0

[
1 − iVn0t − 1

2
(Vn0t)2

]
e−i𝛽t (5)

In the first approximation step, we have used the approximated
occuption from Equation (4c). As the exciton decay is much
slower than the dephasing Γ ≪ 𝛽, in the second step we take
Γ → 0. Finally, we keep the local field-induced contributions up
to the second order in the exciton occupation, that is, consider-
ing Vn0t ≪ 1. Below we will see that these are the terms which
contribute to the SWM signal in the 𝜒 (5)-regime. In the Support-
ing Information, we show that only terms up to (V2) contribute
to the 𝜒 (5)-regime of the SWM signal, while contributions with
higher powers in V appear in higher orders of the optical field.
The last equation tells us that the local field induced mixing of
the occupation n0 with the coherence p0 into the coherence p(t)
in the lowest order grows linearly in time with a rate given by n0
and the local field strength V. We will use this argument later on.

We simulate the FWM signal with the phase combination 2ϕ2
− ϕ1 by calculating the coherence dynamics p(t) following a two-
pulse sequence and filter this quantity with respect to the re-
quired phase combination as described in refs. [43, 44]. With this
we find the signal dynamics |SFWM| ≈ |2𝜙2−𝜙1 p2(t, 𝜏)| depicted in
Figure 3b. To achieve the excellent agreement with the experi-
ment in Figure 3a, we used a local field strength of V = 100 ps−1

and pulse areas of 𝜃1 = 𝜃2/2 = 𝜃 = 0.02𝜋, a Gaussian pulse du-
ration of Δt = 70 fs (standard deviation), a dephasing rate of 𝛽 =
3 ps−1, an intervalley scattering rate 𝜆 = 4 ps−1, and a decay rate
of Γ = 0.6 ps−1. Note that the depicted signal was calculated nu-
merically because we considered a non-vanishing pulse duration
and we did not employ the approximations mentioned in Equa-
tions (2)–(5). To set the strength of the local field coupling into
context, typical values for GaAs quantum wells were reported in
the range of a few meV,[47,48] which is at least one order of mag-
nitude smaller than considered here.

2.2. Six-Wave Mixing Dynamics

In the present study we go one step further in multi-wave mixing
and consider one of the possible SWM signals generated by three
laser pulses, namely ϕSWM = 2ϕ3 − 2ϕ2 + ϕ1. In principle there
are two delays in this pulse sequence that could be varied but,
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Figure 4. Six-wave mixing dynamics as a function of real time t and delay 𝜏. a) Experiment, b) simulation, with the curved dashed line depicting Equa-
tion (9).

as schematically shown in Figure 1 (right), we set the delay be-
tween the first two pulses to 𝜏12 = 0 and only vary the second one
𝜏23 = 𝜏. The impact of a non-vanishing 𝜏12 is discussed in the
Supporting Information. In the pure two-level system this con-
figuration probes the polarization, that is, it contains the same
information as the FWM signal discussed before as shown in
the Supporting Information. The measured SWM dynamics as
a function of the real time t after the third pulse and the delay
𝜏 are shown in Figure 4a. Here, the two pulses with ϕ1 and ϕ2
arrive at t = −𝜏 and the pulse with ϕ3 at t = 0. The signal consists
of a strong maximum at small t ≈ 0.5 ps and 𝜏 ≈ 0. Moving to
negative delays 𝜏 < 0 (pulse 3 is arriving before 1 and 2), the sig-
nal is strongly damped. For positive delays 𝜏 > 0 it decays much
slower on the same timescale as the FWM signal in Figure 3. We
find a remarkable depression of the signal that stretches along
the curved diagonal given by Equation (9) (dashed black line), as
will be derived below. In correspondence with the previously de-
scribed constructive signal enhancement in the photon echo, we
call this pronounced signal reduction a destructive photon echo.
Later, we will discuss criteria justifying the labeling of this feature
as an echo effect.

To identify the origin of this peculiar dynamical feature we
model the SWM signal within the local field model described
above. We consider the same system parameters as for the FWM
signal but choose equal pulse areas for all three pulses 𝜃1 = 𝜃2 =
𝜃3 = 𝜃 = 0.02𝜋, in agreement with the experiment. In the Sup-
porting Information, it is shown that the exact choice of 𝜃 in the
low excitation regime does not change the SWM signal dynam-
ics. The SWM signal is extracted via the phase combination 2ϕ3 −
2ϕ2 + ϕ1 and the signal dynamics |SSWM| ≈ |2𝜙3−2𝜙2+𝜙1 p3(t, 𝜏)| are
depicted in Figure 4b. The retrieved signal agrees very well with
the respective experiment in Figure 4a showing the same charac-
teristic suppression of the signal, that is, the destructive photon
echo. We give an overview regarding the impact of the different
parameters on the SWM signal in the Supporting Information.
Most importantly, it is shown in the Supporting Information, that
the SWM dynamics do not exhibit the suppression for small lo-
cal field strengths V demonstrating that this feature is a result of
exciton-exciton interaction. Other specific features in the signal’s
dynamics like the asymmetric decay between positive and nega-

tive delays or between 𝜏 and t were studied in detail in ref. [43]
and behave similarly in SWM. The destructive photon echo ef-
fect should also be present in an inhomogeneously broadened
system, where also a traditional constructive photon echo devel-
ops. As the constructive echo selects only a specific time interval
of the emitted signal around t = 𝜏, it leads to a suppression of the
entire SWM signal for all other times. Consequently, the SWM
signal and therefore the destructive photon echo, which bends
away from the diagonal (discussed later), are only visible in the
vicinity of t = 𝜏. This aspect is studied in more detail in the Sup-
porting Information.

Note, that the simulation shown in Figure 4b takes the
non-vanishing pulse duration into account and is therefore per-
formed numerically. In the limit of ultrafast laser pulses we can
find analytical expressions for the SWM signal. Given that the
experiment is carried out with weak pulse powers, we restrict the
following studies on the lowest order in the optical field which
is the 𝜒 (5)-regime. In this order we have already eight different
contributions as derived in the Supporting Information. From
these we will focus on the ones with the strongest local field
contribution which is (V2), that is, we omit all terms (V1)
and (V0). The reason for this is the absence of the destructive
echo for small V. In ref. [43] we have derived a flow chart repre-
sentation for the construction of nonlinear wave mixing signals.
In Figure 5 we employ this procedure to disentangle the origin
of the different contributions to the SWM signal. The flow chart
only shows coherences p (blue) and occupations n (red) with
phase combinations (green, given as left indices) relevant for the
final signal; corresponding flow charts for the contributions with
(V1) and (V0) are provided in the Supporting Information.
Conveniently, the (V2)-contributions can be derived with the
approximations given in Equation (2). Note, that we introduce
phase differences Δnm = ϕn − ϕm here. The right lower index
refers to the pulse number, while the upper − (+) indicates times
immediately before (after) that pulse. Starting from the excitonic
ground state with n = 0, p = 0 the first pulse generates the
occupation 0n+

1 and the coherence 𝜙1 p+
1 . Note, that in the scheme

we do not restrict ourselves to the lowest order contributions in
the light field and thus include also the occupation which is of
second order in the pulse amplitude. The second pulse arrives
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Figure 5. Flow chart for the three main contributions to the SWM signal listing intermediate phase-filtered coherences (p, blue) and occupations (n,
red). Green waved arrows show pulse induced, violet dotted ones local field induced, black ones free dynamics without, and blue ones with dephasing.
The phase differences are defined as Δnm = ϕn − ϕm. The flow chart holds for any order of the optical field. However, in the linear response regime
considered here, it is 0n+1 = 0n+2 = 0n−3 = 0.

at the same time (𝜏12 = 0) and creates two occupations 0n+
2 and|Δ21|n+

2 and the coherence 𝜙2 p+
2 . During the following propagation

for the time of the delay 𝜏 two relevant things happen: On the one
hand all coherences experience dephasing (blue arrows). On the
other hand 𝜙2 p+

2 is mixed with |Δ21|n+
2 via the local field coupling

resulting in the coherence 2𝜙2−𝜙1 p−
3 before the third pulse. Note,

that this contribution carries the FWM phase ϕFWM = 2ϕ2 − ϕ1
which we will come back to below. After the final third pulse we
have five relevant terms[49]: The coherence 𝜙3 p+

3 and the three
occupations |Δ32|n+

3 , |Δ32−Δ21|n+
3 , and |Δ21|n+

3 . The polarization 𝜙1 p+
1

is not affected by the second and third pulse and just evolves into
𝜙1 p+

3 . During the remaining propagation step in real time t the
three relevant SWM contributions are generated by local field
mixing processes according to Equation (5).

Considering the contribution on the right first, we have to mix
𝜙1 p+

3 with |Δ32|n+
3 twice. This results in the phase combination

ϕ1 + 2(ϕ3 − ϕ2) which is the SWM phase combination. Accord-
ing to Equation (5), each of these local field mixing processes
contributes with an amplitude of Vt resulting in the amplitude
(Vt)2. In addition the amplitude is damped due to the dephasing
happening during the delay. Following the two paths in the dia-
gram back to this propagation step we find that 𝜙1 p+

2 → 𝜙1 p−
3 and

𝜙2 p+
2 → 𝜙2 p−

3 contribute with a dephasing term ∼e−𝛽𝜏 . The latter
one is used twice due to the double local field mixing resulting in
the total damping rate of e−3𝛽𝜏 .

Moving on to the left contribution in Figure 5, we find that in
the last propagation the coherence 𝜙3 p+

3 is local-field mixed with|Δ32|n+
3 and |Δ21|n+

3 once, resulting in the SWM phase combination
ϕ3 + (ϕ3 − ϕ2) − (ϕ2 − ϕ1). Each of these processes contributes an
amplitude of Vt again resulting in (Vt)2. The difference to the first
term is that here only |Δ32|n+

3 stems from a coherence, namely 𝜙2 p+
2

which experiences a dephasing during the delay. Consequently,
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Figure 6. Schematic picture of the pulse sequence and signal develop-
ment from the two main contributions.

the entire contribution is damped by e−𝛽𝜏 . This already shows that
this contribution is more important for the final SWM signal than
the right term discussed first.

The final main contribution is the middle one in Figure 5.
Here, in the last real time propagation the local field mixing hap-
pens between 𝜙3 p+

3 and |Δ32−Δ21|n+
3 which contributes with an am-

plitude of Vt. Following the path back, we find that the occupa-
tion is created from the polarization 2𝜙2−𝜙1 p−

3 which itself is pro-
duced by a local field mixing step between 𝜙2 p+

2 and |Δ21|n+
2 . The

mixing process lasts for the delay time and therefore contributes
with a factor V𝜏 to the final SWM amplitude. This is also the step
where the only dephasing happens resulting in a final amplitude
of V2𝜏te−𝛽𝜏 .

Directly comparing the three contributions in Figure 5 we find
that the right one is smaller than the other two due to the stronger
dephasing during the delay. We will therefore disregard this term
from now on. The other two terms are of the order V2 and exhibit
the same dephasing with e−𝛽𝜏 . From the full derivation given in
the Supporting Information we find that these two terms in Fig-
ure 5 carry opposite signs. We will explain these signs later when
introducing an effective Bloch vector picture to illustrate the de-
structive echo formation. Finally, adding the two terms we get

SWMp3(t, 𝜏) ∼ V2(𝜏t − t2)e−𝛽(𝜏+t) (6)

where we also added the dephasing rate for the propagation in t
after the last pulse. We find that the two terms exactly compensate
each other for t = 𝜏. This renders our first step toward the under-
standing of the destructive echo. We identified two paths (signal
contributions) with the same damping but with different magni-
tudes depending on the delay 𝜏 that act destructively in the total
SWM signal. To illustrate the interplay between these two terms
in Figure 6 we schematically plot the applied laser pulses and the
absolute value of the final SWM signal retrieved from the previ-
ous derivations. We also include the intermediate growth of the
FWM coherence lasting for the delay 𝜏.

The full SWM signal in the 𝜒 (5)-regime is derived in the Sup-
porting Information and reads

SWMp3(t, 𝜏) =
(

𝜃

2

)5[
i + V(𝜏 − 4t) − i

2
(Vt)2e−2𝛽𝜏 + iV2t(𝜏 − t)

]
e−𝛽(t+𝜏)

(7)

Interestingly, we also find a suppression of the signal when only
considering the terms (V1), namely for t = 𝜏/4. We obviously
do not find such a feature in our measurement, which shows that
the linear order in V does not have a significant contribution.

One advantage of the spectral interferometry in the applied ap-
proach is the possibility to detect—besides the amplitude—also
the phase of the SWM signal.[50] We see that for t < 𝜏 the posi-

Figure 7. Amplitude and phase dynamics of the destructive echo. a) SWM
amplitude dynamics for a delay of 𝜏 = 0.35 ps. Experiment as solid blue
and simulation as dashed red line. b) Respective dynamics of the phase
of the SWM signal.

tive contribution ∼𝜏t dominates while for t > 𝜏 the negative one
∼−t2 is larger. Therefore we expect a phase jump when cross-
ing the destructive echo in time t < 𝜏 → t > 𝜏. To confirm this
in Figure 7a, we plot the measured (solid blue) and calculated
(dashed red) SWM signal amplitude as a function of time t for 𝜏
= 0.35 ps. We slightly adjusted the pulse duration to Δt = 80 fs
to achieve the good agreement with this experiment. The finding
that the simulated signal does not drop to zero shows the impact
of the non-compensating contributions, like the ordinary SWM
signal in Equation (7), and the influence of the considered non-
vanishing pulse duration. In Figure 7b we show the correspond-
ing SWM phase from SSWM = |SSWM|ei𝜑. We indeed find a jump
of approximately 𝜋 at the destructive echo as would be expected
for the two dominant terms. However, all other contributions,
which are naturally present in the numerical simulation, lead to
a reduction of the phase jump and a further distortion of the de-
structive echo dynamics. We again find that the full depression
of the signal happens at t ≈ 0.4 ps which is slightly later than t =
𝜏 = 0.35 ps. This slight delay of the effect mainly stems from the
non-vanishing decay rate of the exciton Γ ≠ 0.

To include the exciton decay we have to go back to the full dy-
namics in Equation (5) and directly consider Vn0(1 − e−Γt)/Γ ≪ 1
without taking the limit Γ → 0 leading to

n(t) = n0e−Γt (8a)

p(t) ≈ p0

[
1 − i V

Γ
n0

(
1 − e−Γt

)
− V2

2Γ2
n2

0

(
1 − e−Γt

)2
]

(8b)

Now we consider the different paths in Figure 5 to determine the
decay’s impact on the different SWM contributions. The term ∼t2
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stems from the delay step |Δ21|n+
2 → |Δ21|n−

3 , contributing a factor
e−Γ𝜏 , and the final double wave mixing step gives (1 − e−Γt)2. The
𝜏t-contribution has a local-field mixing step during the delay lead-
ing to (1 − e−Γ𝜏 ) and only a single local field mixing after the last
pulse, that is, (1 − e−Γt). Finally, the two contributions compen-
sate each other for(
1 − e−Γt

)2
e−Γ𝜏 =

(
1 − e−Γt

)(
1 − e−Γ𝜏

)
⇒ 𝜏 = 1

Γ
ln

(
2 − e−Γt

)
(9)

We find that the decay additionally acts on the local field mix-
ing processes because it dynamically reduces the occupation dur-
ing the mixing. This affects the t2-contribution in a different way
than the part ∼𝜏t and the destructive echo gets delayed with re-
spect to t = 𝜏. Equation (9) does not depend on V as confirmed
in the Supporting Information. Consequently, it also holds in
both limiting cases of small and large intervalley scattering as
discussed below Equation (4c) and can be expected to be cor-
rect also for intermediate 𝜆-values. Note, that the curve describ-
ing the dynamics of the SWM signal depression in Figure 4 fol-
lows Equation (9) and is additionally shifted by the pulse width
Δt to shorter times to compensate the non-vanishing pulse du-
ration. The curve almost perfectly follows the distribution of the
destructive echo.

2.3. Quasi-Bloch Vector and Phase Inhomogeneity

As discussed in the previous section, the FWM-polarization con-
stitutes the basis for the SWM signal. Therefore, it is instruc-
tive to introduce the concept of the quasi-Bloch vector to explain
the wave-mixing origin for the FWM signal in the next section.
Building on this picture we will be able to explain the destruc-
tive photon echo formation in the SWM signal in the following
section.

2.3.1. Four-Wave Mixing Quasi-Bloch Vector

The ordinary echo in FWM is most instructively visualized within
the Bloch vector picture in Figure 2 where the inhomogeneity
leads to different rotation speeds of the various Bloch vector re-
alizations. In that case each exciton energy is represented by a
single Bloch vector. Here, we are dealing with a slightly differ-
ent situation. The wave mixing experiment is repeated numer-
ous times with successively different phase combinations (ϕ1, ϕ2,
ϕ3) for each repetition of the measurement. Therefore we have to
represent each run of the experiment, that is, each phase combi-
nation, by a single Bloch vector. To find the realized Bloch vectors
we have a look at the coherence and occupation immediately after
the second pulse[43]

p+
2 = i𝜃

2

[
ei𝜙1 + ei𝜙2 − 𝜃2

4
ei(2𝜙2−𝜙1)

]
+ (𝜃5) (10a)

n+
2 = 𝜃2

2
[1 + cos(𝜙2 − 𝜙1)] + (𝜃4) (10b)

Figure 8. Quasi-Bloch vector of the FWM contribution. a) Lissajous curve
of the initial distribution of quasi-Bloch vectors. b) Dynamics of the quasi-
Bloch vectors. Initial distribution as bright open circles and for a time t > 0
after the second pulse as filled dark circles. The final integrated FWM co-
herence FWMp is marked as blue cross and its propagation is given by Vt.

where we consider all terms up to the third order in the opti-
cal field (𝜒 (3)-regime) because our measurements are performed
with low excitation powers. Following the flow chart in Figure 5
we find that the two terms 𝜙2 p+

2 and |Δ21|n+
2 perform local field in-

duced mixing during the following propagation before the third
pulse (delay step). Exactly this term was identified as a contribu-
tion of the FWM signal in ref. [43]. Therefore, we will study this
process in more detail. Our goal is to isolate a set of Bloch vec-
tors that allows us to directly extract the final wave mixing sig-
nal by integrating over the entire set. To achieve this we have
to already filter the coherence with the respective wave mixing
phase factor. In this case we are interested in the FWM con-
tribution, which means that we have to consider the phase fac-
tor ei𝜙FWM = ei(2𝜙2−𝜙1) and consequently the filtered polarization
𝜙2 p+

2 e−i𝜙FWM . This brings us to the two relevant terms

p̃ = 𝜙2 p+
2 e−i𝜙FWM = i𝜃

2
e−i(𝜙2−𝜙1) (11a)

ñ = |Δ21|n+
2 = 𝜃2

2
cos(𝜙2 − 𝜙1) (11b)

We use these expressions to define a quasi-Bloch vector for this
FWM contribution via

ṽFWM(t = 0) =
⎛⎜⎜⎝

Re(p̃)
Im(p̃)

ñ

⎞⎟⎟⎠ =
𝜃

2

⎛⎜⎜⎝
sin(Δ21)

sin(Δ21 + 𝜋∕2)
𝜃 sin(Δ21 + 𝜋∕2)

⎞⎟⎟⎠ (12)

with the previously introduced phase difference Δ21 = ϕ2 − ϕ1.
We call this quantity quasi-Bloch vector because it does not rep-
resent the entire density matrix, as the full Bloch vector does.
When varying Δ21 as it is done in experiment and simulation, we
already see that this set of quasi-Bloch vectors follows a 3D Lis-
sajous curve with a frequency relationship of 1:1:1 as depicted in
Figure 8a. It appears as a circle tilted around the Re(p̃)-axis and
its projections on the different planes of the coordinate system
form Lissajous curves with 1:1 frequency relations. This results
in a distribution of occupations ñ, whose spread, represented by
the tilt angle, is given by the considered pulse areas.

Starting from this distribution of quasi-Bloch vectors di-
rectly after the second laser pulse their dynamics is governed
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by the local field mixing between p̃ and ñ described by [see
Equation (5)]

dṽ
dt

= ṽ ×
⎛⎜⎜⎝

0
0

Vñ

⎞⎟⎟⎠ (13)

These dynamics are a rotation of the coherence p̃ depending on
the occupation ñ. Particularly important is that the rotation flips
its direction for opposite signs of ñ. At the same time ñ remains
unaffected. Finally, from the distribution of quasi-Bloch vectors
at a given time ṽ(t) we can directly retrieve the final wave mixing
contribution by integrating over all possible phase combinations,
that is, over Δ21. We directly see that the integral over ñ always
vanishes and we are left with the final FWM coherence

FWMp(t) =

2𝜋

∫
0

dΔ21 p̃(t;Δ21) (14)

For the initial distribution of quasi-Bloch vectors in Equa-
tion (12) we find that the final FWM coherence vanishes because
all vectors are equally distributed on the tilted circle in Figure 8a.
However, the following dynamics lead to a non-vanishing FWM
contribution. The rotation of p̃ with frequencies proportional to
ñ has two crucial consequences: i) The presence of a distribu-
tion of ñ results in different frequencies. As already discussed
in ref. [43] this means that each run of the experiment results
in a slightly different emission energy of the exciton and conse-
quently leads to a broadened FWM spectrum. Because the dis-
tribution of ñ stems from the variation of the applied laser pulse
phase combinations we call this spectral broadening local field
induced phase inhomogeneity. ii) According to Equation (13) the
sign of ñ determines the rotation direction of the quasi-Bloch vec-
tors. The initial distribution of quasi-Bloch vectors in Figure 8a
is a circle that is tilted around the Re(p̃)-axis and all points on this
axis are not affected by the local field induced rotation (ñ = 0).
This axis remains a symmetry axis also for the dynamics of the
quasi-Bloch vectors: one half of the circle rotates clockwise, the
other counter-clockwise in exactly the same way. Consequently,
when integrating over the relative phase Δ21 the opposing Im(p̃)
contributions compensate each other and the final FWM coher-
ence is real, that is, Re(p̃) ≠ 0. Because only Re(p̃) will later con-
tribute to the FWM signal, the crucial quantity determining the
propagation direction of Re(p̃) is ñ Im(p̃) as can be seen in Equa-
tion (13). In Figure 8b we show the quasi-Bloch vector dynam-
ics in the Re(p̃),Im(p̃)-plane after the second pulse. The bright
open circles represent the initial homogeneous distribution and
the filled dark circles the distribution for a time t > 0. Looking
at the initial distribution in Figure 8a we find that the semicir-
cle with Im(p̃) < 0 also has ñ < 0 and the other semicircle with
Im(p̃) > 0 has ñ > 0. This means that the former rotate clock-
wise, while the latter rotate counter-clockwise as indicated by the
curved black arrows in Figure 8b. Consequently, the weight of all
quasi-Bloch vectors, which is depicted by the blue cross, moves
into the positive Re(p̃)-direction. The speed of this movement is
given by V and the tilt angle of the initial quasi-Bloch vector dis-
tribution. This illustrates that the FWM contribution grows in
time and that the local field induced phase inhomogeneity gov-
erns this process.

2.3.2. Six-Wave Mixing Quasi-Bloch Vector

Equipped with the quasi-Bloch vector picture we can retrieve the
two most important SWM signal contributions by carrying out
an analogue discussion. According to Figure 5, from all possi-
ble contributions after the third laser pulse, we only need the co-
herence 𝜙3 p+

3 and the occupations |Δ32|n+
3 , |Δ32−Δ21|n+

3 , and |Δ21|n+
3 .

Omitting all other terms we get

p → i𝜃
2

ei𝜙3 (15a)

n →

[
𝜃2

2
cos(Δ32) + 𝜃2

2
cos(Δ21) − 𝜃4

8
V𝜏 sin(Δ32 − Δ21)

]
(15b)

To generate the SWM contribution ∼𝜏t we need to local-field mix
the coherence filtered with respect to the SWM phase combina-
tion 2ϕ3 − 2ϕ2 + ϕ1 with the last term of the occupation in Equa-
tion (15b), that is,

𝜙3 p+
3 e−i𝜙SWM = i𝜃

2
e−i(Δ32−Δ21) (16a)

|Δ32−Δ21|n+
3 = −𝜃4

8
V𝜏 sin(Δ32 − Δ21) (16b)

From this we can directly read the respective initial quasi-Bloch
vector

ṽSWM,𝜏t(t = 0) = 𝜃

2

⎛⎜⎜⎝
sin(𝛼)

sin(𝛼 + 𝜋∕2)
− 1

4
𝜃3V𝜏 sin(𝛼)

⎞⎟⎟⎠ (17)

with 𝛼 = Δ32 − Δ21. We see that this is the same Lissajous curve
structure as in the previously discussed FWM case. The only dif-
ferences are that the phase variation is now given by Δ32 − Δ21,
which still uniformly covers all angles, a tilt around the Im(p̃)-
axis, and a tilt angle such that the occupation distribution ñ has an
amplitude of −𝜃4V𝜏/8. The subsequent free dynamics are again
governed by Equation (13).

Before discussing the shape and dynamics of this quasi-Bloch
vector set we consider the other relevant SWM contribution ∼t2.
Therefore, we have a look at

𝜙3 p+
3 e−i𝜙SWM = i𝜃

2
e−i(Δ32−Δ21) (18a)

|Δ32|n+
3 +|Δ21|n+

3 = 𝜃2 cos
(
Δ32 − Δ21

2

)
cos

(
Δ32 + Δ21

2

)
(18b)

We are finally only interested in the coherence SWMp3 describ-
ing the SWM signal. So, at this point we can already perform the
integration

𝜋

∫
−𝜋

d(Δ32 + Δ21)𝜃2 cos
(
Δ32 − Δ21

2

)
cos

(
Δ32 + Δ21

2

)

= 4𝜃2 cos
(
Δ32 − Δ21

2

)
(19)
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Figure 9. Quasi-Bloch vector distributions after the 3rd laser pulse. The
t2-contribution (violet) and 𝜏t (blue) form Lissajous curves with frequency
ratios 2:2:1 and 1:1:1, respectively.

This leaves us with the quasi-Bloch vector for this SWM contri-
bution reading

ṽSWM,t2 (t = 0) = 𝜃

2

⎛⎜⎜⎝
sin(𝛼)

sin(𝛼 + 𝜋∕2)
8𝜃 sin (𝛼∕2 + 𝜋∕2)

⎞⎟⎟⎠ (20)

with 𝛼 = Δ32 − Δ21, which is obviously a 3D Lissajous curve with
the frequency ratio 2:2:1.

The two initial distributions of quasi-Bloch vectors given in
Equations (17) and (20) are depicted in Figure 9 in blue and vi-
olet, respectively. We vividly see the Lissajous curves leading to
the distributions in ñ-direction. While the 3D perspective of the
curves is appealing, we will consider the projections to the three
different planes of the coordinate system when discussing the
dynamics of the quasi-Bloch vectors, which are depicted in pale
colors. These projections are shown in Figure 10, where differ-
ent times are sorted in rows (increasing from top to bottom) and
different perspectives in columns.

First considering the 𝜏t-contribution (blue) we find essentially
the same situation as for the intermediate FWM contribution dis-
cussed in Figure 8. The only important difference is that for the
SWM contribution the circle is tilted around the Im(p̃)-axis. Fol-
lowing the same arguments as before the quasi-Bloch vector real-
izations move into the positive Im(p̃)-direction. This movement
is shown in the second column from the right in Figure 10. The
initial homogeneous distribution is depicted by bright empty cir-
cles and for the considered times (written on the left) as filled
dark circles. The movement is marked by the curved black arrow
and the final SWM contribution after integration over all quasi-
Bloch vector realizations as a dark blue cross. The speed of this
movement is again constant and given by V𝜏, which is propor-
tional to the spread of ñ and therefore given by the tilt angle of
the circle.

For the t2-contribution (violet) the situation is more involved
because the Lissajous curve is less trivial. In this situation the
crossing point of the two loops lies at ṽSWM,t2 = (0, Im(p̃), 0). Be-
cause of the vanishing occupation this point will not move in
the following propagation and the Im(p̃)-axis is again the sym-
metry axis of the dynamics. Consequently, the opposing Re(p̃)
values compensate each other, such that the final SWM con-
tribution is again purely imaginary. Therefore, we have to con-
sider the movement into the direction governed by the product
ñ Re(p̃). When looking at the left column in Figure 10 the distribu-
tion reaches values with ñ Re(p̃) > 0 (large dots) and ñ Re(p̃) < 0
(small dots). Following Equation (13) the large dots move into
the negative Im(p̃)-direction while the small ones move into the
positive Im(p̃)-direction as indicated by the black horizontal ar-
rows in the Im(p̃), ñ-plane at t < 𝜏. In the complex p̃-plane this
leads to two counter movements marked as arrows in the right
column. The small dots move up (dashed curved arrows) and
the large dots move down (solid curved arrows). Initially both
of these movements start with the same velocity because large
and small dots have the same absolute values |ñ Re(p̃)|, that is,
the Lissajous curve is symmetric. Therefore, the integrated SWM
signal starts with a vanishing velocity for small t ≈ 0. However,
during the following dynamics the quasi-Bloch vectors with pos-
itive Im(p̃)-velocity (small dots) rotate collectively in such a way
that this part of the curve obtains smaller occupations. This can
be seen by focussing on the bottom-left and upper-right corners
of the panels in the left column. Accordingly, those with nega-
tive Im(p̃)-velocity (large dots) obtain larger |ñ| as can be seen
in the second column [Im(p̃), ñ-plane] marked by the horizon-
tal black arrows. In the left Lissajous curve this means that the
large dots move toward the top left and bottom right corner of the
plot, while the small dots move inwards. Consequently, the nega-
tive Im(p̃)-velocity component gains speed because |ñ Re(p̃) > 0|
(large dots) grows, while the positive component slows down as|ñ Re(p̃) < 0| (small dots) shrinks. In the complex p̃-plane (right
column) this means that the upwards movement of the quasi-
Bloch vectors represented by small dots (dashed arrows) slows
down for increasing times t while the downwards movement of
the large dots (solid arrows) speeds up. In summary, for the in-
tegrated SWM coherence, marked by the violet cross, we find an
acceleration towards negative Im(p̃)-values given by −V2t2.

Exactly at t = 𝜏 in the third row the two integrated SWM contri-
butions marked in the third and forth column have the same dis-
tance from the center as indicated by the dashed horizontal lines
which show that they compensate each other. At this time the
destructive echo appears due to the destructive quantum inter-
ference of all depicted quasi-Bloch vectors. For even larger times
t < 𝜏 (bottom row) the accelerated t2-contribution is stronger
than the one with constant velocity ∼𝜏t and the SWM is non-
vanishing again.

3. Conclusion

To conclude we again compare the traditional photon echo in
FWM with the newly discovered destructive photon echo in
SWM. As summarized in Table 1 we define three criteria that
characterize the echo formation. Firstly, the timing of the photon
echo formation is basically determined by the chosen delay 𝜏 be-
tween the two laser pulses. Slight deviations from the exact t = 𝜏
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Figure 10. Projections of the quasi-Bloch vector representation of the destructive echo formation. Columns show projections of the quasi-Bloch vector
defined in Equation (14) as listed on the top, the rows show different real times as given on the left. The contribution ∼t𝜏 is shown as blue, ∼t2 as violet
dots. The size of the violet dots represents the product ñ Re(p̃), positive values are larger and negative ones smaller. The situation for t = 0 is shows as
bright circles for all other times. The black arrows indicate the movement of the quasi-Bloch vectors, solid (dashed) for positive (negative) ñ Re(p̃). The
final SWM coherences are marked as crosses in the two right columns.

timing are used to learn about internal dynamics of the studied
system.[51] The same holds for the destructive echo in SWM. As
discussed in detail the two main contributions compensate each
other exactly at t = 𝜏. Nonetheless, in the detected and simulated
full signal dynamics in Figure 4 the depression happens at t > 𝜏.
The reason is that exciton decay dynamically changes the slope of
the destructive echo. Secondly, the photon echo appears because
all considered Bloch vectors form a constructive interference. To

explain this effect only the conventional FWM signal has to be
considered, which would appear as a single path in a flow chart
like the one in Figure 5 (see also ref. [43]). In the case of the de-
structive echo we have shown that we need two paths which in-
terfere destructively to explain the novel echo effect. Finally, the
fundamental source of the photon echo is any sort of inhomo-
geneity, which might appear in space by a locally varying exciton
energy,[52] or in time via external noise that acts on the optical
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Table 1. Comparison of criteria defining the photon echo in FWM and the
destructive photon echo in SWM.

Echo
(FWM)

Destructive echo
(SWM)

Timing Delay + internal dynamics Delay + internal dynamics

Interference Constructive (1 path) Destructive (2 paths)

Source Inhomogeneous broadening Local field induced phase
inhomogeneity

transition energy.[30] In the case of the destructive echo we have
shown that the local field together with a variation of the applied
laser pulse phases results in a spectral broadening. As discussed
in ref. [43] this local field induced phase inhomogeneity can al-
ready be detected in FWM spectra. This summary shows that the
criteria defining the traditional photon echo can also be applied to
the destructive echo effect. Therefore, we conclude that we really
found a new photon echo effect.

In addition we have developed a quasi-Bloch vector picture to
illustrate the generation of the destructive echo inspired by the
instructive Bloch vector image of the photon echo. We found that
the SWM-relevant quasi-Bloch vectors are distributed along Lis-
sajous curves which adds surprising aesthetics to the involved
Bloch vector dynamics in SWM.

Following this proof-of-principle demonstration of a new pho-
ton echo effect the natural next tasks will be to further explore
the destructive photon echo’s application possibilities. One ob-
vious step will be to measure photon echos at various spots of
the sample and thereby get a measure for the spatial distribu-
tion of the local field coupling strength. We know that different
pulse sequences in FWM probe different observables.[53] There-
fore we hope that novel pulse sequences in higher wave-mixing
spectroscopy will be designed that should allow to access param-
eters governing the nonlinear light-induced dynamics in semi-
conductors, like the strength of interaction mechanisms, that are
not easily accessible with traditional techniques. These develop-
ments are particularly attractive for materials with a large nonlin-
earity promoting strong wave mixing responses like TMDCs.

4. Experimental Section
In the experiment, we employ a mode-locked laser (Tsunami Femto pro-

vided by Spectra Physics) generating femtosecond pulses at a repetition
rate of 76 MHz. The center wavelength is tuned to 752 nm, which corre-
sponds to the A exciton transition in the investigated hBN/MoSe2/hBN
heterostructure at T = 5 K. The sample is kept in an optical He-flow cryo-
stat and microspectroscopy is performed using an Olympus microscope
objective (LCPLN50XIR, numerical aperture of 0.65), which is installed
on an XYZ piezo stage from Physik Instrumente. To perform the multi-
pulse, heterodyne experiments, the initial pulse train from the laser source
is split into three and each of these beams is focussed into a separate
acousto-optic modulator (AOM). The AOMs are driven at distinct radio-
frequencies of Ω1 = 80, Ω2 = 79, and Ω3 = 79.77 MHz, such that the de-
flected beams acquire corresponding frequency upshifts. Next, the time
delays between the first two (𝜏12) and the last two beams (𝜏23) are intro-

duced by a pair of mechanical delay stages. In addition, a grating-based
pulse shaper is employed to correct the temporal chirp of the pulses, when
passing through optical elements of the setup, especially AOMs and the
microscope objective. The such prepared pulse sequence is then recom-
bined into the same spatial mode and focussed at the heterostructure
sample reaching a diffraction limited spot diameter of around 0.8 μm.
The nonlinear optical signal from the sample is retrieved in the back-
reflectance geometry. To isolate the desired wave-mixing response another
AOM is used, operating at the heterodyne frequency generated by a home-
made analogue radio-frequency mixing electronics, assembled from indi-
vidual components provided by Mini-Circuits. For example, the studied
SWM signal is detected at (ΩSWM = 2Ω3 − 2Ω2 + Ω1)=81.54 MHz. Af-
ter being deflected from the AOM the signal is frequency downshifted by
ΩSWM and the unique wave-mixing component under consideration car-
ries the original frequency from the laser source. The signal can now inter-
fere with a reference beam from the same laser source, which propagates
in the vicinity of the driving beams. At the same time all other optical re-
sponse components present in the signal reflected from the sample are
still modulated in the MHz range and thus average out completely during
a single acquisition time of a few ms. Importantly, the mixing AOM oper-
ates in a Bragg configuration. Hence, simultaneously the reference beam
gets deflected onto the signal, receiving a frequency upshift by ΩSWM. This
again allows for interference with the signal, which was not deflected by
the AOM (operating at ΩSWM). In total, we generate two beams in which
the considered wave-mixing signal is interfering with the reference pulse,
but with the opposite phase, as required by energy conservation. The
spectrally-resolved interference is obtained with an imaging spectrome-
ter (Princeton Instruments with a focal length of 750 mm) and detected
with an CCD camera (PIXIS from Princeton Instruments, with an eXcelon
coating). A background free, shot-noise limited detection is achieved by
a balanced detection and multi-acquisition. Namely, we exploit the Bragg
configuration and subtract the two mixed beams impinging at different
positions on the CCD. In addition, the phase of the mixing AOM is cycled
between 0 and 𝜋 to overcome any classical noise from the CCD camera.
The wave-mixing signal amplitude and phase are obtained from the inter-
ferogram by performing spectral interferometry.
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