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Abstrakt 

Tato diplomová práce se zabývá možností využití plasmonicky navýšené absorpce pro 

zlepšení účinnosti organických solárních článků. K navýšení absorpce světla ve fotoak-

tivní vrstvě jsou použity koloidní nanočástice stříbra. Rozptyl světla z nanočástic střibra 

do fotoaktivní vrstvy představuje jedno z možných řešení, jak navýšit celkovou účinnost 

fotovoltaických zařízení. Simulace elektromagnetických jevů jsou pro statické podmín-

ky prováděny použitím softwaru Lumerical (Lumerical Solutions, Inc.). Je zkoumána 

absorpce i rozptyl ve fotoaktivní vrstvě v závislosti na konfiguraci stříbrných nanočás-

tic. Simulace potvrzují, že ve fotoaktivní vrstvě, která je modifikovaná nanočásticemi 

stříbra, dochází k navýšení absorpce. Abychom experimentálně potvrdili výsledky si-

mulací, bylo vyrobeno několik stříbrem modifikovaných vzorků. Vzorky byly pro tento 

druh experimentu připravené z poly(3-hexyltiofenu):[6,6]-fenyl-C61-butyric-acid-metyl 

esteru. U některých nanočásticemi stříbra modifikovaných vzorků dochází k navýšení 

tvorby excitonů, v důsledku čehož je pozorován nárůst fotoproudu. V této práci je zahr-

nut teoretický i experimentální přístup k dané problematice.  

 

 

Summary 
The diploma thesis deals with the application of the plasmon-enhanced absorption to an 

improvement of the power conversion efficiency in organic solar cells. To increase the 

light absorption in the photoactive layer, colloidal silver nanoparticles are used. The 

scattering of the light from silver nanoparticles into a photoactive layer represents one 

of possible solutions how to increase the power conversion efficiency of photovoltaic 

devices. To perform electromagnetic simulations in the steady-state regime, the softwa-

re Lumerical (Lumerical Solutions, Inc.), has been used. For different geometrical 

arrangements of silver nanoparticles, the absorption and the scattering in the photoactive 

layer is observed. Simulations prove the enhancement of the absorption in the photo-

active layer while incorporating silver nanoparticles. To experimentally confirm results 

from these simulations, a couple of samples modified with silver nanoparticles, was 

prepared. The samples produced for this kind of experiments are based on Poly(3-

hexylthiophene):[6,6]-Phenyl-C61-butyric-acid-methyl ester. For some samples modi-

fied with silver nanoparticles, an exciton creation has been improved. As the result, the 

enhancement in the short-circuit current is observable. The thesis covers both the theo-

retical and experimental approach to this topic. 
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1. INTRODUCTION 
 

 

Harvesting the energy directly from the sunlight using photovoltaic technology is 

widely recognized as an essential component for future global energy production. The 

worldwide photovoltaic production was more than 5 GW in 2008, and is expected to 

rise above 20 GW by 2015. Photovoltaics could make a considerable contribution to 

solving the energy problem that the human society faces nowadays. Recently, it has 

been shown that inorganic components in the photovoltaics can be replaced by semi-

conducting polymers. These solar cells based on organic materials have gained a consi-

derable interest due to its application versatility, and cost-effective processes such as 

high-throughput roll-to-roll systems. Bulk-heterojunction (BHJ) cells, where donor and 

acceptor materials are blended together, are promising as an inexpensive alternative to 

conventional inorganic based photovoltaic cells. Nevertheless, the power conversion 

efficiency of organic photovoltaic systems still need to be improved (8% [1] vs 40% for 

silicon multijunction solar cells [2]). To improve the efficiency of plastic solar cells, it 

is, therefore, crucial to understand what limits their performance. Light absorption is 

one of significant limiting factors to the efficiency of the organic photovoltaics (OPV). 

Using the plasmonics to enhance the absorption in OPV seems to be a promising soluti-

on. Plasmonics is a relatively new discipline, which deals with collective oscillations of 

electrons at metallic surfaces. It has been shown that the enhancement of the absorption 

in the photoactive layer is strongly dependent on the position and geometry of incorpo-

rated metal nanostructures [3]. The light absorption of such modified conjugated poly-

mer cells is supposed to increase by reason of the enhanced localized electric field in the 

vicinity of nanostructures. In this work, an effort to enhance the absorption in photo-

active layer in organic solar cells based on Poly(3-hexylthiophene):[6,6]-Phenyl-C61-

butyric-acid-methyl ester (P3HT:PCBM(60)) is made. The P3HT:PCBM(60) system was 

chosen for its proven efficiency and its ease of fabrication. For this purpose, different 

geometrical arrangements of silver nanoparticles with different sizes are taken into ac-

count. 

 

The fundamentals of the organic photovoltaics are mentionned in Chapter 2 and 

the theoretical approach to plasmonics used in bulk heterojunction solar cells is 

described in Chapter 3. To perform electrostatic simulations, the software Lumerical 

(Lumerical Solutions, Inc.) has been used. This part is discussed in Chapter 4. Chapter 5 

is devoted to the experimental section. Therefore, the fabrication and the measurement 

of the samples based on P3HT:PCBM(60) is presented here. These devices are modified 

with colloidal 20-nm Ag nanoparticles.  
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2. FUNDAMENTALS OF ORGANIC  

PHOTOVOLTAICS 
 

 

A revolutionary development in organic photovoltaics came in the 1990s when 

the fullerene was used in polymers. There are many types of fullerenes differing by nu-

mber of carbon atoms. Molecules of C60 and C70 (figure 1a and 1b) are the most familiar 

among fullerenes. Even if molecules of C60 and C70 differ only by 10 carbon atoms, 

their physical properties are crushingly different. For example, the molecule of C70 

exhibits a higher external quantum efficiency (EQE) which is linked to the absorption 

for different wavelengths (figure 3). The EQE method will be discussed in the section 

5.2.2. In principle, fullerenes are symmetric macromolecules based on alternating single 

and double bonds between carbon atoms. In the backbone of such conjugated macromo-

lecules, each carbon atom binds to only two adjacent atoms, leaving one free electron 

per carbon atom (figure 1c) [3].  

 

 

 

 

 

a)                        b)  c)                                

 

Figure 1 Molecule of fullerene containig a) 60 carbon atoms and b) 70 carbon atoms 

[4]. c) Double bonds presented in a macromolecule of fullerene. 

 

The architecture of organic solar cells is based on the bulk heterojunction where the 

electron donor (blue color) and electron acceptor (red color) material are blended toge-

ther (figure 2).  

 
 

Figure 2. Structure of bulk-heterojunction solar cells [5]. 
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Figure 3. EQE of molecules C60 and C70. The macromolecule of C70 exhibits a higher 

absorbtion compared to the macromolecule of C60 [5]. 

 

Conjugated polymers, as a new class of materials used in the bulk-heterojunction 

photovoltaics, have attracted a considerable attention due to its ease of processing and 

the potential of providing environmentally safe, flexible, lightweight and inexpensive 

electronics. Solar cells based on polymer materials commonly utilize two different sub-

stances that differ by electron donating and accepting properties. The two component 

blend enables a large interfacial area for the electric charge separation. Charges are cre-

ated by a photoinduced electron transfer between these two components. This electron 

transfer between donor and acceptor boosts the photogeneration of free charge carriers. 

In blended materials, the formation of bound electron-hole pairs, or excitons is generally 

favored [3]. Compared to organic semiconductors, the inorganic ones have generally 

higher dielectric constants     ,  and the lower exciton binding energy (EB) (table 1).  

 

  n k       EB (eV) 

GaAs 4.124 0.302 16.916 2.491 0.004 

P3HT:PCBM(60) 1.961 0.263 3.776 1.032 4.1 

 

Table 1. Optical constants and exciton binding energy for GaAs and P3HT:PCBM(60) (1:1) 

dissolved in 1,2-dichlorobenzene. The values are measured under normal conditions and 

for the wavelength about 532 nm [6], [7]. 

 

Samples being used in this work are composed of glass, indium tin oxide (ITO) 

(electrode for collecting positive charges), poly(3,4-ethylenedioxythiophene) poly (sty-

renesulfonate) (PEDOT:PSS) (transfering of positive charges), active layer (exciton 

creation and its dissociation into positive and negative charge carriers), lithium fluoride 

(LiF) that transfers negative charges and ensures a good adhesion between photoactive 

layer and Al electrode where negative charge carriers are collected. Individual organic 

molecular structures of fullerene bulk heterojunction solar cells based on the PV active 

layer P3HT: PCBM(60)  are illustrated in figure 4. A simplified schematic layout of such 

a device architecture is shown in figure 5. 
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Figure 4. Molecular structures of PEDOT:PSS, P3HT (electron donor) and PCBM(60) 

(electron acceptor). 

 
Figure 5. A simplified architecture of the solar cell based on polymer materials [3]. 

 

 

 In principle, for an organic photovoltaic cell, four important steps take place 

during the conversion of the solar energy into the electrical energy: 

 

- Absorption of light 

- Exciton creation and separation of opposite charges 

- Charge transport 

- Charge collection 

 

 For an efficient absorption of photons, the absorption spectrum of the photoacti-

ve organic layer should match the solar emission spectrum. The photoactive layer is 

supposed to be sufficiently thick to absorb all the incident light. Compared to inorganic 

based solar cells, polymer based devices have higher optical absorption coefficients that 

offer the possibility to produce very thin solar cells. The energy difference between the 

highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular or-

bital (LUMO) describes the excitability of the molecule. It is possible to promote an 

electron from HOMO to LUMO level, for example by light absorption. Creation of 

charges is one of key steps in photovoltaic devices. In most organic solar cells, charges 

are created by photoinduced electron transfer. For an efficient charge generation, it is 

important that after photoexcitation, the thermodynamically and kinetically most fe-

asible pathway is the charge-separated state. As well, it is important that the charge-

separated state is stabilized, so that photogenerated charges could migrate to electrodes. 

Otherwise, opposite charges recombine together at creating the exciton. This phenome-
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non is called the bimolecular recombination. In this case, it is not possible to transport 

separated charges to electrodes any more. After the charge transfer, photogenerated 

charges are desired to migrate to these electrodes without any recombination losses, if 

possible. Losses during the transfer of free charge carriers present the fundamental pa-

rameter which affects the total efficiency of devices. Basic processes in OPV are 

described in figure 6 [3]. 

 

Figure 6. Principle of organic photovoltaics (OPV): Part (a) shows the process of light 

absorption by the polymer yielding an exciton which has to diffuse to the do-

nor/acceptor interface. If the exciton reaches this interface, electron transfer to the ac-

ceptor phase is energetically favored, as shown in part (b), yielding an electron-hole pair 

bound by Coulombical interactions. The dissociation of the electron-hole pair, either 

phonon- or field assisted, produces free charge carriers, as depicted in (c). Finally, free 

carriers have to be transported through their respective phases to the electrodes in order 

to be extracted (d). Exciton decay is one possible loss mechanism, see part (e), while 

geminate recombination of the bound electron-hole pair and bimolecular recombination 

of free charge carriers (f) are two other possibilities
 
[3]. 

 

  

The bimolecular recombination in two different phase materials is characterized 

by the recombination constant rk  (equation 1) [3]. 

 

                                                     her

q
k 


 ,            (1)  
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where q  is the elementary charge,   is the dielectric constant of the photoactive mate-

rial and μ is the hole or the electron mobility, respectively. This equation is derived 

from the Langevin dynamics [3]. 

 

In P3HT:PCBM(60) blends, it is the electron mobility that dominates over the ho-

le mobility. After annealing, the electron mobility is typically varying from ~ 10
−8

 to ~ 

3×10
−7

 m
2
V

-1
s

-1
 and the hole mobility in the P3HT phase increases more than three or-

ders of magnitude to ~ 2×10
−8

 m
2
V

-1
s

-1 
(figure 7). This is used to be explained as the 

result of the improved crystallinity of the film after annealing [8]. Moreover, upon an-

nealing, the absorption spectrum of P3HT:PCBM(60) blends undergoes a strong red-

shift, improving the spectral overlap with the solar emission. As the result, an increase 

about 60% in the generation rate of charge carriers is observed. 

 

 
 

Figure 7. Electron and hole mobility in a blend of P3HT:PCBM(60) as a function of the 

annealing temperature [3]. 

 

The morphology of the active layer is the very important factor which significantly in-

fluences losses in the device during the charge transfer. The exciton, created after the 

light absorption, has to diffuse towards the interface for the charge separation to occur. 

The exciton diffusion length in P3HT:PCBM(60) based devices is about 15 nm. This me-

ans that for efficient charge generation after the light absorption, each exciton has to 

find a donor-acceptor interface within a few nanometers, otherwise it will be lost witho-

ut any charge generation. Simply, it is desirable to suppress bimolecular recombinations 

prior to the charge generation. The control of the morphology is required not only to 

suppress exciton losses, but also to ensure the percolation pathway for both electron and 

hole transport to electrodes. 
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3. PLASMONICS IN ORGANIC  

PHOTOVOLTAICS 
 

 

This chapter is devoted to fundamental principles of plasmonics used in organic 

photovoltaics. It is not the subject of this chapter to describe plasmonics in details be-

cause the detailed insight into this thopic is given elsewhere [10], [28], [29]. Plasmonics 

represents a promising tool that can help us to better understand the physical effects that 

occur around nanoparticles embedded in a material while illuminating. Ideally, the ab-

sorbing layer in photovoltaic device should be physically thin to provide versatile appli-

cations. On the other hand, the absorbing layer is required to be sufficiently thick to 

allow the light absorption. Plasmonic structures represent one of possible ways how to 

reduce the physical thickness of the photoactive layer while keeping their optical thic-

kness constant. Metallic nanoparticles can be used as subwavelength antennas in which 

the plasmonic near-field is coupled, increasing its effective absorption cross-section. 

Nanoparticle dimensions are supposed to be much smaller than the light wavelength. 

The light scattering from a metal nanoparticle embedded in a homogeneous medium is 

nearly symmetric in forward and reverse directions. In addition, if the cell has a re-

flecting metal back contact (as in case of polymer based photovoltaic systems), the light 

reflected towards the surface will couple to nanoparticles and will be partly reradiated 

into the photoactive layer by the same scattering mechanism. As the result, the incident 

light will pass several times through that layer, increasing the effective path length. The 

effect of the particle scattering concept has been studied by several research groups 

[10], [16]. It is worth noting that both the size and geometrical arrangement of metal 

nanoparticles are the key factors that determine the scattering effect. Although, it is ne-

cesarry to take into account the thickness and physical properties of all layers in the 

polymer photovoltaic device. 

 

 

3.1. Plasmon enhanced absorption 
 

 

Metal nanoparticles show unique optical properties and strong enhancement in the 

electromagnetic field in their vicinity. This optical phenomenon is known as the locali-

zed surface plasmon resonance (LSPR) which is observable for several metals, for in-

stance Au, Al, Cu or Ag. Surface plasmons are well described as confined electro-

magnetic waves that propagate along the conducting surface of a metal or along a metal-

dielectric interface [11]. Metals show this behaviour because of the presence of free 

charge carriers. In this work, we use Ag nanoparticles of different sizes and geometrical 

arrangements to enhance the absorption in their neighborhood. Ag nanoparticles show 

two absorption bands at wavelengths: one at 368 nm and the other at 420 nm [12]. For 

Ag nanoparticles the extinction (scattering plus absorption) becomes more red shifted 

with increasing their size [14]. The enhanced absorption of the photoactive layer via the 

strong local electromagnetic field in the vicinity of Ag nanoparticles leads to an increase 

in the exciton creation [15] (figure 8). The external quantum efficiency method (EQE) 

proves, that in the spectral range of 330-650 nm, P3HT:PCBM(60) blend absorbs most of 

the light. Furthermore, Ag nanoparticles exhibit strong scattering effects while introdu-
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cing into the photoactive layer. This also contributes to the absorption in the photoactive 

layer. Further, Ag nanoparticles immersed in the photoactive layer cause the enhance-

ment in the charge carrier mobility which leads to the increased short-circuit current Isc 

[15]. 

 
Figure 8. Light trapping by the excitation of localized surface plasmons in metal nano-

particles positionned at the interface of two semiconductors. The near-field of excited 

metal nanoparticles causes the creation of electron-hole pairs [15].  

 

It has been demonstrated that at plasmon resonance wavelengths, more current is 

generated [3]. This results in a strong increase of the external quantum efficiency. EQE 

of thin film organic solar cells is limited by low carrier mobilities. In time-of-flight 

(TOF) experiments, the mobility μ of carriers in the polymer of our interest, can empiri-

cally be described by [3] 

 

 F exp0 ,           (2) 

 

where 0  is the zero-field mobility,   is the field activation parameter and F is the 

field strength. The thinner film between electrodes will lower the probability to bimo-

lecular recombinations and will increase the charge carrier drift velocity by the higher 

electric field.  

 

 

3.2. Joule heating 
 

 

Another effect, that also significantly affects the absorption in the photoactive 

material, is generating the heat around the metal nanoparticle upon illuminating [16], 

[17]. The Joule heating effect is minimized for the lower particle density or the smaller 

particle size. The heating effect is especially strong for metal nanoparticles as they have 

many mobile electrons. Since metal nanoparticles show a low light emission, the total 

amount of the generated heat can be estimated as the total optical extinction. It has been 

shown that Ag nanoparticles can efficiently release the heat resulting from the optical 

excitation. Thus, the heat diffuses away from nanoparticles to the surrounding medium. 

For conditions in the steady-state regime, the temperature distribution around an opti-

cally-stimulated metal nanoparticle can be described by the usual heat transfer equation 

[17]:  
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                                          
 

     trQtrTrk
t

trT
rcr ,,

,
 




  ,                    (3) 

 

where r is the vector of spacial coordinates, t is the time,  trT ,  is the local temperature, 

and the material parameters  r ,  rc  and  rk  express the mass density, the specific 

heat, and the thermal conductivity, respectively. The function  trQ ,  represents an 

energy source coming from the light dissipation in nanoparticles. In the steady-state 

regime, the local temperature around a single nanoparticle can be described by the 

equation: 

 
rk

QV
T

0
4

r NP


 ,                               (4) 

 

where r > NPR  is the distance from the center of the metal nanoparticle of the diameter 

NPR , 0k  is the thermal conductivity of the surrounding medium and NPV  is the volume 

of the metal nanoparticle. Assuming that the wavelength of the incident radiation is 

much longer than the nanoparticle radius NPR , we can calculate the nanoparticle heat 

generation Q  [17] as 

NP

2

NP0

02

0
Im

2

3

8











 EQ ,               (5) 

 

where 0E  is the amplitude of the incident radiation, NP  and 0  are the dielectric con-

stants of the metal nanoparticle and the surrounding medium, respectively. Here, NP  

and 0  are represented in the complex form NPNPNP i  , 000 i   respective-

ly. 

 

The maximum enhancement in the temperature occurs at NPRr   and is given by: 

 

  NP

NP

NP
max Im

 

2

3

3
0

0

2

0

0

0

2

0










c

I

k

R
IT


 ,                   (6) 

 

where I0 is the incoming light intensity and 0k  is the thermal conductivity of the 

surrounding medium. This equation describes an important dependence of the tempera-

ture increase around a nanoparticle on the incoming light intensity and on the nanopar-

ticle size. 

 

 
0

2

NPmax  , IRTT           (7) 

 

The local temperature distribution around a 20-nm Ag nanoparticle at a plasmon reso-

nance is illustrated in figure 9. The incoming light intensity is about 1000 W/m
2
 and the 

coefficient of the thermal conductivity k0 of the surrounding material (P3HT:PCBM(60)) 

is well approximated by the value 1.4. 
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Figure 9. Temperature enhancement for a single 20-nm Ag nanoparticle in the steady-

state regime as a function of the nanoparticle center distance. The surrounding medium 

is P3HT:PCBM(60) (1:1), dissolved in 1,2-dichlorobenzene. 

 

The total heat dissipation from the metal nanoparticle into the surrounding me-

dium depends on physical properties of the circumambient material and geometrical 

properties of metal nanoparticles [17]. The imaginary part of the dielectric constant of a 

metal nanoparticle represents the key factor for heat distribution calculations around the 

metal nanoparticle. It is worth noting that Ag nanoparticles under plasmon resonance 

conditions generate heat about ten times higher than Au nanoparticles out of the reso-

nance. 

 

 

3.3. Light scattering  
 

 

There are many technologically feasible ways how to input the metal nanopar-

ticles into a polymer photovoltaic system. Using the solution containing colloidal Ag 

nanoparticles is one of them
1
. For the nanoparticles with sizes well below the used wa-

velength, the absorption and scattering of light can be well described using a dipole mo-

del [22]. Scattering and absorption cross-sections are given by 

 

                                  
2

4

scat

2

6

1















C ,              (8) 

 

 

 



Im

2
abs

C ,                     (9) 

 
 

                                                
1 www.bbigold.com 
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where      













2/

1/
3

0NP

0NP




 V            (10)       

 

is the polarizability of the metal nanoparticle, V is the particle volume, NP  and 0  are 

the dielectric constants of the metal nanoparticle and the surrounding medium, respecti-

vely. The dielectric constants NP  and 0  are represented in the complex form 

NPNPNP i  , 000 i  , respectively. The polarizability of the nanoparticle is 

affected by its geometry, as well as by optical properties of the circumambient medium. 

As the particle size increases, its ability to scatter the light into the surrounding medium 

increases as well. The ratio of the scattering and the extinction cross-section 

 absscatscat / CCC   is called Albedo. For the enhancement of the absorption in an em-

bedding medium, it is desirable that scattering of the metal nanoparticle is higher than 

its absorption. For illustration, Albedo for Ag and Au nanoparticles with three different 

diameters is given in table 2. The surrounding medium is P3HT:PCBM(60). 

 

  Albedo (%) 

AgØ20 0.7 

AgØ100 45.2 

AgØ150 73.6 

AuØ20 0.1 

AuØ100 14.9 

AuØ150 37.2 

 

Table 2. Albedo calculated for 20, 100, 150 nm size Ag and Au nanoparticles immersed 

in P3HT:PCBM(60).  

 

 

At the surface plasmon resonance, the scattering cross-section can well exceed 

the geometrical cross-section of the metal nanoparticle. Figures 10-15 show scattering 

and extinction (scattering plus absorption) cross-sections wavelength dependencies for 

20, 40 and 100 nm diameter Ag and Au nanoparticles embedded in ITO, PEDOT:PSS, 

P3HT:PCBM(60) and vacuum as the reference. The cross-sections, being normalized to 

the geometrical particle cross section, are calculated using the Mie theory [9], [29]. Die-

lectric constants are taken from [19]. To characterize the optical constants of 

P3HT:PCBM(60)
2
 the spectroscopic ellipsometry has been performed. Optical constants 

for similar materials have been already measured by other groups [20]. 

 

                                                
2 P3HT:PCBM(60) (1:1 by weight), c = 15 mg/mL, dissolved in 1,2-dichlorobenzene. 
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Figure 10. Normalised extinction and 

scattering cross-sections, calculated for 

a 20-nm Ag nanoparticle.  

 

Figure 11. Normalised extinction and 

scattering cross-sections, calculated for 

a 40-nm Ag nanoparticle. 

 

 

   

     

Figure 12. Normalised extinction and 

scattering cross-sections, calculated for 

a 100-nm Ag nanoparticle.  

 

 

Figure 13. Normalised extinction and 

scattering cross-sections, calculated for 

a 20-nm Au nanoparticle. 

Figure 14. Normalised extinction and 

scattering cross-sections, calculated for 

a 40-nm Au nanoparticle.  

Figure 15. Normalised extinction and 

scattering cross-sections, calculated for 

a 100-nm Au nanoparticle. 
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The concentration of free electrons is higher in Ag nanoparticles than in Au. 

This results in a blue shift of the surface plasmon resonance compared to Au in case of 

Ag compared to Au (figures 10-12). Nevertheless, in the infrared wavelength range, 

dielectric functions of Au and Ag are very similar. In addition, the scattering cross-

sections reach higher values for Ag nanoparticles than for Au nanoparticles. Thus, for 

higher scattering, Ag is the better choice than Au. Further in this work, only Ag nano-

particles will be taken into account. Nevertheless, Ag nanoparticles must be well encap-

sulated to avoid oxidation effects that are not present for Au. The colloidal nanoparticles 

consist of a Ag core and a shell which ensures the negative charge of the nanoparticle. 

The shell is composed of sodium citrate and the medium for Ag nanoparticles is an ex-

tra pure distilled water. The encapsulation could significantly affect the light scattering 

from nanoparticles, resulting in a decrease of the absorption in the surrounding material. 

Furthermore, the core-shell structure, used in colloidal Ag nanoparticles, can lead to the 

optical vortexing, which results in the reduction of the photo-generated current [16]. 

 

Basically, the higher index of the embedding medium leads to the red-shift of the surfa-

ce plasmon resonance. Also, the light is scattered preferentially into a dielectric with 

larger permittivity. The evanescent plasmon field extends more than 100 nm into the 

polymer whereas it only extends a few nanometers into the metal. As the result, the op-

tical path length is effectively increased in the dielectric medium. The shift of the 

plasmon resonance and the contribution of higher order multipoles need to be conside-

red for all solar cell geometries. In particular, for arrangements with metal nanoparticles 

within the active layer of solar cells. For such a configuration, it is also required to 

avoid bimolecular recombinations of electron-hole pairs at the metal-semiconductor 

interface. However, applying metal nanoparticles at the front side of solar cells seems to 

be a better option [21]. Otherwise, a reduced driving field close to the substrate causes 

the decrease in the relative scattering cross-section. This driving field is caused by the 

interference of the incident and reflected radiation [22]. 
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4. ELECTROMAGNETIC SIMULATIONS 
 

 

It is rather complicated to simulate plasmonic effects in organic multilayer structu-

res such as solar cells based on P3HT:PCBM(60). To perform these simulations, it is ne-

cesarry to know optical constants of each layer being present in that system. There are 

many powerful electromagnetic simulation methods able to calculate plasmonic tasks, 

including local surface plasmon polaritons and their resonances. Some of them are 

based on the surface integral equation solution, volume integral equations and boundary 

element methods [9]. Here, we use the software Lumerical (Lumerical Solutions, Inc.) 

which uses a Finite-Difference Time-Domain (FDTD) method.  

 

 

4.1. Finite-Difference Time-Domain method 
 

 

The Finite-Difference Time-Domain method (FDTD) is a simulation technique 

frequently used in electromagnetism. From the FDTD methods, we obtain the frequency 

spectra by exploiting Fourier transforms at the full range of wavelengths. The FDTD 

method is a grid-based differential numerical method. First, the electric intensity E is 

solved in the differential volume dV and the magnetic induction H is solved consequent-

ly. We can easily define materials by the real and imaginary parts of optical constants. 

Maxwell’s equations which are solved by this method are of the form 

 

      ED r0 ,          (11) 

 

    H
t

D





,             (12) 

 

E
t

H






0

1


,          (13) 

 

where   mr   and     2nr  . 

 

There are six field components xE , yE , zE , xH , yH , zH  in three dimensional space to be 

solved. Boundary conditions have the natural meaning in theory. Nevertheless, they can 

be introduced differently in the simulation process. There is a set of boundary conditi-

ons available in FDTD softwares: 

 

- absorbing boundary conditions allowing the field to escape from the compu-

tational volume. The field is absorbed by the boundary and it can not be re-

flected back to the computational volume. As the absorbing boundary con-

ditions are realized by many layers, we have to pay attention to their setup.   

 

- Perfectly Matched Layers (PML) represent the frequently used absorbing 

boundaries. 
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- periodic boundary conditions. In this case, the unit cell is defined. We acqui-

re the field of an infinite number of cells, even though the software computes 

only one cell. 

 

- metallic boundary conditions providing perfect reflection at a boundary. The 

energy is kept constant in the computational volume. 

 

- symmetric boundary conditions referring a mirror symmetry for the electric 

field and an anti-mirror symmetry for the magnetic field. 

 

- antisymmetric boundary conditions involving an anti-mirror symmetry of the 

electric field and a mirror symmetry for the magnetic field. 

 

While the calculation is running in the whole space terminated by boundaries, the soft-

ware saves the calculated field only in a pre-selected space which is called the monitor. 

The simulation is finished when the monitor is achieved. The monitor can be defined by 

diverse geometrical shapes. The components of the calculated electromagnetic field are 

saved together with the components of the Poynting vector. If discrete optical constants 

for a required range of wavelengths are availabe, the software will fit them.  

 

Geometrical setup of objects used in FDTD simulations as a glass substrate, ITO, PE-

DOT:PSS, P3HT:PCBM(60), LiF and Al is illustrated in figure 16. 

 

   

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 16. Setup of objects used in FDTD simulations. As there are symmetrical ele-

ments in our system and the FDTD methods work with PML boundary conditions, it is 

possible to perform simulations only for one half of the system (black area at the right 

side of the picture). It saves the simulation time and reduces memory requirements sig-

nificantly. 

 
 

Al (~ 100 nm) 
LiF (~1 nm) 

P3HT:PCBM(60)  (~100 nm) 

PEDOT (~50 nm) 

ITO (~140 nm) 

Ag nanoparticle 

glass (~450 μm) 
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4.2. Results of simulations 
  

 

In this section, the issue of the increasing absorption of the photovoltaic system 

based on P3HT:PCBM(60) is discussed. The absorption originating from surface 

plasmon resonances has been confirmed by experimental reflection studies and theoreti-

cal modeling (FDTD simulations). To overcome absorption limits of the photoactive 

layer, different geometrical arrangements of Ag nanoparticles inside the bulk hetero-

junction photovoltaic system is reported. It will be shown in agreement with [13] that 

the surface plasmon absorption bands are dependent on the size, shape, density, and 

local dielectric environment of the nanoparticle. The simulation has been performed for 

16, 20 and 40 nm Ag nanoparticles. For each diameter, only the position and the distan-

ce between the nanoparticles in the polymer photovoltaic system change have been 

changed. To perform simulations, it was necessary to know all optical constants of ma-

terials used in the simulation. Figures 17-25 illustrate the refractive index and extinction 

coefficient for all materials being used in this work. 

 

  

 

 

 

Figure 17. Refractive index for P3HT: 

PCBM(60).  

Figure 18. Extinction coefficient for 

P3HT:PCBM(60). 

 

 

 

 

 

 

Figure 19. Refractive index for PE-

DOT:PSS.  

Figure 20. Extinction coefficient for 

PEDOT:PSS. 
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Figure 21. Refractive index for ITO.  

 

 

Figure 22. Extinction coefficient for 

ITO. 

 

 

 

 

Figure 23. Refractive index for Ag.  Figure 24. Extinction coefficient for 

Ag. 

 

 

 

 

Figures 17-25 show optical constants of 

all important materials used in this work. 

To obtain optical constants for 

P3HT:PCBM(60) and PEDOT:PSS, the 

spectroscopic ellipsometry has been per-

formed. Optical constants for ITO, LiF 

and Ag have been taken from [6]. In our 

experiments, P3HT:PCBM(60) (1:1) was 

used with concentration about 15 mg/mL 

(solvent 1,2-dichlorobenzene). The valu-

es of extinction coefficients for LiF are 

too low to be presented [6].  

 

Figure 25. Refractive index for LiF.  
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The part below is devided into three parts where the influence of Ag nanoparticles 

for their different locations in the system are studied. In each part, the location of Ag 

nanoparticles in the system is kept constant and only their geometrical arrangement is 

changed. Especially, the absorption and electric intensity for each geometrical arran-

gement is discussed. The enhancement of the absorption in the photoactive layer 

(P3HT:PCBM(60)) is the key factor which can lead to an increase in power conversion 

efficiency of the studied polymer photovoltaic system. In these simulations Ag nanopar-

ticles are supposed to be homogeneously distributed in the perfect monolayer and wit-

hout creating clusters. The fabrication and the measurement of such modified devices is 

discussed in the next chapter.  

 

 

4.2.1. Ag nanoparticles positionned on the PEDOT:PSS - ITO  
interface 
 

 

The schematic layout of this arrangement is shown in figure 26. In all cases, the 

substrate is illuminated from the bottem side, as shown by the propagation vector k


. 

 

 

 

 

 

 

 

 

 

      

 

 

 

Figure 26. Schematic layout of Ag nanoparticles positionned at the PEDOT:PSS - ITO 

interface. 

 

 

Figures 27-32 show the absorption of electromagnetic energy in PEDOT:PSS and in the 

photoactive layer. In addition, the absorption in P3HT:PCBM(60) without Ag nanopar-

ticles is plotted as the reference. If the P3HT:PCBM(60) absorption curve exceeds the 

reference one, then the photoactive layer of a device modified with Ag nanoparticles 

exhibits a higher absorption compared to the reference one. This absorption enhance-

ment can be seen for the arrangement with 20-nm Ag nanoparticles with the spacing 

about 40 nm (figure 30). In this case, the absorption curve of the photactive layer well 

exceeds the reference it the wavelength range from 470 to 900 nm.  

Ag nanoparticles 

k

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Figure 27. Electromagnetic wave absorp-

tion spectra (Ag, Ø16 nm, spacing 16 nm). 

Figure 28. Electromagnetic wave absorp-

tion spectra (Ag, Ø16 nm, spacing 32 nm).

 

 

 

 

 

Figure 29. Electromagnetic wave absorp-

tion spectra (Ag, Ø20 nm, spacing 20 nm). 

Figure 30. Electromagnetic wave absorp-

tion spectra (Ag, Ø20 nm, spacing 40 nm). 

 

 

 

 

Figure 31. Electromagnetic wave absorp-

tion spectra (Ag, Ø40 nm, spacing 40 nm). 

Figure 32. Electromagnetic wave absorpti-

on spectra (Ag, Ø40 nm, spacing 100 nm). 
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The increased absorption in the photoactive layer (illustrated in figure 30 and 

partially in figure 29) is the result of the significantly enhanced local electromagnetic 

field in the vicinity of Ag nanoparticles. This effect also leads toan increase of the exci-

ton generation [17]. Figure 33 illustrates thespectral dependence of the square of the 

magnitude of electric intensity 
2

E around the nanoparticle. As a reference, the curve 

for the sample without without Ag nanoparticles is shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33. Square of the magnitude of electric intensity in the vicinity of Ag nanoparti-

cle located at the PEDOT:PSS - ITO interface as a function of wavelength.  

 

 

Figure 34. Electric field distribution of 
2

E  (V
2
/m

2
) in the vicinity of a 20-nm 

Ag nanoparticle with a 40 nm separation 

located on the layer ITO.  

Figure 35. Electric field distribution of 
2

E  (V
2
/m

2
) of the sample without na-

noparticles. 
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Figure 34 shows 
2

E  in the vicinity of 20 nm diameter Ag nanoparticle with the spac-

ing about about 40 nm. Units presented at the bottom and on the left side are microns. 

The colored scale on the right side expresses the relative enhancement of 
2

E around the 

nanoparticle. These values are normalised to 
2

E  of the reference system without nano-

particles. Here,the blue color means zero enhancement and the red color means the mul-

tiple of the enhancement compared to the zero enhancement.  

 
 

4.2.2 Ag nanoparticles positionned in P3HT:PCBM(60) 

 

 

With regards to simulations, the immersion of Ag nanoparticles directly into the 

photoactive layer offers an ideal solution how to effectively enhance the light absorption 

in this layer. On the other hand, this way presents a lot of complications dealing with the 

preparation of the P3HT:PCBM(60) blend being modified with Ag nanoparticles. The 

schematic layout of this arrangement is shown in figure 36 where the substrate is illu-

minated from the lower side, as shown by the propagation vector k


. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36. Schematic layout of Ag nanoparticles positionned in the photoactive layer. 

 

 

For this configuration, the absorption of electromagnetic energy in the photoactive layer 

and the PEDOT:PSS layer is shown in figures 37-42. The absorption in the 

P3HT:PCBM(60) layer without Ag nanoparticles is plotted as a reference (solid black 

line). For this geometrical arrangement, it is easily seen that all P3HT:PCBM(60) absorp-

tion curves of Ag modified devices exceed the reference curve. For all these configura-

tions there is a significant enhancement of the absorption compared to the arrangement 

with Ag nanoparticles placed on the PEDOT:PSS - ITO interface. This increase in ab-

sorption occurs nearly for the whole range of wavelengths. In addition, for all these cur-

ves, a small peak around 400 nm of wavelengths occurs. This extra peak results from 

resonance effects in Ag that contribute to the enhancement of electromagnetic wave 

absorption in the photoactive layer. As this peak is more pronounced for the system 

with smaller inter-particle distances, it may be connected with resonance coupling 

between the nanoparticles. 

Ag nanoparticles 

k

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Figure 37. Electromagnetic wave absorp-

tion spectra (Ag, Ø16 nm, spacing 16 nm). 

Figure 38. Electromagnetic wave absorp-

tion spectra (Ag, Ø16 nm, spacing 32 nm).

. 

 

 

 

 

Figure 39. Electromagnetic wave absorp-

tion spectra (Ag, Ø20 nm, spacing 20 nm). 

 

 

Figure 40. Electromagnetic wave absorp-

tion spectra (Ag, Ø20 nm, spacing 40 nm). 

 

 

 

 

Figure 41. Electromagnetic wave absorp-

tion spectra (Ag, Ø40 nm, spacing 40 nm). 

Figure 42. Electromagnetic wave absorpti-

on spectra (Ag, Ø40 nm, spacing 100 nm). 
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However, although the increase of the exciton creation in the active layer is es-

sential, in the end, it is necessaery to take the bimolecular recombinations between the 

separated charges into account [3]. Figure 43 illustrates the spectral dependence of the 

square of the magnitude of electric intensity in the vicinity of Ag nanoparticles. As a 

reference, the system without nanoparticles is shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 43. 
2

E  in the vicinity of Ag nanoparticles located in the active layer as a func-

tion of wavelength. For 16-nm Ag nanoparticle, the maximum value is nearly 400x 

higher compared to the reference.  

 

These simulations require the knowledge in the electromagnetic field in surrounding of 

Ag nanoparticle. The spatial distribution of 
2

E around a Ag nanoparticle is shown in 

figures 44 and 45. Here, the configuration without nanoparticles is used as the reference. 

Figure 44. Electric field distribution of 
2

E  (V
2
/m

2
) in the vicinity of 20-nm Ag 

nanoparticle with a 40 nm separation 

immersed in the active layer.  

Figure 45. Electric field distribution of 
2

E  (V
2
/m

2
) of the sample without na-

noparticles. 
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For the geometrical arrangement illustrated in figure 44, the distance between 

20-nm Ag nanoparticles was about 40 nm. The maximal increase of the square electric 

intensity magnitude is observed for the P3HT:PCBM(60) layer where excitons are cre-

ated.  

 

 

4.2.3. Ag nanoparticles positionned on the PEDOT:PSS - ITO  

interface and in P3HT:PCBM(60) 

 

 

This arrangement represents a combination of the two previous methods. Here, 

simulations have proved a significant enhancement of the absorption in PEDOT:PSS 

and in P3HT:PCBM(60) layer. Nevertheless, the numerical calculations show that the 

“shade“ of electric intensity around Ag nanoparticles in the lower layer affects the elect-

ric intensity of Ag nanoparticles in the upper layer. Since, the device is illuminated from 

the bottom side, Ag nanoparticles in the lower layer provides the higher enhancement in 

electric intensity than the upper nanoparticles. From the geometrical arrangement it is 

clear that the lower layer (PEDOT:PSS) absorbs more light than the upper one 

(P3HT:PCBM(60)). However, their  difference in 
2

E is not so significant at first sight 

(figure 54). As shown at the previous structures, this configuration presents a lot of 

complications concerning the fabrication. The schematic layout of such an arrangement 

is shown in figure 46. The substrate is illuminated from the bottom side, as shown by 

the propagation vector k


. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 46. Schematic layout of Ag nanoparticles positionned both at the PEDOT:PSS - 

ITO interface and in the P3HT:PCBM(60) layer. 

 

Figures 47-52 illustrate electromagnetic energy absorption in the photoactive la-

yer induced by Ag nanoparticles situated not only on the ITO layer but also in the blend 

P3HT:PCBM(60). As compared with the previous arrangement where nanoparticles are 

embedded directly into the photoactive layer, the enhancement of the absorption is more 

significant for the wavelengths above 500 nm. For the wavelengths below 500 nm, the 

absorption in P3HT:PCBM(60) is rather smaller. With respect to the absorption in PE-

DOT:PSS, it is possible to clearly see the peak at wavelengths around 430 nm. This 

plasmon-resonance related peak is not present for the arrangement with Ag nanopar-

ticles immersed only in P3HT: PCBM(60).  

Ag nanoparticles 

k




40 

 

 

 

  

Figure 47. Electromagnetic wave absorp-

tion spectra (Ag, Ø16 nm, spacing 16 nm). 

Figure 48. Electromagnetic wave absorp-

tion spectra (Ag, Ø16 nm, spacing 32 nm). 

 

 

 

 

Figure 49. Electromagnetic wave absorp-

tion spectra (Ag, Ø20 nm, spacing 20 nm). 

Figure 50. Electromagnetic wave absorp-

tion spectra (Ag, Ø20 nm, spacing 40 nm).

 

 

 

Figure 51. Electromagnetic wave absorp-

tion spectra (Ag, Ø40 nm, spacing 40 nm). 

 

 

 

  

Figure 52. Electromagnetic wave absorp-

tion spectra (Ag, Ø40 nm, spacing 100 

nm). 
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Figure 53 illustrates the spectral dependence of the square of the magnitude of 

electric intensity around Ag nanoparticles. As a reference the dependence for the refe-

rence sample without Ag nanoparticles is shown.  
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Figure 53. 
2

E in the vicinity of Ag nanoparticle located both in the active layer and 

PEDOT:PSS as a function of wavelength. For a 40-nm Ag nanoparticle, the maximum 

value is more than 100x higher compared to the reference.  

 

Figure 54. Electric field distribution of 
2

E  (V
2
/m

2
) in the vicinity of a 20-nm 

Ag nanoparticle with a 40 nm separati-

on located in the active layer and on the 

layer ITO. 

 

 

 

 

Figure 55. Electric field distribution of 
2

E  (V
2
/m

2
) of the sample without na-

noparticles. 
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From figure 54 it is evident that the enhancement in 
2

E is more significant around the 

lower Ag nanoparticle. To eliminate the “shade“ of the electric intensity created by the 

lower sphere, a modified configuration where Ag nanoparticles do not overlap was pro-

posed (figure 56). However, this configuration does not exhibit any improvement in 
2

E compared to the arrangement displayed in figure 54. Even more, the absorption 

caused by this arrangement has significantly dropped below the absorption of the refe-

rence sample without Ag nanoparticles (figure 57).  

 

 

Figure 56. Electric field distribution of 
2

E  [V
2
/m

2
] in the vicinity of a 20-nm 

Ag nanoparticle with a 60 nm separati-

on located in the active layer and on the 

layer ITO. 

 

Figure 57. Electromagnetic wave ab-

sorption spectra (Ag, Ø20 nm, spacing 

60 nm). 
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5. EXPERIMENTAL SECTION 
 

 

In this chapter, the device fabrication and measurement techniques will be presen-

ted. The first part of this section is devoted to the preparation of P3HT:PCBM(60) based 

devices. Therefore, the fabrication of reference samples and samples modified with Ag 

nanoparticles is described in detail and the technique used to the measurements is 

discussed in the second part. The results achieved from this experiment will be shown 

during this chapter. 

 

 

  5.1. Device fabrication 
 

 

In this experimental part, four series consisting of four samples, i.e. 16 samples 

in total were fabricated. Considering the numerical simulations, discussed in the previ-

ous chapter, the precise configuration and dimensions of the prepared devices cannot be 

achieved. There are only a few methods how to incorporate the Ag nanoparticles into 

the photovoltaic system based on P3HT:PCBM(60). For example, a pulse-current 

electrodeposition (PCED) can be applied [13], which is the method that controls the 

density and size of metal nanoparticles. In this method, metal ions are supplied from the 

bulk solution to the substrate during the time when the current supply is switched-off. 

Thus, the particle size and density can be tuned via controlling the current density du-

ring the switched-off and switched-on time period (figure 58). 

 

 
 

Figure 58.  Principle of the pulse-current electrodeposition [13]. 

 

 

Another way how to insert Ag nanoparticles into the system is the organic vapor-phase 

deposition (OPVD). By this method, organic molecules are uniformly depositied on a 

cold substrate from a hot inert carrier gas (figure 59).  
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Figure 59. Scheme of the organic vapor-phase deposition process (OPVD) [23]. 

 

 

However, these two methods are complex and need quite a special equipment. In the 

following parts, three other methods, how to put Ag nanoparticles inside individual lay-

ers will be discussed.  

 

 

 5.1.1. Fabrication of reference samples 
 

 

Before fabrication of samples modified with Ag nanoparticles, a few substrates 

serving as the reference ones, were prepared.  

 

In principle, the building of these devices can be described in six steps: 

 

- Cleaning the substrates 

- Fast drying with inert gas  

- Inserting the substrates into a UV ozone oven 

- Preparing solutions 

- Spin coating of the solutions 

- Evaporation of LiF/Al electrodes on substrates 

 

Before the processing, it is necessary to clean all the substrates in a soap and then put 

them into an ultrasound bath filled with aceton. This is made in order to clean substrates 

from fats. Afterwards, the substrates are fast dried by an inert gas (N2) and put into a 

UV ozone oven. In the UV ozone oven, organic residues are removed. While keeping 

samples in the UV ozone oven, it is desirable to prepare required solutions. Here, it is 

used a solution of P3HT as the electron donor and PCBM(60), due to its high hole mobi-

lity as the electron acceptor. The concentration of P3HT:PCBM(60) (1:1 by weight) is 15 

mg/mL and 1,2-dichlorobenzene is chosen as the solvent. The individual steps of the 

whole process are schematically illustrated in a simple way in figure 60. 
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Figure 60. Preparation of P3HT/PCBM(60) (1:1 by weight), c = 15 mg/mL. During the 

transfer from V1 to V2, 5% losses are taken into account.   

 

Another step is the spin-coating of PEDOT:PSS and P3HT:PCBM(60) on glass 

substrates. PEDOT:PSS is the conducting polymer whose function is to reduce the rou-

ghness of ITO layer and mainly to collect positive charges (holes). Before spin-coating, 

the solution of PEDOT:PSS must be filtred to avoid the residual impurities. The big 

advantage of spin-coating is the uniform spreading of the solution on a subsrate. The 

principle of the spin-coating method is illustrated in figure 61. The layer thickness (d) as 

a function of the spinning speed (expressed in revolutions per minute) is given in figure 

62.  

 

 
  

Figure 61.  Schematic of the spin-coating method [24]. 
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Figure 62.  Layer thickness as a function of the spinning speed. (The layer of 

P3HT:PCBM(60) (1:1), c = 15 mg/mL, dissolved in 1,2-dichlorobenzene). 
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The final thickness of a coated layer is proportional to 
2/1  as can be seen from equa-

tion 14 [24]. The spin-coating method has been carried out in the air atmosphere, at ro-

om temperature and under the normal pressure (1013 hPa). Before the spin-coating of 

the photoactive layer it is necessary to deposit the filtered PEDOT:PSS. This is usually 

applied at 3000 rpm for one minute. Under these conditions, the layer PEDOT:PSS of 

approximately 50 nm is created.   

 0

1

0 1

2/1

xh
f

















,          (14) 

 

where 0  is the initial solution viscosity,   is the solution density,   is the spinnig 

speed and 0

1x  is the initial solvent mass fraction in the spin-coated solution. For all the 

samples, P3HT:PCBM(60) has been spin coated at 2500 rpm for 200 seconds.   

 

The next step is the evaporation of lithium fluoride (LiF) and aluminium elec-

trodes (Al). LiF (~1 nm) and Al (~100 nm) are deposited consecutively in a vacuum 

chamber (~ 10
-7

 Pa) located in a glove box. The role of LiF is to improve the adhesion 

and transport of electrons between the active layer and Al electrode. The deposition is 

controlled automatically by an appropriate software. Even if the substrates are placed in 

the glove box, they are sensitive to degradation. Thus, the processing time and the mea-

surement of prepared samples should be performed as fast as possible. After finishing 

the fabrication process it is required to anneal all the samples. This is made in order to 

improve not only their morphological, optical and physical properties, but especially to 

improve the charge carrier mobility in the photoactive layer [8]. In our case, all samples 

have been annealed at 110 °C for 30 minutes.   

 
 

5.1.2. Fabrication of samples modified with Ag nanoparticles  
– Spin-coating method 
 

 

The spin-coating method is a powerful method intended for the preparation of 

very thin films in the liquid form. However, this method has some limits while applying 

colloidal Ag nanoparticles. For this kind of experiments, 20, 40 and 80 nm diameter 

colloidal Ag nanoparticles have been available
3
. These colloidal metal nanoparticles 

consist of a Ag core and the shell based on sodium citrate (Na3C6H5O7, figure 63). The 

surrounding medium is the highly purified water. The shell of sodium citrate provides 

the negative charge to nanoparticles, allowing them to repel each other and thus to pre-

vent their aggregation [16]. The concentration of the solution with colloidal Ag nano-

particles is 7.10
10

 particles in 1 mL. In our case, the P3HT:PCBM(60) layer thickness is 

only about 60 nm. Hence, only 20-nm Ag nanoparticles are used to avoid some unfavo-

rable consequences as the P3HT:PCBM(60) layer is very sensitive even to the slightes 

structural and morphological changes. Figure 64 illustrates the absorbance spectra for 

20, 40, 60 and 80-nm Ag nanoparticles surrounded by the air.  

 

                                                
3 www.bbigold.com 
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Figure 63.  Molecular structure of sodium citrate - Na3C6H5O7. 

 

 

 
 

Figure 64.  Absorbance spectra for 20, 40, 60 and 80-nm Ag nanoparticles surrounded 

by the air. The picture is reproduced from [25].    

 

 

The spin-coating method has been used only for Ag nanoparticles being applied 

on the ITO surface and on the PEDOT:PSS surface. This geometrical configuration has 

been mentioned in part 4.1.1. Otherwise, direct mixing of colloidal Ag nanoparticles 

with the PEDOT:PSS or P3HT:PCBM(60) solutions would completely change the final 

chemical and physical properites of the layers. Before the fabrication of the structures, 

several series of experiments focused on the uniform spreading of Ag nanoparticles in 

the layers were performed. Since the Ag nanoparticles are immersed in water, they 

spread non- uniformly during the spin-coating. As a result, Ag nanoparticles agregate 

rather at the edge of the substrate which is unacceptable for us. Nevertheless, this pro-

blem has been succesfully solved. By using the hydroxypropyl cellulose (figure 65), the 

viscosity of aqueous solution containing the 20-nm nanoparticles has increased. The 

concentration of the used hydroxypropyl cellulose in the solution of colloidal Ag nano-

aprticles was about 20 mg/mL. This concentration has provided a required viscosity of 

the aqueous solution with Ag nanoparticles. Consequently, the solution of the colloidal 

Ag nanoparticles has a form of a gel. The hydroxypropyl cellulose is generally available 

in the form of a white powder.    
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Figure 65.  Molecular structure of the hydroxypropyl cellulose. 

 

 

The created gel containing the hydroxypropyl cellulose and colloidal Ag nanoaprticles 

has been spin-coated at 500 rpm for one minute. Afterwards, the substrates have been 

put into an oven for baking at 300 °C for 20 minutes. At this temperature, all organic 

residues are removed and only Ag nanoparticles have rested intact. However, it is ne-

cessary to be aware of glass fragility at the baking process. After the substrates are 

cooled down to room temperature, it is possible to continue in the spin-coating of PE-

DOT:PSS and P3HT:PCBM(60) and in the evaporation of LiF/Al in the glove box. A 

schematic of the spin-coatin process is illustrated in figure 66.  

 

 

 

 

 

 

 

 

 

 

 

Figure 66. Deposition of colloidal Ag nanoparticles on ITO by spin-coating.  

 

 

To understand well the importance of the baking process, the optical absorption of some 

samples before and after baking has been measured. Some samples with Ag nanopar-

ticles in cellulose have been baked, whereas the others not. Figure 67 displays the diffe-

rence between the baked (black line) and non-baked (red line) samples. It is evident, 

that the absorption of baked substrates is higher compared to the unbaked samples. In 

addition, it is worth noting that the unbaked system exhibits the negative absorption 

above 435 nm. This fact can be linked to resonant effects related to Ag. For Ag, 

plasmon resonances occur at the wavelength around 430 nm. As the result, a photolu-

miniscent effect can occur. Several studies have shown that interactions between 

plasmons and photogenerated excitons result in an enhanced exciton dissociation while 

suppressing bimolecular recombinations [26]. 

- Spin coating at 500 rpm for 1 minute 

- Baking at 300 °C for 20 minutes 

Ag nanoparticles in form of gel 
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Figure 67. Absorption of baked and unbaked samples consisting of colloidal 20-nm Ag 

nanoparticles in form of gel. The higher absorption for the baked substrates is evident.  

 

 

After the fabrication process atomic force microscopy method (AFM) of the samples 

with the spin-coated gel containing 20-nm Ag nanoparticles has been measured. The 

AFM image demonstrating the morphology of the baked sample with 20-nm Ag nano-

particles is shown in figure 68. 

 

 
 

Figure 68. Morphology of the samples prepared by spin-coating usng a gel containing 

20-nm colloidal Ag nanoparticles. This image has been taken by AFM in the non-

contact mode. 
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5.1.3. Fabrication of samples modified with Ag nanoparticles  
– Drop-casting method 
 

 

The drop-casting method represents a simple and effective technique of deposi-

tioning the colloidal Ag nanoparticles on the glass substrate. Compared to the spin-

coating, the drop casting technique does not require any material modifications such as 

using the hydroxypropyl cellulose. In addition, by the drop-casting method, Ag nano-

particles can be put into a specific point on the substrate which represents another adva-

ntage. However, there is one step that must be taken into account at processing. The 

solution and substrates with colloidal Ag nanoparticles should be warmed up so that the 

water contained in the aqueous solution could simply evaporate. In our case, the aque-

ous solution with colloidal Ag nanoparticles has been warmed up to 80 °C and substra-

tes up to 150 °C. Furthermore, the drop-casting method has been used for two configu-

rations with Ag nanoparticles. These arrangements are shown in figure 69 and 70. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 69.  Drop-casting on the ITO surface. In total, five drops have been applied (one 

drop per minute). In this way, the evaporation of the residual water, contained in the 

solution with Ag nanoparticles, is assured.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 70.  Drop-casting both on the ITO and PEDOT:PSS surfaces. For each surface, 

5 drops have been applied (one drop per minute). Since the layer P3HT:PCBM(60) is 

hydrophobic, it is not possible to mix the aqueous solution containing Ag nanoparticles 

together with P3HT:PCBM(60). One of the possible solutions is to drop the colloidal Ag 

nanoparticles on the layer PEDOT:PSS which is not hydrophobic and let the water 

evaporate. This procedure should ensure a good contact between the Ag nanoparticles 

and the photoactive layer. Also here in this case, the glass substrates with ITO have 

- Glass substrates, 150 °C 

- Solution with Ag np, 80 °C 

drop-casting 

drop-casting drop-casting 
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been warmed up to 150 °C and the solution containg colloidal 20-nm Ag nanoparticles 

to 80 °C.  

 

The optical absorption has been measured also for samples prepared by this me-

thod. The results from this measurement are illustrated in figure 71, where the absorpti-

on of the drop-casted film is represented by the solid black line and the spin-coated film 

is represented by the solid red line. It is evident, that the absorption of the drop-casted 

substrates is higher  at the wavelength range about 375-465 nm. It is also worth remin-

ding that at 428 nm, the plasmon resonance effects occur for Ag. On the other hand, the 

samples performed by spin-coating exhibit the higher absorption above 465 nm. 

Further, for the drop-casted substrates, the negative absorption for the wavelengths 

below 306 nm is steel present. The noise that occur at higher wavelengths can be expla-

ined by interference effects.    
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Figure 71. Absorption of drop-casted (black line) and spin-coated (red line) samples 

containing the layer of Ag nanoaprticles. Here, in both cases, the temperature of substra-

tes has been kept at 150 °C and the temperature of the solution containg 20-nm Ag na-

noparticles at 80 °C. Five drops have been consecutively applied (one drop per minute).  

 

 

Despite the fact that the drop-casting is a local method, the Ag nanoparticles are suppo-

sed to be randomly dispersed even in the applied drop. In this method also a slower dry-

ing of the film in a solvent-saturated atmosphere occur. As the result, inhomogeneities 

in layer morphology cause unpredictable changes in electrical conductivity.  

 

 

5.1.4. Fabrication of samples with deposited Ag nanoparticles. 
 

 

The deposition method is the most promising technique how to get Ag nanopar-

ticles on a substrate. This method requires a more complex setup such as vacuum and 

deposition chambers. This method provides a certain control of the size and distribution 

of Ag islands on the substrate. By appropriate setting of the deposition pressure, growth 

rate and deposition time, it is possible to control the Ag arrangement. However, for 
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technical reasons it was not possible to fabricate the samples by this method. The avai-

lable equipement has enabled to deposit Ag on glass substrates only with dimensions 

about 10 x 10 mm, which does not correspond to the needed sample dimensions about 

30 x 30 mm. Deposited substrates have been prepared in cooperation of Ing. Jindřich 

Mach, Ph.D. 

 

It is required to cover substrates uniformly with Ag nanoparticles, as shown in figures 

72 and 73. In principle, the best shape of these particles is represented by a cylinder or 

hemisphere because of their higher light scattering and trapping ability [10]. However, 

in our experiments, only colloidal Ag nanoparticles have been available. 

 

 
 

Figure 72. Hexagonal array of Ag nano-

particles deposited using the substrate con-

formal imprint lithography by the SCIL 

technique [10]. The particle diameter is 

about 300 nm. This image is made at an 

inclined perspective. 

Figure 73. Silver nanoparticles evaporated  

through a porous alumina template, anne-

aled at 200 °C [10]. The average particle 

diameter is about 135 nm. This image is 

made at an inclined perspective. 

 

 

 

The deposition of Ag at least on substrates with dimensions about 10 x 10 mm has been 

performed. This has been done in order to see the distribution and size of deposited Ag 

islands. These islands are created from Ag layer approximately at 400 °C. Figures 74 

and 75 illustrate the distribution and size of Ag islands by deposition at 400 °C for 15 

minutes. The pressure in the vacuum chamber has been established at 2.7
.
10

-6
 Pa.  

 

However, there are some difficulties related to this method. At 400 °C, the morphology 

and the conductivity of ITO layer dramatically and irreversibly changes. For polymer 

photovoltaic solar cells, physical and morphological properties of ITO layer represent 

the very important factor. It has been also shown, that at 400 °C, tin and indium se-

gregate on the substrate surface. These changes are shown in figures 76 and 77. Deposi-

tion conditions were the same as described above. The images 74-78 are made by scan-

ning electron microscopy (SEM, TESCAN–MIRA 3
4
) with the kind assistance of Mgr. 

et Ing. Tomáš Šamořil.  

                                                
4 http://www.tescan.com/product.php?id_menu=27&id=24&name=MIRA+3+LM 
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Figure 74. Deposited Ag islands. The 

small spot in the center is caused by an 

impurity or by a morphological defect on 

the glass substrate, (scale 500 nm). 

    

Figure 75. Deposited Ag islands. Here, 

the distribution and size of Ag islands 

meets the requirementsis (scale 200 nm). 

 

   
 

Figure 76. ITO on the glass substrate. 

ITO layer exhibits a furfuraceous mor-

phology as seen above. This substrate 

does not contain deposited Ag. 

   

  

 

 

 

Figure 77. ITO on the glass substrate with 

Ag deposited at 400 °C. It is possible to 

see the modification of the original ITO 

morphology. Small bright points on the 

surface are supposed to be deposited Ag 

islands or Sn/In island that segregate from 

the bulk of ITO.  
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ITO is composed of In2O3 (90%) and SnO2 (10%). As no detailed composition of ITO 

substrate after Ag deposition at 400 °C has been known, the energy dispersive spectros-

copy (EDS) has been performed. By this method, the quantitative analysis of the ele-

mental composition of a studied material can be done
5
. This analysis has been perfor-

med with the kind assistance of Ing. Drahomíra Janová. The results of the EDS mea-

surements are summarized in figure 78 and in table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 78. Representative EDS spectrum of Ag deposited at 400 °C at ITO glass sub-

strate. The peak of Ag is visible, together with In. The concentration of Sn was under 

detection limits of this method.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Percentage representation of elements measured on the ITO glass substrate 

with Ag deposited at 400 °C. These values have been acquired by the EDS method. 

                                                
5 http://www.edax.com 
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To summarize this section, five series of samples with different configurations have 

been made. To decrease measurement uncertainities, four samples for each configurati-

on have been fabricated. One representative sample for each configuration is presented 

in table 4. The results from the measurements of these configurations are discussed se-

parately below. 

 

method  N° sample configuration 

reference 11 glass/ITO/PEDOT/P3HT:PCBM/LiF/Al 

1 1 glass/ITO/Ag in gel/PEDOT/P3HT:PCBM/LiF/Al 

2 3 glass/ITO/Ag drop/PEDOT/P3HT:PCBM/LiF/Al 

3 14 glass/ITO/PEDOT/Ag drop/P3HT:PCBM/LiF/Al 

4 10 glass/ITO/Ag drop/PEDOT/Ag drop/P3HT:PCBM/LiF/Al 

 
Table 4. Different modifications comprising Ag nanoparticles. 

 

Although, the devices prepared by vacuum deposition methods have not been realized 

for the device fabrication, they represent a big challenge for future experiments in pho-

tovoltaics.  

 

 

5.2. Measurement technique 
 

 

In this section, all measuring methods for finding required caracteristics of devi-

ces are described. Especially, the attention is paid to the measurement of volt-amper 

characteristics (I-U), external quantum efficiency (EQE), steady-state differential cur-

rent (SSDC), layer thickness and morphology of prepared samples. The two last met-

hods were executed directly in the air where the substrates degrade very fast. That is 

why these experiments were performed at the end of all the measuring processes. All 

the measurements were performed at room temperature (~25°C) and under the normal 

pressure (1013 hPa). Particular measuring setups are described separately below. 

 

 

5.2.1. Volt-amper characteristics measurement (I-U) 
 

 

The generation of charges is one of the key steps in photovoltaic devices during 

the conversion of the light into electrical energy. In most organic solar cells, the charges 

are created by the photoinduced electron transfer. Before I-U measurements, it is useful 

to anneal the devices based on P3HT:PCBM. This is made in order to increase the 

electron and hole mobility (figure 6). The I-U measurements were performed in a glove 

box filled with the inert gas N2. During these experiments, the samples were exposed to 

the white light from a halogen lamp. The incident light power was 1000 W/m
2
 and the 

measurement was performed under AM1.5 of the light spectral distribution (the 

spectrum of sunlight after passing 1.5 times through the thickness of the atmosphere) 

[3]. This imposes the important condition to the efficient charge generation. The device 

pattern contains four different areas to be measured (figure 79a). The dimensions of 

these areas are known. The I-U measurement was performed by two contacts for setting 
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the potential difference between two electrodes. The first contact is connected to the Al 

electrode, where negative charges (electrons) are collected and the second contact is 

applied to the ITO electrode, where positive charges (holes) are gathered. Then, there is 

the photoactive layer and PEDOT:PSS between the ITO and Al electrodes. Geometrical 

shapes and sizes of the ITO and Al electrodes are identical but rotated by 90° against 

each other (figure 79b). To contact the ITO layer, it is necessary to remove the photo-

active and PEDOT:PSS layer. This is performed either by a mechanical way (scrat-

ching) or chemically. In the latter case, chloroform is used to eliminate the photoactive 

layer and aceton to remove the PEDOT:PSS layer.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a)          b) 

 

Figure 79. a) Architecture of the finished polymer photovoltaic sample [5]. Dimensions 

of the sample are (30 x 30) ± 1 mm and the thickness is about (0.5 ± 0.1) mm. b) Orien-

tation of the ITO and Al electrodes in the polymer photovoltaic cell. 

 

 

As I-U caracteristics are acquired over over the known A, B, C or D areas and 

the measured current is directly converted into the current density. From the I-U meas-

urements, we get I-U curves such as those plotted in figure 80 and 81. These curves are 

important to the determination of the device power conversion efficiency η which is 

calculated by using equations 15a and 15b: 

 

        

(15a) 

 

where   

        

(15b) 

 

 

FF is the fill factor which is given by the ratio of the power obtained from the mea-

surement (solid line rectangle in figure 80) and the maximum power (dashed line 
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rectangle in figure 79), PIN is the incident light intensity (1000 W/m
2
), JSC is the short-

circuit current density at zero applied voltage while illuminating, VOC is the open-circuit 

voltage. VOC is the maximum voltage that can be supplied by a device at J = 0 A/m
2
. In 

principle, the more the shape of the measured I-U curve becomes rectangular, the more 

efficient the sample is. These values are acquired from the graph in figure 80. For the I-

U curves measured in dark, three different regions are remarkable (figure 81). At low 

voltage from -1 V to 0.25 V, the measured current is dominated by the local leakage 

current. Weak spots in the film result in the ohmic behavior. In the range of 0.25 V to 

0.8 V, the current increases exponentially with the applied voltage. In the range of 0.25 

V to 0.8 V, the increase of the current is dominated. When the flat band condition is 

reached, the current becomes space-charge limited (drift dominated) [27].     

 

 

Figure 80. I-U curve measured under 

illumination (L) by the halogen lamp 

with the light power 1000 W/m
2
. 

Figure 81. I-U curve measured without 

illumination (D). 

 

 

Even if sixteen samples with different Ag modifications have been fabricated, only 

five representative samples with different Ag configurations are presented further. These 

results are shown in figure 82. For these series of the samples, the enhancement in JSC is 

observable only for the configuration with 20-nm Ag nanoparticles dropped on the layer 

ITO (sample 3, solid green line). One of the possible explanations of this result is that Ag 

nanoparticles are concentrated in a drop and then there is a high increase in the electric 

intensity around these nanoparticles under illumination. On the other hand, the concentra-

tion of Ag nanoparticles in gel is not so high because of their uniform spreading. The 

smples 10 and 14, having the Ag nanoparticles into the photoactive layer, exhibit a linear 

behaviour. Therefore, these configurations appear rather conducting than exciton creating. 

This could be explained by too higher concentration of Ag nanoparticles in these layers 

which causes that the light is not able to come sufficiently through these layers. This could 

lead to a suppression of the exciton generation. On th eother hand, simulations of 20-nm 

Ag nanoparticles immersed in the photoactive layer show an enhancement in the absorp-

tion. However, 20-nm Ag nanoparticles immersed in the photoactive layer being thick only 

60 nm represent a kind of the potential barrier during exciton formation.  
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Figure 82. I-U curves measured under illumination for five different configurations. The 

enhancement in JSC is observable only for the sample 3 with Ag nanoparticles dropped on 

the ITO layer.  
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Figure 83. I-U curves measured without illumination for five different configurations. At 

the low voltage from -1 V to 0 V, the measured current is dominated by a local leakage due 

to weak spots in the blend, giving rise to the ohmic behavior. In the range of 0 V to 0.5 V, 

the current increases exponentially with voltage and above 0.5 V the current exhibits a 

quadratic behaviour. 
 
The results achieved by I-U measurements at the samples modified with colloidal Ag na-

noparticles are summarised in table 5. 



59 

 

 

 

N° sample configuration FF  Jsc  (A/m
2
) Voc  (V) η (%) 

11 reference 0.65 71.7 0.53 2.48 

1 ITO/Ag in gel 0.59 68.9 0.53 2.14 

3 ITO/Ag drop 0.63 73.4 0.53 2.43 

10 ITO/Ag drop/PEDOT/Ag drop - - - - 

14 ITO/PEDOT/Ag drop - - - - 

 

Table 5. I-U characteristics of the samples modified with Ag nanoaprticles. Ag modificati-

ons of the samples are expressed in an abbreviated form. 

 

 

5.2.2. External quantum efficiency measurement (EQE) 
 

The external quantum efficiency method (EQE) is used to measure the current ge-

nerated by the device per incoming photon (equation 16). It represents the electrical sensi-

tivity of the device to the incoming light wavelength. Since the energy of a photon depends 

on the light wavelength, EQE is automatically measured over a wavelength range.  

,
P

1240
sec/  

sec/  

IN

SC




J

photonsofNumber

electronsofNumber
EQE

       

                       (16) 

where JSC is the short-circuit current density (in our experiments usually calculated over 

the area A = 0,091 cm
2 

), PIN is the incident light power and λ is the wavelength of incident 

photons.  

EQE setup (see in figure 84) is composed of a halogen lamp which provides white 

light (Ulamp= 12 V, Ilamp= 4,3 A), chopper transforming the light into a pulsed signal (fchopper 

= 170 Hz), monochromator that selects particular wavelengths, system of lenses (L), 

sample or silicon diode for calibration. The signal is measured by a lock-in amplifier or 

multimeter (calibration). First, the light intensity is measured by the reference silicon dio-

de. The curves acquired from the EQE measurements are shown in figure 85. Once the 

certain quantity of photons is absorbed in the photoactive layer, the exciton is created. In 

this way, an electron-hole pair is formed. These charges need to be separated and collected 

on the electrodes. A "good" material avoids the bimolecular recombination and therefore 

exhibits a peak in the external quantum efficiency [5]. 
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Figure 84.  EQE setup. BS-beam splitter, SC-reference silicon diode or solar cell sample 
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Figure 85.  EQE measurements.  

 

Even if the sample 3 in figure 82 exhibits the enhancement of JSC compared to the referen-

ce cell (figure 82), in figure 85, all the samples show the lower EQE than the reference 

sample. However, all the curves have at least a small peak for the wavelengths around 420 

nm which is the wavelength where the plasmon resonance effects for Ag nanoparticles 

occur. Otherwise, the majority of organic solar cells are sensitive to the wavelength about 

532 nm (green color) where the exciton creation is the most efficient.  
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5.2.3. Steady-state differential current measurement (SSDC)  
 

 

The steady-state differential current measurement (SSDC) is relatively a new meth-

od to determine losses during the charge carrier transport. The SSDC setup is composed 

almost of the same components as the EQE one. But in SSDC, there is a laser working at 

the wavelength 532 nm and an optical density filter (ODn) changing the intensity of the 

laser beam, additionally. The response of the sample to the light intensity coming simulta-

neously both from the laser and the halogen lamp is detected. The SSDC setup is shown in 

figure 86.  

 

 
 

Figure 86. SSDC setup. BS-beam splitter, SC-reference silicon diode or solar cell sample, 

ODn-optical density filter. The other symbols are the same as in Fig. 84. The halogen lamp 

(Ulamp= 12 V, Ilamp= 4.3 A) provides the white light.  

 

 

Before the measurement is started, it is necessary to calibrate the light intensity. For 

this purpose, the multimeter measures the simultaneous current response of the reference 

silicon diode to the laser light passing different optical density filters and to the light from 

the halogen lamp going through the monochromator set to the laser wavelength (532 nm - 

green colour). In this case the chopper of the light has been switched-off. Besides the 

availability of the laser working at the wavelength 532 nm the additional reason for choos-

ing  this wavelength was the fact the the organic solar cells and the human eye are the most 

sensitive to it. To measure the voltage response ΔU of the prepared solar cell to the inci-

dent light, the both halogen lamp and laser are switched-on. Under these conditions the 

chopper works at 170 Hz and the lock-in amplifier detects the voltage response ΔU to the 

incident light intensity being changed by optical density filters. As there is a resistance 

about 50 Ω installed in the lock-in amplifier, ΔU can be converted into ΔJ using equation 

17: 
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where R is the resistance integrated in the lock-in amplifier and A is the area of the meas-

ured sample (figure 79a). Typical curves obtained from SSDC measurements are plotted in 

figure 87. As these curves exhibit a plateau for low intensities, it is reasonable to normalize 

them to this plateau value. 
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Figure 87. SSDC measurements. ΔJ decreases unproportionally with the light intensity. 

The black arrow represents the loss efficiency which is described by the relation 
Norm1 J . If the loss curves exhibit linear behaviour, then the losses come from bi-

molecular recombinations. 

 

 

In general, the losses in an organic photovoltaic device are significant for the higher in-

coming light intensity. Higher intensity results in the higher exciton generation. However, 

as more oposite charges are present, the probability of the recombination between these 

charges increases as well. 

 

 

In addition, there is another way how to express the losses [27]. In this case, the lo-

sses are linked to the coefficient α which ranges typically from 0.85 to 1. The coefficient α 

expresses the relation between the short-circuit current density JSC and the incident light 

intensity I (equation 18). It is typical for solar cells based on organic polymers, that the 

dependence between JSC and I is not always exactly linear [3] (figure 88)  

 


IJ 
SC .     (18) 

 

The values of JSC are measured under conditions when the halogen lamp is switched-off 

and the laser is switched-on. Here, a multimeter is used to determine the current response 
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of the solar cell to the light intensity coming from the laser through the system of optical 

density filters. The effort of scientific groups dealing with the improvement in organic pho-

tovoltaics is to approach the coefficient α close to one and thus to minimize losses in such 

devices. The nearly linear dependence of J on the incident light intensity in Fig. 88 sug-

gests the absence of bimolecular recombinations and space-limited charges. The incorpora-

tion of Ag nanoparticles into the system does not affect the charge transport process in the 

device [26]. 

 

The losses are closely associated with electron and hole mobilities. It has been proved that 

the annealing of samples significantly improves the charge carrier mobility which results in 

a decrease of bimolecular recombinations (figure 7) [3]. 
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Figure 88. Dependance of the photocurrent density on the incident light intensity 

 

 

5.2.4. Layer thickness measurement  
 

 

After I-U, EQE and SSDC measurements, the thickness of the photoactive layer 

was measured. For this purpose, the profiler DEKTAK 150 was used. Before the meas-

urement it was necessary to artifically create some surface diversities on the sample. This 

was done by scratching the sample. The available vertical resolution depends upon the se-

lected range of the measurements. When measuring an extremely fine topography, the 

DEKTAK provides the vertical bit resolution 0.1 nm. For general applications, such as the 

measurement of the photoactive layer, the vertical resolution about 1 nm is adequate [28]. 

Since the measurement on th e DEKTAK 150 is realized directly at ambient atmosphere, 

where the samples are sensitive to fast degradation because of their oxydation, it is 

required to perform this kind of measurements at the end of all the procedures. The surface 

profilometer DEKTAK 150 is shown in figure 89
6
. 

 

                                                
6 http://www.bruker-axs.com/dektak-150_stylus_profilometer.html 
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Figure 89. The surface profilometer DEKTAK 150. 

 

It is important to keep in mind that for our samples, we measured total thickness that in-

cludes the layers as PEDOT:PSS and P3HT:PCBM(60). To get the real thickness of the pho-

toactive layer, it is necessary to substract 50 nm from all the mesured values (d = d1 – 50 

nm). The layer thickness about 50 nm corresponds to the PEDOT:PSS layer prepared un-

der conditions being discussed in Section 5.1.1. The layer thicknesses measured by this 

method are presented in Table 6. 

 

 

 

 

 

 

 

 

 

 

Table 6. Thicknesses of the photoactive layer (d ) for all the modifications. 

 

Since all the layers PEDOT:PSS and P3HT:PCBM(60) have been prepared by the same pro-

cessing method, it is possible to determine the average photoactive layer thickness. With 

95% certainty the average photoactive layer thickness influenced by different Ag modifica-

tions inheres in the range of  

 

 nm 659 d . 

N° sample configuration d1 (nm) d (nm) 

11 reference 115 65 

14 ITO/PEDOT:PSS/Ag-drop 111 61 

10 ITO/Ag-drop/PEDOT:PSS/Ag-drop 110 60 

3 ITO/Ag-drop 107 57 

1 ITO/Ag in gel 104 54 
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5.2.5. Atomic force micoscopy measurement (AFM)  
 

 

Atomic force microscopy has been performed at the very end of all the experi-

ments. This kind of the measurements is done in order to know the morphology of pro-

duced samples. The determination of the morphology structure is a very important factor 

which can help us to better understand the physical properties of fabricated devices. In 

addition, the knowledge relating to sample morphology can lead to an improvement of 

individual processing steps that affect the power conversion efficiency. All the AFM mea-

surements have been performed directly in the air and in the noncontact mode where the 

cantilever is oscilating with an amplitude of tens nanometers above the surface of the stu-

died sample. This mode is less sensitive to the sample degradation than the contact mode. 

Figures 90 and 91 show AFM images of the sample based on P3HT:PCBM(60) and modi-

fied with 20-nm colloidal Ag nanoparticles. All the AFM measurements have been made 

by AUTOPROBE CP-II (VEECO), model no. AP-0100. 

 

 
 

Figure 90. AFM image of the device surface based on P3HT:PCBM(60) (1:1). The sample 

is modified with 20-nm colloidal Ag nanoparticles dropped on the ITO layer. 
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Figure 91. AFM image of the device based on P3HT:PCBM(60). The sample is modified 

with 20-nm colloidal Ag nanoparticles dropped on the ITO and on the PEDOT:PSS layer.  

 

Even if the scales of both the presented images are not the same, it is clear that the 

roughness of the sample modified with 20-nm colloidal Ag nanoparticles dropped on the 

ITO and on the PEDOT:PSS layer is higher than the roughness of the sample where these 

nanoparticles are dropped only on the ITO layer.  



67 

 

 

6. CONCLUSION 
 

 

The thesis deals with the application of plasmonics in organic photovoltaics. Briefly 

speaking, Ag nanoparticles have been put into P3HT:PCBM(60) based organic solar cells in 

order to enhance the absorption in their photoactive layer. (i) General discussions dealing 

with the organic photovoltaics have been done. (ii) Fundamentals of the application of the 

plasmonics in the organic photovoltaics have been mentionned. In this part, basic plasmo-

nic effects leading to the enhancement in the absorption of polymer based solar cells have 

been also theoretically analysed. (iii) Numerical simulations used to study the electromag-

netic effects in the vicinity of metal nanostructures have been performed. In this part, diffe-

rent geometrical arrangements of Ag nanostructures in polymer photovoltaic system have 

been analyzed. Simulations show that for Ag nanoparticles positionned in the photoactive 

layer, the highest enhancement in the absorption is observable. It is worth reminding that 

the P3HT:PCBM(60) layer is very sensitive to modest changes in its morphology, tempera-

ture and electromagnetic conditions. These parameters significantly affect the charge 

carrier mobility. Afterwards, the processing of the samples based on P3HT:PCBM(60) (1:1) 

is described in detail as well as their modification with 20-nm colloidal Ag nanoparticles. 

Ag nanoparticles have been incorporated either by spin-coating or drop-casting methods. 

For the spin-coated samples, viscosity of the solution containing 20-nm colloidal Ag nano-

particles has to increased to avoid the non-uniform spreading of colloidal Ag nanoparticles 

at spin-coating. For this purpose, the hydroxypropyl cellulose has been used. At the end, 

the measurements of volt-amper caracteristics (I-U), external quantum efficiency (EQE), 

steady-state differential current (SSDC), layer thickness and atomic force microscopy 

(AFM) have been performed. Only for the sample modified with 20-nm Ag nanoparticles 

dropped on the ITO layer the I-U measurements show an enhancement of the short-circuit 

current density JSC while keeping its overal efficiency nearly at the same level. JSC reaches 

73.4 A/m
2
 compared to 71.7 A/m

2 
for the reference cell. The EQE measurement of this 

sample does not exhibit any dramatic improvement compared to the reference cell. These 

results might be explained by a nonuniform spreading of Ag nanoparticles in individual 

layers or by the insufficient photoactive layer thickness. For 20-nm Ag nanoparticles the 

photoactive layer thickness is only about 60 nm and could represent a kind of potential 

barrier for creation of excitons. On the other hand, the method based on the vacuum depo-

sition of Ag nanostructures seems to be a promising method for the enhancement of the 

power conversion efficiency of organic solar cells. Unfortunately, for technical reasons this 

method could not have been tested and should become a subject of further research.  
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List of symbols and abbreviations used in this work: 

 

 

      real part of dielectric constant 

     imaginary part of dielectric constant 

k


   propagation vector 
2

E    square of magnitude of electric intensity 

AFM   atomic force microscopy 

Ag   silver 

AM1.5   air mass 1.5 

Au   gold 

BHJ   bulk heterojunction 

c(r)   specific heat 

D   electric induction 

d   layer thickness 

E   electric intensity 

EB   binding energy 

EDS   energy dispersive spectroscopy 

EQE   external quantum efficiency 

F   field strength 

FDTD    finite-difference time-domain  

FF   fill factor 

GaAs   gallium arsenide 

H   magnetic induction 

HOMO  the highest occupied molecular orbital 

ISD   intensity of silicon diode 

ITO   indium tin oxide 

I-U   volt-amper characteristics 

Jmax   maximum current densit 

JSC   short-circuit current density 

k   imaginary part of refractive index (extinction coefficient) 

k(r)   thermal conductivity  

kr   recombination constant 

LSPR   localized surface plasmon resonance 

LUMO  the lowest unoccupied molecular orbital 

n   real part of refractive index (extinction coefficient) 

OPV   organic photovoltaics 

OPVD   organic vapor-phase deposition    

P3HT   Poly(3-hexylthiophene) 

PCBM(60)  [6,6]-Phenyl-C61-butyric-acid-methyl ester 

PCED   pulse-current electrodeposition 

PEDOT:PSS  poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) 

PIN   incident light intensity 

PML   perfectly matched layer 

q   elemntary charge 

Q(r,t)   energy from light dissipation 

r   spacial coordinates 

SSDC   steady-state differential current 
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TOF   time of flight 

Vmax   maximum voltage 

VOC   open-circuit voltage 

α   exponent in 


IJ
SC

  

γ   field activation parameter 

ΔT(r,t)   local temperature  

ΔTmax   maximum enhancement in temperature 

μ0   zero-field mobility 

μe (h)   electron (hole) mobility 

ξ   losses 

ρ(r)   mass density 
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