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Summary
In this thesis, a game-theoretic model representing a decision-making situation in the waste
management is created as a noncooperative game representing the conflict of waste proces-
sors and a cooperative game representing the conflict of waste producers. For the conflict
of waste processors, the Nash equilibria are used to find stable strategies on gate fee val-
ues, which serve as a good prediction for the future. To specify the strategy sets, a lower
bound and an upper bound are determined. For the conflict of waste producers, assum-
ing a cooperation among all of them, a cost distribution is determined using the Shapley
value and the nucleolus. For more producers, approximation algorithms for the Shapley
value and the nucleolus are developed. These algorithms are based on an assumption that
distant producers can not influence each other. The model is applied to a situation in
the Czech Republic. For the conflict of waste processors, one Nash equilibrium is found.
For the conflict of waste producers, some producers with high potential in cooperation
are recognized.

Abstrakt
V této práci je vytvořen model rozhodovaćı situace v odpadovém hospodářstv́ı využ́ıvaj́ıćı
metody teorie her. Model tvoř́ı nekooperativńı hra pro reprezentaci konfliktu zpraco-
vatel̊u odpadu a kooperativńı hra pro reprezentaci konfliktu producent̊u odpadu. Pro
konflikt zpracovatel̊u odpadu je k nalezeńı strategíı při volbě cen na bráně využit kon-
cept Nashovy rovnováhy, takto nalezené stabilńı strategie mohou sloužit jako předpověd’
budoućı situace. Pro zpřesněńı množin strategíı jsou určeny dolńı a horńı meze. Pro
konflikt producent̊u odpadu se uvažuje spolupráce všech producent̊u a určuje se pro ni
přerozděleńı náklad̊u pomoćı Shapleyho hodnoty a nucleolu. Pro konflikt v́ıce producent̊u
jsou vyvinuty aproximačńı algoritmy pro Shapleyho hodnotu i nucleolus. Tyto algoritmy
jsou založeny na předpokladu, že se vzdáleńı hráči vzájemně neovlivňuj́ı. Model je ap-
likován na situaci v České republice. Pro konflikt zpracovatel̊u odpadu je nalezen jeden
bod Nashovy rovnováhy. Pro konflikt producent̊u odpadu jsou určeni někteř́ı producenti
s vysokým kooperativńım potenciálem.
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Introduction

The waste management deals with situations in which waste producers, waste proces-
sors or both are involved. Every human being is a waste producer. In this thesis, they
will be considered mainly on the level of administrative units. Among waste proces-
sors in the Czech Republic, landfills or incinerators can be found. Nevertheless, accord-
ing to [CR14], starting from 2024, the Czech government is most likely going to ban
the landfilling. Insufficient capacity of the already standing incinerators causes that rad-
ical changes are expected in following years.

New incinerators need to be built and, before it can be done, investors demand an anal-
ysis of the potential constructions. At the Institute of Process Engineering of Brno
University of Technology, there were several mathematical models on this topic using
mathematical optimization.

This thesis presents a game-theoretic model of a situation in which the incinerators are
already built and their decisions on the charges for waste disposal need to be determined.
From the producers’ point of view, their strategies on coalition formations and choices
of incinerators also require attention.

In the first chapter of this thesis, all the game-theoretic instruments necessary for
understanding of the developed models are explained. Firstly, a description of the nonco-
operative games is provided with an approach called the Nash equilibrium representing
a possible outcome. For the cooperative games, besides the description, several concepts
for the total profit or cost division are presented.

The game-theoretic formulation of the waste management situation, the waste man-
agement game, is presented in the second chapter. A description of two conflicts and roles
of their participants is provided.

The third chapter focuses on the conflict of waste processors, a noncooperative game
in which the processors make decisions on the charge for the waste processing. Instruments
from the first chapter are applied as well as original algorithms to lower the computation
time.

The cooperative game of waste producers is studied in the fourth chapter. Again, for
the computation time reasons, with respect to the cost allocations presented in the first
chapter, algorithms for their approximations are developed.

And finally, the models for both conflicts are applied to the situation in the Czech
Republic. This application and its results are provided in the fifth chapter.

Appendices contain a list of symbols and input data as well as complete results for
the waste management problem in the chapter 5. Corresponding cross-references occur
within the text.

Several computation tests were run to compare computation times of different ap-
proaches and algorithms. All such computations were realized on the computer with Mi-
crosoft Windows 10 Home 64-bit, quad-core Intel Core i5-6300HQ at frequency 2.3 GHz
and 8 GB of RAM. The algorithms were implemented exclusively in Visual Basic for Ap-
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plications in MS Excel (version Professional 2016) and in MATLAB (version R2015a)
with IBM ILOG CPLEX (version 12.6.3).
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1 Game-Theoretic Background

According to [My91], game theory is ”the study of mathematical models of conflict and
cooperation between intelligent rational decision-makers.” These models are then called
games. In other words, the game is a mathematical description of a situation where
decisions of several subjects are to be made. Mutual dependency of these decisions makes
the search for the optimal ones in such situations impossible by using classical optimization
techniques.

Only games where all players are fully aware of this dependency and all outcomes it
can lead to are assumed. In game theory, this state is called a complete information.

Further, two different definitions of a game are provided regarding the cooperative or
noncooperative nature of the game. For each type, approaches to obtain, in some sense,
optimal decisions are also introduced.

All definitions and theorems in this chapter, if not stated otherwise, are taken exclu-
sively from [Ow13] and [Os14].

1.1 Noncooperative Games

By a noncooperative game, a situation where no settlements among decision-makers are
allowed or possible is meant.

Firstly, the mathematical representation of a noncooperative game is shown, then
the way of approaching it is presented. It should be remarked that there are more options
of describing noncooperative games. For the purposes of this thesis, though, the normal
form representation is sufficient.

1.1.1 The Normal Form

Definition 1.1. Let N = {p1, . . . , pn} be a nonempty set with n elements representing
players, nonempty sets Ap1 , . . . , Apn be their sets of strategies, and A = Ap1 × · · · × Apn

be the Cartesian product of these sets. Finally, let π : A → Rn be a function defined
as π(a) = (πp1(a), . . . , πpn(a)) for all a ∈ A, where πpi : A → R denotes a payoff or cost
function (according to a nature of the problem) of player pi. The triple (N,A, π) is then
called an n-player game in normal form.

The exact meaning of this definition will be obvious after the following example,
a famous game well-known as the prisoner’s dilemma.

Example 1.2. Two persons are arrested and imprisoned. They are placed into solitary
confinement with no means of communication and offered a bargain. If a prisoner betrays
the other one, he will be set free and the other one will serve 10 years. If they betray each
other, it will mean 5 years for both of them, but if they both remain silent, due to a lack
of evidence, they will both serve only 1 year.

15



Denoting the prisoners by numbers 1 and 2, the set of players is

N = {1, 2}

and their strategies in form of the set A are

A = {(stay silent, stay silent), (stay silent, betray),

(betray, stay silent), (betray, betray)}.

Values of the cost function are

π1(stay silent, stay silent) = 1, π2(stay silent, stay silent) = 1,

π1(stay silent, betray) = 10, π2(stay silent, betray) = 0,

π1(betray, stay silent) = 0, π2(betray, stay silent) = 10,

π1(betray, betray) = 5, π2(betray, betray) = 5,

or represented as Table 1.1 where the values in each cell represent the values of π1 and π2
respectively.

Table 1.1: The table representation of the game in Example 1.2

Prisoner 2

stay silent betray

Prisoner 1
stay silent 1, 1 10, 0

betray 0, 10 5, 5

1.1.2 Nash Equilibrium

There are more approaches for dealing with noncooperative games. Here, however, only
the domination of strategies and pure strategy Nash equilibria are shown.

Definition 1.3. Given an n-player game in normal form (N,A, π) where N = {p1, . . . , pn}
and A = Ap1 × · · · × Apn , a strategy ãpi ∈ Api is said to dominate a strategy api ∈ Api if

πpi(ap1 , . . . , api−1
, ãpi , api+1

, . . . , apn) > πpi(ap1 , . . . , api−1
, api , api+1

, . . . , apn)

for all ap1 ∈ Ap1 , . . . , api−1
∈ Api−1

, api+1
∈ Api+1

, . . . , apn ∈ Apn and for π being a payoff
function. In the case of π being a cost function, the inequality sign is reversed.

Definition 1.4. Given an n-player game in normal form (N,A, π) where N = {p1, . . . , pn}
and A = Ap1×· · ·×Apn , a strategy n-tuple (ãp1 , . . . , ãpn) ∈ A is called pure strategy Nash
equilibrium if and only if for any i ∈ {1, . . . , n} and api ∈ Api

πpi(ãp1 , . . . , ãpn) ≥ πpi(ãp1 , . . . , ãpi−1
, api , ãpi+1

, . . . , ãpn)

for π being a payoff function or

πpi(ãp1 , . . . , ãpn) ≤ πpi(ãp1 , . . . , ãpi−1
, api , ãpi+1

, . . . , ãpn)

for π being a cost function.
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It is important to note that, for a game, neither existence nor uniqueness of a pure
strategy Nash equilibrium is guaranteed.

Example 1.5. In the prisoner’s dilemma presented in example 1.2, the strategy stay
silent is dominated by the strategy betray for both players and there is exactly one pure
strategy Nash equilibrium, a pair (betray, betray).

Theorem 1.6. All pure strategy Nash equilibria of a game obtained by removing domi-
nated strategies are the same as those of the original game.

Proof. The proof is obvious as the theorem follows directly from definition 1.4.

1.2 Cooperative Games

Cooperation in game theory means a choice of a strategy in order to ensure the greatest
total payoff (lowest total cost) for cooperating players. This payoff or cost then needs
to be fairly redistributed among the players.

The choice of a strategy is obviously a simple problem or at least a problem which
can be easily reformulated to a noncooperative game. Therefore, game theory deals with
cooperative games mainly in the field of the redistribution.

1.2.1 The Characteristic Function Form

Definition 1.7. Let N be a set of n players. Any subset of N is called a coalition.
Specifically, ∅ is denoted as the empty coalition and the player set N itself is denoted
as the grand coalition. A real-valued function v, defined on the subsets of N , satisfying
conditions

v(∅) = 0

and
v(S ∪ T ) ≥ v(S) + v(T ) if S ∩ T = ∅

is denoted as the characteristic function. The pair (N, v) is then called an n-player game
in characteristic function form.

In the case of v representing a cost, not representing a payoff, the second condition is
in form

v(S ∪ T ) ≤ v(S) + v(T ) if S ∩ T = ∅.

Example 1.8. The persons from Example 1.2 were not successful and were imprisoned for
five years. In prison, they met an old friend that came up with an escape plan. The plan is
to dig a tunnel out of the prison. Fig. 1.1 illustrates possible ways out of the prison. Each
of the prisoners is able to make one metre of a tunnel per day. Spending time digging
increases the chance of getting caught.

Denoting the prisoners by numbers 1, 2 and 3, values of the characteristic function
representing the cost, days spent on digging, are

v({1}) = 50,

v({2}) = 65,

v({3}) = 50,

v({1, 2}) = 85,

17



Prisoner 1 Prisoner 3

Prisoner 2

50 m 50 m 50 m

30 m20 m

15 m

prison wall

Fig. 1.1: Possible ways out of the prison from the cells

v({1, 3}) = 100,

v({2, 3}) = 95,

v({1, 2, 3}) = 115.

Definition 1.9. An imputation for an n-player game (N, v) is a vector x = (xp1 , . . . , xpn)
satisfying conditions ∑

pi∈N

xpi = v(N)

and
xpi ≥ v({pi}) for all pi ∈ N.

For v representing a cost, the second condition is in form

xpi ≤ v({pi}) for all pi ∈ N.

Example 1.10. The prisoners from Example 1.8 are obviously open to a cooperation
only when it allows them to get out of the prison at least as fast as on their own. For
a cooperation among all of them and going the shortest way, divisions of the digging
satisfying this condition are imputations of this game.

Definition 1.11. An imputation x = (xp1 , . . . , xpn) for an n-player game (N, v) satisfying
condition ∑

pi∈S

xpi ≥ v(S) for all S ⊂ N

is called coalitionally rational.

In the case of v representing a cost, the condition is∑
pi∈S

xpi ≤ v(S) for all S ⊂ N.

The choice of a reasonable imputation or a set of such imputations is a subject of
the following sections.

1.2.2 The Core

The most straightforward concept seems to be a choice of an imputation from a set of all
coalitionally rational imputations.

18



Definition 1.12. The set of all imputations x = (xp1 , . . . , xpn) for an n-player game
(N, v) satisfying ∑

pi∈N

xpi = v(N)

and ∑
pi∈S

xpi ≥ v(S) for all S ⊂ N

is called the core. The notation for the core is C(N, v).

Clearly, for v representing a cost, the second condition is in form∑
pi∈S

xpi ≤ v(S) for all S ⊂ N.

Despite the logic behind the definition, there is no guarantee of the core being a non-
empty set. In order to recognize games with nonempty cores, the concept of balanced
collections is introduced.

Definition 1.13. Let C = {S1, . . . , Sm} denote a collection of nonempty subsets of
N = {p1, . . . , pn}. Collection C is said to be N-balanced if there exist positive numbers
y1, . . . , ym such that, for each pi ∈ N , ∑

j∈M : pi∈Sj

yj = 1,

where M = {1, . . . ,m}. Then y = (y1, . . . , ym) is the balancing vector for C. A minimal
N-balanced collection is an N -balanced collection which is such that no proper subcollec-
tion is N -balanced.

A determination of the core can be formulated as a linear optimization program. Dual
program of this formulation then leads to the following theorem.

Theorem 1.14. A necessary and sufficient condition for the n-player game (N, v) to have
a nonempty core is that, for every minimal N-balanced collection C = {S1, . . . , Sm} with
balancing vector y = (y1, . . . , ym) and M = {1, . . . ,m},∑

j∈M

yjv(Sj) ≤ v(N)

for v representing a payoff and ∑
j∈M

yjv(Sj) ≥ v(N)

for v representing a cost.

Proof. See [Ow13].
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1.2.3 The Shapley Value

No nonemptiness guarantee of the core leads to study of other concepts. In [Sh53], one
such concept was defined by Lloyd S. Shapley.

Definition 1.15. The Shapley value for an n-player game (N, v) is a vector ϕ(N, v) =
(ϕp1(N, v), . . . , ϕpn(N, v)) defined by formula

ϕpi(N, v) =
∑

S⊆N : pi∈S

(|S| − 1)! (|N | − |S|)!
|N |!

(v(S)− v(S\{pi})) .

Existence of the Shapley value is guaranteed by the definition itself. This value,
however, does not always belong to the core, even in cases in which the core is nonempty.
For this purpose, a theorem from [Sh71] is provided.

Theorem 1.16. The Shapley value is in the core if

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for all S, T ⊆ N

for v representing a payoff or

v(S) + v(T ) ≥ v(S ∪ T ) + v(S ∩ T ) for all S, T ⊆ N

for v representing a cost.

Proof. See [Sh71].

Example 1.17. For the prison break game from Example 1.8, the Shapley value is a vector

ϕ = (35, 40, 40) .

Obviously, the Shapley value belongs to the core.

1.2.4 The Bargaining Set

Next concept corresponds with an expected negotiation in a coalition. For any coalition,
a player may threaten to leave and join together with another player to increase the
profit or lower the cost. Other players from the original coalition may, however, oppose
if they have an offer more beneficial for the player the leaving one plans to join together
with. In this situation, for the leaving player, the consequences would not be any good.
On the other hand, when there is nothing such to offer, there is no reason for the player
to remain in the coalition.

Definition 1.18. For an n-player game (N, v), let S = {S1, . . . , Sm} denote a collection
of nonempty subsets of N = {p1, . . . , pn} such that

Si ∩ Sj = ∅ for all i, j ∈M : i 6= j,

where M = {1, . . . ,m}. Collection S is then called a coalition structure.

20



Definition 1.19. For an n-player game (N, v), an individually rational payoff configura-
tion is a pair (x,S), where x = (xp1 , . . . , xpn) is an imputation and S = {S1, . . . , Sm} is
a coalition structure. Moreover, if it is also satisfying∑

pi∈S

xpi ≥ v(S) for all S ⊆ Sk, k ∈M

for v representing a payoff or∑
pi∈S

xpi ≤ v(S) for all S ⊆ Sk, k ∈M

for v representing a cost, where M = {1, . . . ,m}, the pair (x,S) is called a coalitionally
rational payoff configuration.

Definition 1.20. For an n-player game (N, v), let (x,U), (y,V), (z,W) be coalitionally ra-
tional payoff configurations, where x = (xp1 , . . . , xpn), y = (yp1 , . . . , ypn), z = (zp1 , . . . , zpn)
are imputations and U = {U1, . . . , Umu}, V = {V1, . . . , Vmv}, W = {W1, . . . ,Wmw} are
coalition structures with Mu = {1, . . . ,mu}, Mv = {1, . . . ,mv}, Mw = {1, . . . ,mw}, and
let S and T be nonempty disjoint subsets of some Uk ∈ U . A coalitionally rational payoff
configuration (y,V) is then called an objection of S against T if

{pi : pi ∈ Vk, Vk ∩ S = ∅, k ∈Mv} ∩ T = ∅,

ypi > xpi for all pi ∈ S,

ypi ≥ xpi for all pi ∈ {pi : pi ∈ Vk, Vk ∩ S = ∅, k ∈Mv}

for v representing a payoff or

{pi : pi ∈ Vk, Vk ∩ S = ∅, k ∈Mv} ∩ T = ∅,

ypi < xpi for all pi ∈ S,

ypi ≤ xpi for all pi ∈ {pi : pi ∈ Vk, Vk ∩ S = ∅, k ∈Mv}

for v representing a cost. A coalitionally rational payoff configuration (z,W) is called
a counterobjection of T against S if

S 6⊆ {pi : pi ∈ Wk,Wk ∩ T = ∅, k ∈Mw},

zpi ≥ xpi for all pi ∈ {pi : pi ∈ Wk,Wk ∩ T = ∅, k ∈Mw},

zpi ≥ ypi for all pi ∈ {pi : pi ∈ Wk ∩Vl,Wk ∩T = ∅, Vl∩S = ∅, k ∈Mw, l ∈Mv }.

for v representing a payoff or

S 6⊆ {pi : pi ∈ Wk,Wk ∩ T = ∅, k ∈Mw},

zpi ≤ xpi for all pi ∈ {pi : pi ∈ Wk,Wk ∩ T = ∅, k ∈Mw},

zpi ≤ ypi for all pi ∈ {pi : pi ∈ Wk ∩Vl,Wk ∩T = ∅, Vl∩S = ∅, k ∈Mw, l ∈Mv }.

for v representing a cost. A coalitionally rational payoff configuration (x,U) is called
stable if for every objection of S against T , there is a counterobjection of T against S.
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Briefly, the objection of S against T represents the threat that S can obtain more
by changing to a new coalitionally rational payoff configuration and their new partners
would agree to this.

By the counterobjection of T against S, the members of coalition T claim that they
can find another coalitionally rational payoff configuration in which they and all their
partners receive at least their original payoff. If they need some of the new partners
of S from the objection, they give them at least as much as in the objection coalitionally
rational payoff configuration.

Definition 1.21. The bargaining set M is the set of all stable coalitionally rational
payoff configurations. Dealing with individually rational payoff configurations instead of
coalitionally rational payoff configurations would lead to a bargaining set denoted byM(i).

Definition 1.22. The bargaining set M1 is the set of all coalitionally rational payoff
configurations such that, if any coalition S has an objection against a set T , at least one
member of T has a counterobjection. The same holds for individually rational payoff
configurations with the bargaining set M(i)

1 .

With a focus on the bargaining setM(i)
1 , the nonemptiness is guaranteed from the fol-

lowing theorem.

Theorem 1.23. For an n-player game (N, v) and any coalition structure S, there is

at least one imputation x such that (x,S) ∈M(i)
1 .

Proof. See [Pe63].

1.2.5 The Kernel

The kernel is a different approach. It will be, however, seen that it is closely related to
the concept of bargaining sets.

Definition 1.24. The kernel of an n-player game (N, v) is the set K of all individually
rational payoff configurations (x,S) with x = (xp1 , . . . , xpn) such that, for all S ∈ S, there
are no pi, pj ∈ S with

max
T⊆N : pi∈T,pj /∈T

(
v(T )−

∑
pk∈T

xpk

)
> max

T⊆N : pi /∈T,pj∈T

(
v(T )−

∑
pk∈T

xpk

)
.

for v representing a payoff or

min
T⊆N : pi∈T,pj /∈T

(
v(T )−

∑
pk∈T

xpk

)
< min

T⊆N : pi /∈T,pj∈T

(
v(T )−

∑
pk∈T

xpk

)
.

for v representing a cost.

The nonemptiness is again guaranteed from the following theorem.

Theorem 1.25. For any coalition structure S, there exists a vector x such that (x,S) ∈ K.

Proof. See [MP66].

The following theorems explain the relation between the kernel and the other concepts.
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Theorem 1.26. For any game, K ⊆M(i)
1 .

Proof. See [MM65].

Theorem 1.27. The kernel always intersects the core of the game, if the core is not
empty.

Proof. See [MP66].

1.2.6 The Nucleolus

Last concept here presented is the nucleolus.

Definition 1.28. The vector x = (x1, . . . , xn) is said to be lexicographically smaller than
the vector y = (y1, . . . , yn) if there is some integer i ∈ {1, . . . , n} such that

xj = yj for all j ∈ {1, . . . , n} : j < i,

xi < yi.

Definition 1.29. For an n-player game (N, v), defining the excess vector at imputation
x = (xp1 , . . . , xpn) as

ε(x) =

(
v(S1)−

∑
pi∈S1

xpi , . . . , v(Sm)−
∑

pi∈Sm

xpi

)
,

where S1, . . . , Sm ⊂ N are all coalitions except for the empty coalition and the grand coali-
tion, the nucleolus is the imputation % = (%p1 , . . . , %pn) for which ε(%) is lexicographically
smaller or equal than ε(x) for any imputation x (lexicographical minimum).

In the case of v representing a cost, not representing a payoff, the nucleolus realizes
the lexicographical maximum, not the lexicographical minimum.

Theorem 1.30. For any game (N, v), the nucleolus % exists uniquely and (%, {N}) ∈ K.
Moreover, for any game with a nonempty core, the nucleolus belongs to the core.

Proof. See [Sc69].

The computation of the nucleolus can be formulated as a sequence of optimization
problems introduced in [Fr97]. For an n-player game (N, v), using the same notation
as in [GJ15], the nucleolus % = (%p1 , . . . , %pn) is determined by %pi = xk

′
pi

, where

{εk, xkpi : pi ∈ N} = arg min
ε∈R, xpi∈R: pi∈N

ε,

s. t. ε+
∑
pi∈S

xpi ≥ v(S) ∀S ⊂ N,S 6= ∅, S 6∈
⋃

j∈{0,...,k−1}

Fj,

εj +
∑
pi∈S

xpi = v(S) ∀S ∈ Fj, j ∈ {0, . . . , k − 1},∑
pi∈N

xpi = v(N),
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ε0 = 0, F0 = ∅, Fk is the set of all coalitions S ⊂ N , for which

εk +
∑
pi∈S

xkpi = v(S),

and k′ is the lowest positive integer for which the vector (xk
′

p1
, . . . , xk

′
pn) realizing the min-

imum is unique.
In the case of a characteristic function not representing a payoff, but a cost, the min-

imization should be replaced by a maximization and the inequality sign in the first con-
straint reversed.

Example 1.31. For the prison break game from Example 1.8, the nucleolus is a vector

% = (35, 40, 40) ,

which equals to the Shapley value for this game.
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2 Description of Waste
Management Game

As mentioned in the introduction, the waste management deals with situations where
waste producers and waste processors are involved. The producers need to dispose of all
the waste and the processors want to fill their capacity. For the efficiency of this process,
the right decisions need to be made. This decision-making situation is further denoted as
the waste management game with waste processors and waste producers as its players.

2.1 Decision-Making in Waste Management

Waste processors’ only way of controlling their income is via gate fee, the charge for waste
processing. The lower the gate fee is, the more capacity is used, but rationally, keeping
the gate fee as low as possible is not the best choice when aiming for the highest income.

Waste producers, on the other hand, react to the gate fee settings and, as illustrated
in Fig. 2.1, decide, with attention to the distance, the gate fee offered and the avail-
able capacity, which processor to choose. They may also divide the waste among more
processors.

Fig. 2.1: Waste producers are choosing among waste processors,
which can include incinerators or landfills, in order to minimize
their total costs

The benefit of game-theoretic approach might seem questionable, two examples show-
ing the need for game theory are therefore presented.
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Example 2.1. Let Fig. 2.2 illustrate a situation where the Processor 1 is setting a gate
fee. The capacity of each incinerator in this situation is sufficient for both waste producers.

Processor 1

Processor 2

Producer 1

Producer 2

Fig. 2.2: A situation illustrating the need for game theory from
the waste processors’ point of view

Supposing the transportation costs equal for both choices of processors, it is obvious
that for every value of gate fee that Processor 1 sets, a reaction of a slightly smaller value
by Processor 2 will follow. Despite that this example is too trivial to show some important
results, the need for game theory from the waste processors’ point of view is obvious.

Example 2.2. For the waste producers’ point of view, the example situation differs a lit-
tle bit. The gate fees are now set equally. The costs for the transportation as well as
the capacities and productions are provided in the situation overview in Fig. 2.3.

Processor 1

Processor 2

Producer 1

Producer 2
80 EUR/t

15 EUR/t

10 EUR/t

20 EUR/t

capacity: 100 kt

production: 100 kt

production: 100 kt

capacity: 100 kt

Fig. 2.3: A situation illustrating the need for game theory from
the waste producers’ point of view

It is easy to see that, if Producer 1 could manage to be the first one making decision,
he would send all the produced waste to Processor 2 with a transportation cost

c1,2 = 100,000 · 15 = 1,500,000 EUR.

26



The cost for Producer 2, forced to use Processor 1, then would be

c2,1 = 100,000 · 20 = 2,000,000 EUR.

On the other hand, if Producer 2 was the first one, he would choose Processor 2 with
a transportation cost

c2,2 = 100,000 · 10 = 1,000,000 EUR.

For Producer 1, the cost then would be

c1,1 = 100,000 · 80 = 8,000,000 EUR.

With no information on the order of decisions, the optimal strategy for both of them
seems to be a cooperation which allows them to minimize the total cost and redistribute
it. That way, they are able to reduce the total transportation cost down to

min{c1,1 + c2,2, c1,2 + c2,1} = 3,500,000 EUR.

For example, a distribution of 2,000,000 EUR to be paid by Producer 1 and 1,500,000 EUR
to be paid by Producer 2 seems beneficial for both of them.

2.2 Goals and Strategies

Here, with reference to Example 2.1 and Example 2.2, goals of the waste management
game participants and strategies to achieve them are summarized.

The objective of waste processors is to maximize their income by achieving the opti-
mal combination of the amount of the processed waste and the charge for this processing.
Assuming the waste processors already standing, and hence with no way to change the ca-
pacity, their only tool is the gate fee setting. For any setting, however, a reaction of other
processors is expected. Therefore, the gate fee setting should not guarantee only high
income, but also a stability.

Waste producers, on the other hand, aim to minimize their outcome. Their total
cost consists of the payment of a gate fee to the chosen waste processor and of the cost
for transportation of their waste to this processor. Their goal is to choose a processor
with an optimal combination of the gate fee value and the transportation cost. Neverthe-
less, when the choice of more producers is the same processor with insufficient capacity,
a cooperation might be useful, as seen in Example 2.2. In this simple example, the co-
operation is natural. For a large-scale problem, the cooperation might become beneficial
when the capacities of local waste processors are insufficient and the producers are forced
to send their waste to more distant ones. Therefore, optimal strategies on the coalition
formation require an attention too.

2.3 Separation of Conflicts

It sounds natural that firstly the waste processors make their decisions and set the gate
fees and, once this is done, the waste producers come to choose their strategy. This allows
the situation to be divided into two problems studied independently. The results of the
conflict of processors, of course, need to be included as input data for the conflict of
producers.
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There exist, however, reasons why this separation could be questioned. For example,
some of the producers might be decided to form a coalition already before the gate fees
are set. The processors should take into account this intention too. Moreover, the income
of processors depends not only on the gate fees all processors set, but might also depend
on the coalition structure. For different coalitions, different processor might be chosen by
a producer. Therefore, even if the producers decide once the gate fees are already set,
the formed coalition structure might lead to an unstable combination of gate fees.

Even despite all that, the waste management game is further divided into two inde-
pendent problems.
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3 Conflict of Waste Processors

Firstly, for the conflicts of waste processors, a simple example showing a possible approach
to deal with them is provided.

Example 3.1. In the situation illustrated in Fig. 3.1, Processor 1 and Processor 2 are
making decisions on a gate fee. Options of both of them are 50 EUR/t, 60 EUR/t and
70 EUR/t. The gate fee of Processor 3 is 80 EUR/t.

20 EUR/t
20 EUR/t

10 EUR/t

20 EUR/t

5 EUR/t

5 EUR/t

20 EUR/t

5 EUR/t

15 EUR/t

Processor 1
capacity: 300 kt

Producer 1
production: 170 kt

Producer 2
production: 130 kt Producer 3

production: 110 kt

Processor 2
capacity: 200 kt

Processor 3
capacity: 500 kt

Fig. 3.1: An overview of the situation from Example 3.1

As there are only two processors making decisions, it can be approached as a game of
two players, Processor 1 and Processor 2.

The payoff function is computed for each strategy combination by assuming the grand
coalition formation and its choice of the optimal strategy. In other words, the grand
coalition makes a decision minimizing the total cost. If there are more optimal solutions,
then, for each processor, the worst solution is selected.

As already discussed in the section 2.3, the payoff can differ for another coalition
structures and orders of choices. Nevertheless, by neglecting this property, the grand
coalition provides the computationally easiest approach.

Denoting Processor 1 and Processor 2 by p1 and p2 respectively, the values of the payoff
function in EUR are

πp1(50 EUR/t, 50 EUR/t) = 10,500,000, πp2(50 EUR/t, 50 EUR/t) = 5,500,000,

πp1(50 EUR/t, 60 EUR/t) = 15,000,000, πp2(50 EUR/t, 60 EUR/t) = 6,600,000,

πp1(50 EUR/t, 70 EUR/t) = 15,000,000, πp2(50 EUR/t, 70 EUR/t) = 7,700,000,
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πp1(60 EUR/t, 50 EUR/t) = 12,600,000, πp2(60 EUR/t, 50 EUR/t) = 10,000,000,

πp1(60 EUR/t, 60 EUR/t) = 12,600,000, πp2(60 EUR/t, 60 EUR/t) = 6,600,000,

πp1(60 EUR/t, 70 EUR/t) = 18,000,000, πp2(60 EUR/t, 70 EUR/t) = 7,700,000,

πp1(70 EUR/t, 50 EUR/t) = 11,900,000, πp2(70 EUR/t, 50 EUR/t) = 10,000,000,

πp1(70 EUR/t, 60 EUR/t) = 11,900,000, πp2(70 EUR/t, 60 EUR/t) = 12,000,000,

πp1(70 EUR/t, 70 EUR/t) = 11,900,000, πp2(70 EUR/t, 70 EUR/t) = 7,700,000.

Table 3.1 shows a table representation where the values in each cell represent the values
of πp1 and πp2 respectively.

Table 3.1: A table representation of the game in Example 3.1
(the payoff values in millions of EUR)

Processor 2

50 EUR/t 60 EUR/t 70 EUR/t

Processor 1
50 EUR/t 10.5, 5.5 15, 6.6 15, 7.7

60 EUR/t 12.6, 10 12.6, 6.6 18, 7.7

70 EUR/t 11.9, 10 11.9, 12 11.9, 7.7

It is not difficult to find the Nash equilibrium of this game, which is the strategy
combination (60 EUR/t, 50 EUR/t). Hence, by the choice of 60 EUR/t by Processor 1
and 50 EUR/t by Processor 2, the stability is guaranteed, as none of them has a reason
to change the decision.

In the previous example, there are obviously two questionable steps. First one is
the problem description itself, where only three choices for each processor are assumed.
The second one is the grand coalition formation for every strategy combination. A dis-
cussion on these topics follows a little further in the section 3.2.

Firstly, a mathematical model is presented. This model approaches the conflict in
the same way as it is approached in Example 3.1.

3.1 Mathematical Model

In the waste management game of np processors and nr producers, the set of all processors
is denoted by P = {p1, . . . , pnp} with the set of indices J = {1, . . . , np}. Their capacities
are wc

1, . . . , w
c
np

and the sets of strategies C g
1 , . . . , C

g
np

respectively. The set of all producers
is denoted by R = {r1, . . . , rnr} with the set of indices I = {1, . . . , nr}. Their waste pro-
ductions are wp

1, . . . , w
p
nr

respectively. Transportation costs are represented by the matrix[
c ti,j
]
, where c ti,j is the cost of waste transportation from producer ri to processor pj.

3.1.1 Payoff Function

For each processor pk ∈ P , the payoff function πpk for every strategy combination
(c g1 , . . . , c

g
np

) ∈ C g
1 × · · · × C g

np
is determined by formula

πpk(c g1 , . . . , c
g
np

) =
∑
i∈I

c gk x̃i,k,
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where x̃i,k ∈ {x̃i,j : i ∈ I, j ∈ J}, which is a set obtained as a solution of optimization
problem

{x̃i,j : i ∈ I, j ∈ J} = arg min
xi,j : i∈I,j∈J

∑
i∈I

(c ti,k + c gk +m
)
xi,k +

∑
j∈J\{k}

(
c ti,j + c gj

)
xi,j

 ,

s. t.
∑
i∈I

xi,j ≤ wc
j ∀j ∈ J,∑

j∈J

xi,j = wp
i ∀i ∈ I,

xi,j ≥ 0 ∀i ∈ I, j ∈ J,

where m is a very small positive number just to guarantee the worst optimal solution.

3.1.2 Stable Strategies

Once the payoff function is computed for all players and all combinations of strategies,
the pure strategy Nash equilibria can be determined easily with Algorithm 3.1.

Algorithm 3.1: Nash equilibria determination

for all (c̃ g1 , . . . , c̃
g
np

) ∈ C g
1 × · · · × C g

np
do

for all j ∈ J do
if πpj(c̃

g
1 , . . . , c̃

g
np

) ≥ πpj(c̃
g
1 , . . . , c̃

g
j−1, c

g
j , c̃

g
j+1 . . . , c̃

g
np

) for all j ∈ J then
(c̃ g1 , . . . , c̃

g
np

) is the Nash equilibrium
end if

end for
end for

It is important to remember that neither the existence nor the uniqueness of the Nash
equilibrium is guaranteed. However, if there are any, they represent a stable combinations
of strategies, where no processor has an intention to change the gate fee. Therefore, Nash
equilibrium strategies seem to serve as predictions of probable future situations.

One more thing worth mentioning is that the model is not limited only for processors
with more than one strategy. There was no such requirement on sets C g

j . The same model
can be therefore used for situations of this nature, situations where some processors are
comfortable with their income and the current gate fee setting. One such situation is
studied in the chapter 5 for the Czech Republic.

3.2 Strategy Set and Coalition Structure

To compute the Nash equilibria of a game, almost all strategies of all players are necessary.
Therefore, it seems strange to assume, for example, the strategy sets containing only three
strategies like in Example 3.1, even to assume them being finite. However, there is a reason
for that. The reason is a computation time.

The computation time grows significantly with the number of processors. This is
illustrated in Fig. 3.3 for the conflict of processors with three strategies and in Fig. 3.4
for the conflict of processors with five strategies.
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Fig. 3.3: Computation time of the Nash equilibrium determination
for processors with three strategies implemented in MATLAB
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Fig. 3.4: Computation time of the Nash equilibrium determination
for processors with five strategies implemented in MATLAB

In the situation in the Czech Republic studied in the chapter 5, 11 decision-making
processors occur. The need for smaller strategy sets is therefore obvious.

Next question is the coalition structure and the assumption of grand coalition to be
formed. Supposing only one producer to be present, there is, obviously, only one coalition
structure. For two producers, if the order of coalitions matters, there are three of them.
For more producers, the number is illustrated in Fig. 3.5.

Because in the situation in the Czech Republic 206 producers occur, and with attention
to previous observations of the computation time, it is natural to continue in the same
way of assuming only the grand coalition to form. For the solution, it could be eventually
checked later, if the stability of the solution holds also for other coalition structures.

3.2.1 Bounds

The strategy sets must not be large. Therefore, they should be at least well specified.
For this purpose, the bounds might be determined by following algorithms. The lower
bound, in this sense, represents a strategy that dominates all strategies of a lower gate
fee. Similarly, the upper bound dominates all strategies of a higher gate fee. The strategy
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Fig. 3.5: Number of possible coalition structures in which order
of coalitions matters

sets might then contain only the bounds and strategies of a gate fee between them. This
follows from Theorem 1.6.

The main idea for the lower bound comes from the fact that, even for the gate fees
of other processors being zero, due to transportation costs, some producers might choose
a processor with a nonzero gate fee. In other words, for the gate fees of other processors
being zero, the maximum value of a gate fee, for which the capacity utilization stays
the same as for the gate fee equal to zero, can be computed. This value multiplied
by the utilized capacity gives the income which can be obtained by any circumstances.
Therefore, a choice of a gate fee which, even for the utilization of full capacity, doesn’t
guarantee this income makes no sense.

Mathematically, the lower bound of processor pk can be computed by formula

c g,lk =


0 if

∑
i∈I

x′i,k = 0∑
i∈I
x′i,kz

wc
pk

otherwise

,

where

z = max
y∈R

y,

s. t.
∑
i∈I

x′i,k =
∑
i∈I

x′′i,k,

{x′i,j : i ∈ I, j ∈ J} = arg min
xi,j : i∈I,j∈J

∑
i∈I

(c ti,k +m
)
xi,k +

∑
j∈J\{k}

c ti,jxi,j

 ,

s. t.
∑
i∈I

xi,j ≤ wc
j ∀j ∈ J,∑

j∈J

xi,j = wp
i ∀i ∈ I,

xi,j ≥ 0 ∀i ∈ I, j ∈ J
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and

{x′′i,j : i ∈ I, j ∈ J} = arg min
xi,j : i∈I,j∈J

∑
i∈I

(c ti,k + y +m
)
xi,k +

∑
j∈J\{k}

c ti,jxi,j

 ,

s. t.
∑
i∈I

xi,j ≤ wc
j ∀j ∈ J,∑

j∈J

xi,j = wp
i ∀i ∈ I,

xi,j ≥ 0 ∀i ∈ I, j ∈ J.

With occurrence of processors with only one strategy, the computation changes a little,
as their gate fee is not equal to zero, but to this strategy value.

For the upper bound computation, there is a requirement on the total capacity of pro-
cessors with only one strategy to be sufficient for all producers. Otherwise, there would
be no upper bound. The idea is that for each processor, even for the gate fees of other
processors being too high, there is a gate fee value beyond which all production is obtained
by the processors with only one strategy.

Denoting the set of processors with only one strategy by P0 ⊂ P and the set of their
indices by J0 ⊂ J , the upper bound of processor pk with more than one strategy can be
achieved by formula

c g,uk = min
y∈R

y,

s. t.
∑
i∈I

x′i,k = 0,

where

{x′i,j : i ∈ I, j ∈ J0 ∪ {k}} = arg min
xi,j : i∈I,j∈J0∪{k}

∑
i∈I

((
c ti,k + y +m

)
xi,k +

∑
j∈J0

(
c ti,j + c gj

)
xi,j

)
,

s. t.
∑
i∈I

xi,j ≤ wc
j ∀j ∈ J0 ∪ {k},∑

j∈J0∪{k}

xi,j = wp
i ∀i ∈ I,

xi,j ≥ 0 ∀i ∈ I, j ∈ J0 ∪ {k}.

Example 3.2. Applied to Example 3.1, these algorithms produce lower bounds of ap-
proximately 8.5 EUR/t and 8.2 EUR/t and upper bounds of 90 EUR/t and 85 EUR/t
for Processor 1 and Processor 2 respectively.
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4 Conflict of Waste Producers

The conflict of waste producers is modeled as a cooperative game in which the bene-
fit of cooperation among its players, the waste producers, is investigated. According
to [GR16], the Shapley value and the nucleolus are commonly used in collaborative trans-
portation. In many applications, however, they are computed only for games with few
players. In the waste management, mostly, many producers are involved, as seen, for
example, in the chapter 5. Such big coalitions might not be always easy, or even possible,
to maintain, but the Shapley value and the nucleolus can always serve as benchmarks for
other solutions, showing the potential in cooperation.

4.1 Mathematical Model

For this model, all the notation stays the same as for the model in the chapter 3, as a re-
minder, see appendix A.

4.1.1 Characteristic Function

For the empty coalition, the characteristic function is set equal to zero by definition.
For all other coalitions of waste producers S ⊆ R with related sets of indices IS ⊆ I,
the characteristic function is computed as optimization problem

v(S) = min
xi,j : i∈IS ,j∈J

∑
i∈IS

∑
j∈J

(
c ti,j + c gj

)
xi,j,

s. t.
∑
i∈IS

xi,j ≤ wc
j −

∑
i∈I\IS

x′i,j ∀j ∈ J,

∑
j∈J

xi,j = wp
i ∀i ∈ IS,

xi,j ≥ 0 ∀i ∈ IS, j ∈ J,

where

{x′i,j : i ∈ I \ IS, j ∈ J} = arg min
xi,j : i∈I\IS ,j∈J

∑
i∈I\IS

∑
j∈J

(
c ti,j + c gj

)
xi,j,

s. t.
∑

i∈I\IS

xi,j ≤ wc
j ∀j ∈ J,

∑
j∈J

xi,j = wp
i ∀i ∈ I \ IS,

xi,j ≥ 0 ∀i ∈ I \ IS, j ∈ J.
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This computation of the characteristic function ensures that the game has a really
useful property.

Theorem 4.1. A core of this game is nonempty.

Proof. For any R-balanced collection C = {S1, . . . , Snm} with balancing vector y =
(y1, . . . , ynm) and M = {1, . . . , nm}, let

xmi,j =

{
x̃i,j for i ∈ ISm , j ∈ J
x̃′i,j for i ∈ I \ ISm , j ∈ J

,

where x̃i,j and x̃′i,j are values of xi,j and x′i,j determining v(Sm). Obviously,

v(Sm) =
∑
i∈ISm

∑
j∈J

(
c ti,j + c gj

)
xmi,j.

Denoting

x∗i,j =
∑

m∈M : pi∈Sm

ymx
m
i,j,

clearly, for all j ∈ J ,

∑
i∈I

x∗i,j =
∑
i∈I

∑
m∈M : pi∈Sm

ymx
m
i,j =

∑
m∈M

ym
∑
i∈ISm

xmi,j ≤
∑
m∈M

ym

wc
j −

∑
i∈I\ISm

xmi,j

 =

=
∑
m∈M

ymw
c
j −

∑
m∈M

ym
∑

i∈I\ISm

xmi,j = nmw
c
j −

∑
i∈I

∑
m∈M : pi /∈Sm

ymx
m
i,j =

= nmw
c
j − (nm − 1)

∑
i∈I

∑
m∈M : pi∈Sm

ymx
m
i,j = nmw

c
j − (nm − 1)

∑
i∈I

x∗i,j

and thus ∑
i∈I

x∗i,j ≤ wc
j .

Then, for all i ∈ I,∑
j∈J

x∗i,j =
∑
j∈J

∑
m∈M : pi∈Sm

ymx
m
i,j =

∑
m∈M : pi∈Sm

ym
∑
j∈J

xmi,j =
∑

m∈M : pi∈Sm

ymw
p
i = wp

i

and, for all i ∈ I, j ∈ J ,

x∗i,j =
∑

m∈M : pi∈Sm

ymx
m
i,j ≥ 0.

It means that, for {x∗i,j : i ∈ I, j ∈ J}, all constraints of optimization problem deter-
mining v(R) are satisfied. Hence,

v(R) ≤
∑
i∈I

∑
j∈J

(
c ti,j + c gj

)
x∗i,j =

∑
i∈I

∑
j∈J

(
c ti,j + c gj

) ∑
m∈M : pi∈Sm

ymx
m
i,j =

=
∑
m∈M

ym
∑
i∈ISm

∑
j∈J

(
c ti,j + c gj

)
xmi,j =

∑
m∈M

ymv(Sm).

Thus, by Theorem 1.14, the core is nonempty.

As the core is nonempty, then, by Theorem 1.30, the nucleolus belongs to the core.
The author did not find it easy to prove or disprove that

v(S) + v(T ) ≥ v(S ∪ T ) + v(S ∩ T ) for all S, T ⊆ R.

Therefore, the question, if also the Shapley value belongs to the core, remains unanswered.
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4.1.2 Cost Allocation

Next step of the model is the cost allocation. The Shapley value ϕ = (ϕr1 , . . . , ϕrnr
) is

determined by formula

ϕri =
∑

S⊆R: ri∈S

(|S| − 1)! (|R| − |S|)!
|R|!

(v(S)− v(S\{ri}))

and the nucleolus % = (%r1 , . . . , %rnr
) by %ri = xk

′
ri

, where

{εk, xkri : ri ∈ R} = arg max
ε∈R, xri∈R: ri∈R

ε,

s. t. ε+
∑
ri∈S

xri ≤ v(S) ∀S ⊂ R, S 6= ∅, S 6∈
⋃

j∈{0,...,k−1}

Fj,

εj +
∑
ri∈S

xri = v(S) ∀S ∈ Fj, j ∈ {0, . . . , k − 1},∑
ri∈R

xri = v(R),

ε0 = 0, F0 = ∅, Fk is the set of all coalitions S ⊂ R, for which

εk +
∑
ri∈S

xkri = v(S),

and k′ is the lowest positive integer for which the vector (xk
′

r1
, . . . , xk

′
rn) realizing the mini-

mum is unique.
Finally, the potential in cooperation is for each producer ri analyzed by comparison

of values ϕri and %ri with v(ri).

4.1.3 Computation Time

The computation time of this model is growing significantly with more producers involved.
To determine the Shapley value or the nucleolus, values of the characteristic function for
all coalitions S ⊆ R are needed. For an nr-player game, it means the characteristic
function values for 2nr coalitions. This is illustrated in Fig. 4.1.
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Fig. 4.1: Number of formable coalitions

The combination of this and the characteristic function values being determined as
solutions of minimization problems makes the computation time very long. Fig. 4.2
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and Fig. 4.3 illustrate the impact of the number of players on the computation time
of the Shapley value and the nucleolus determination respectively, both implemented
in MATLAB.

2 4 6 8 10 12 14 16 18 20
0

50

100

Number of players

C
om

p
u
ta

ti
on

ti
m

e
[m

in
]

Fig. 4.2: Computation time of the Shapley value determination
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Fig. 4.3: Computation time of the nucleolus determination

The waste management game in the chapter 5 is a game of 206 players, the character-
istic function values for approximately 1.03·1062 coalitions would be therefore needed and,
according to Fig. 4.2, the Shapley value computation would take approximately 3.95 ·1052

years. Being able to omit some coalitions would therefore be helpful.

4.2 Cost Allocation Approximations

Algorithms for a Shapley value approximation and a nucleolus approximation were devel-
oped. These algorithms can be used for any cooperative game where, for any two players,
the efficiency of a cooperation between them can be predicted. This can be obviously said
about games in which players are placed in a space and their cooperation is as effective
as they are close to each other.
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For the waste management game, the cooperation might become beneficial when
the capacities of local waste incinerators are insufficient and the municipalities are forced
to send their waste to distant ones. It is natural to assume that too distant players are
unlikely to influence each other, hence any coalition of them seems worthless.

4.2.1 Shapley Value Approximation

This algorithm serves to compute the Shapley value approximation ψ = (ψp1 , . . . , ψpn) for
an n-player game (N, v), where N = {p1, . . . , pn}. For this purpose, two inputs are needed.
First of them is a critical distance, beyond which a cooperation between two players is
expected to have no impact, and the other one is a maximum number of cooperating
players, which is natural for the already mentioned reason that big coalitions are not
always easy, or even possible, to maintain.

The characteristic function v must be in a form where v({pi}) = 0 for all pi ∈ N .
This prerequisite condition is not restrictive, because any characteristic function ṽ can be
easily reformulated to this form by formula

v(S) = ṽ(S)−
∑
pi∈S

ṽ({pi}),

the computed approximation ψ = (ψp1 , . . . , ψpn) is then only modified by formula

ψ̃pi = ψpi + ṽ({pi})

and ψ̃ = (ψ̃p1 , . . . , ψ̃pn) is then the approximation for this game.

Step 1. Given a distance matrix D = [di,j], where di,j represents the distance between
players pi and pj, and a critical distance dcrit, beyond which the cooperation is considered
worthless, a matrix A = [ai,j] is created by formula

ai,j =

{
1 if di,j ≤ dcrit
0 otherwise

.

Step 2. Using the matrix A and given a maximum number of cooperating players cmax,
a set of coalitions C is created. For this purpose, two approaches are used. A question
rises, if a coalition {pi, pj, pk} should be included in this set when ai,j = 1, aj,k = 1,
but ai,k = 0. For a positive answer, Algorithm 4.1 is used. And for a negative one,
Algorithm 4.2 is used.

Step 3. The value ψ′ = (ψ′p1 , . . . , ψ
′
pn) is computed by formula

ψ′pi =
∑

S∈C: pi∈S

(|S| − 1)! (|N | − |S|)!
|N |!

(v(S)− v′(S\{pi})) ,

where

v′(S\{pi}) =

{
v(S\{pi}) if S\{pi} ∈ C
vmin(S\{pi}) otherwise

,
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Algorithm 4.1: Determination of the set of coalitions C (including {pi, pj, pk} for
ai,j = 1, aj,k = 1, ai,k = 0)

if cmax ≥ 1 then
for j = 1 to cmax do

set Cj = ∅
end for
for i = 1 to number of players do

add {pi} to C1

end for
for j = 2 to cmax do

for all S ∈ Cj−1 do
for i = 1 to number of players do

if pi 6∈ S and
∑

k: pk∈S
ai,k ≥ 1 then

add S ∪ {pi} to Cj

end if
end for

end for
end for

set C =
cmax⋃
j=1

Cj

end if
add ∅ and N to C

where vmin(S \{pi}) is a solution of the following optimization problem. This approach
is similar to the one used for a Shapley value refinement presented in [My77]. Denoting
C = {T1, . . . , T|C|} and J = {1, . . . , |C|}, the integer programming problem is in form

vmin(S\{pi}) = min
xj : j∈J

∑
j∈J

v(Tj)xj, (4.1)

s. t.
⋃

j∈J :xj=1

Tj = S\{pi}, (4.2)

⋂
j∈J :xj=1

Tj = ∅, (4.3)

xj ∈ {0, 1} ∀j ∈ J. (4.4)

In the case of a characteristic function not representing the cost, but the payoff,
the minimization should be replaced by a maximization.

Optimization problems of this type are commonly recognized as the assignment prob-
lems.

Step 4. The final step’s only purpose is to preserve an assumption that the profit is
completely divided among the players. Therefore, the final form of the Shapley value
approximation here presented is a vector ψ = (ψp1 , . . . , ψpn), where

ψpi = ψ′pi +

v(N)−
∑

pi∈N
ψ′pi

n
. (4.5)
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Algorithm 4.2: Determination of the set of coalitions C (not including {pi, pj, pk}
for ai,j = 1, aj,k = 1, ai,k = 0)

if cmax ≥ 1 then
for j = 1 to cmax do

set Cj = ∅
end for
for i = 1 to number of players do

add {pi} to C1

end for
for j = 2 to cmax do

for all S ∈ Cj−1 do
for i = 1 to number of players do

if pi 6∈ S and
∏

k: pk∈S
ai,k = 1 then

add S ∪ {pi} to Cj

end if
end for

end for
end for

set C =
cmax⋃
j=1

Cj

end if
add ∅ and N to C

4.2.2 Nucleolus Approximation

This algorithm serves to compute the nucleolus approximation γ = (γp1 , . . . , γpn) for
an n-player game (N, v), where N = {p1, . . . , pn}. The same two inputs are needed as for
the case of the Shapley value approximation, the critical distance dcrit and the maximum
number of cooperating players cmax. Also the first steps of the algorithm are the same.

Step 1. The matrix A is created using the distance matrix D and the critical dis-
tance dcrit through the same approach as in the Shapley value approximation.

Step 2. The set of coalitions C is determined using the matrix A and the maximum
number of cooperating players cmax in the same way as for the Shapley value approxima-
tion.

Step 3. The value γ = (γp1 , . . . , γpn) is computed by formula γpi = xk
′

pi
, where

{εk, xkpi : pi ∈ N} = arg min
ε∈R, xpi∈R: pi∈N

ε,

s. t. ε+
∑
pi∈S

xpi ≥ v(S) ∀S ∈ C, S 6= N,S 6∈
⋃

j∈{0,...,k−1}

Fj,

εj +
∑
pi∈S

xpi = v(S) ∀S ∈ Fj, j ∈ {0, . . . , k − 1},∑
pi∈R

xpi = v(N),
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ε0 = 0, F0 = ∅, Fk is the set of all coalitions S ∈ C, for which

εk +
∑
pi∈S

xkpi = v(S),

and k′ is the lowest positive integer for which the vector (xk
′

p1
, . . . , xk

′
pn) realizing the min-

imum is unique.
In the case of a characteristic function not representing a payoff, but a cost, the min-

imization should be replaced by a maximization and the inequality sign in the first con-
straint reversed.

4.2.3 Computation Time

Steps 1 and 2 of the presented algorithms were implemented in MS Excel and serve
as input data for the next steps implemented in MATLAB. The algorithms were run
for the waste management game in the chapter 5 with 206 producers. For the Shapley
value approximation, computation times for multiple choices of dcrit and cmax are shown
in Table 4.1 for the choice of Algorithm 4.1 in step 2 and in Table 4.2 for the choice of
Algorithm 4.2. For the nucleolus approximation, Table 4.3 shows the times for the choice
of Algorithm 4.1 and Table 4.4 the times for the choice of Algorithm 4.2.

For the difference in results for the waste management game in the Czech Republic
from the chapter 5 for some of the combinations, see Table 4.5 and Table 4.6.

Table 4.1: Computation times of the Shapley value approxi-
mation with the choice of Algorithm 4.1 (Combinations marked
with ’–’ were unable to be computed due to insufficient memory
of the MS Excel implementation.)

cmax

5 6 7

0 1 min 15 s 1 min 12 s 1 min 15 s

10 1 min 17 s 1 min 18 s 1 min 18 s

dcrit
20 3 min 52 s 4 min 13 s 4 min 35 s

30 38 min 3 s 1 h 30 min 39 s 4 h 23 min 9 s

40 5 h 3 min 7 s 16 h 10 min 32 s 59 h 5 min 13 s

50 24 h 4 min 47 s – –

These algorithms for the cost allocation approximations make it possible to obtain
a solution within a reasonable time. The accuracy of such solution depends mainly on
the game itself. However, for games in which the threshold of beneficial coalitions cannot
be determined, these approximations are useless.

Table 4.5 and Table 4.6 show that, for the waste management game, it is not easy to
choose the appropriate algorithm and set the exact threshold value, but the algorithms
can be repeated until the result seems sufficient.

42



Table 4.2: Computation times of the Shapley value approximation
with the choice of Algorithm 4.2

cmax

5 10 15

0 1 min 9 s 1 min 7 s 1 min 9 s

10 1 min 11 s 1 min 11 s 1 min 11 s

20 1 min 56 s 1 min 57 s 1 min 56 s

dcrit
30 4 min 23 s 4 min 22 s 4 min 23 s

40 11 min 47 s 11 min 55 s 11 min 48 s

50 38 min 17 s 45 min 47 s 45 min 11 s

60 2 h 2 min 15 s 3 h 33 min 16 s 3 h 33 min 32 s

70 5 h 54 min 33 s 19 h 20 min 55 s 19 h 42 min 2 s

Table 4.3: Computation times of the nucleolus approximation with
the choice of Algorithm 4.1 (Combinations marked with ’–’ were
unable to be computed due to insufficient memory of the MS Excel
implementation.)

cmax

5 6 7

0 1 min 11 s 1 min 12 s 1 min 13 s

10 1 min 17 s 1 min 18 s 1 min 18 s

dcrit
20 5 min 50 s 6 min 33 s 6 min 47 s

30 39 min 9 s 1 h 29 min 50 s 4 h 17 min 31 s

40 4 h 51 min 27 s 20 h 35 min 25 s 75 h 12 min 21 s

50 30 h 37 min 48 s – –

Table 4.4: Computation times of the nucleolus approximation with
the choice of Algorithm 4.2

cmax

5 10 15

0 1 min 17 s 1 min 17 s 1 min 16 s

10 1 min 21 s 1 min 21 s 1 min 21 s

20 2 min 36 s 2 min 35 s 2 min 35 s

dcrit
30 8 min 39 s 8 min 47 s 8 min 46 s

40 23 min 4 s 23 min 33 s 23 min 25 s

50 1 h 2 min 37 s 1 h 54 min 12 s 1 h 51 min 13 s

60 2 h 48 min 2 s 5 h 42 min 19 s 5 h 44 min 35 s

70 8 h 24 min 13 s 30 h 57 min 1 s 31 h 31 min 43 s
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Table 4.5: A change in the value of the Shapley value approxi-
mation assigned to ten randomly chosen players by using different
algorithms and values of cmax and dcrit in the waste management
game in the Czech Republic from the chapter 5

Algorithm 4.1 4.1 4.2 4.2 4.2

cmax 7 7 15 15 5

dcrit 20 30 30 50 70

Player 1 44,805,956 44,805,148 44,808,089 44,806,595 44,805,894

Player 2 283,942 284,043 283,849 283,897 283,885

Player 3 3,392,957 3,393,000 3,392,864 3,392,912 3,392,943

Player 4 772,790 772,832 772,697 772,745 772,739

Player 5 489,159 489,202 489,066 489,114 489,140

Player 6 1,056,604 1,056,647 1,056,511 1,056,559 1,056,562

Player 7 252,663 252,705 252,570 252,618 252,600

Player 8 309,643 309,743 309,550 309,598 309,650

Player 9 938,258 938,304 938,165 938,213 938,218

Player 10 602,744 602,845 602,651 602,699 602,706

Table 4.6: A change in the value of the nucleolus approximation
assigned to ten randomly chosen players by using different algo-
rithms and values of cmax and dcrit in the waste management game
in the Czech Republic from the chapter 5

Algorithm 4.1 4.1 4.2 4.2 4.2

cmax 7 7 15 15 5

dcrit 20 30 30 50 70

Player 1 44,732,604 44,708,575 44,732,565 44,701,184 44,599,321

Player 2 293,337 305,653 293,182 297,261 302,242

Player 3 3,402,352 3,414,668 3,402,197 3,406,276 3,411,257

Player 4 782,185 794,500 782,029 786,108 791,090

Player 5 498,554 510,870 498,399 502,478 507,459

Player 6 1,065,999 1,078,315 1,065,844 1,069,923 1,074,904

Player 7 262,058 274,373 261,902 265,981 270,963

Player 8 319,038 331,354 318,882 322,962 327,943

Player 9 947,653 959,968 947,497 951,576 956,558

Player 10 612,139 624,455 611,984 616,063 621,044
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5 Waste Management Game
in Czech Republic

As already mentioned in Introduction, starting from 2024, landfilling is most likely going
to be banned in the Czech Republic. Insufficient capacity of the already standing incin-
erators causes that changes are expected in following years as new incinerators need to
be built.

At the Institute of Process Engineering of Brno University of Technology, several math-
ematical models were developed on this topic. Among others, in [SP14], the NERUDA
tool was presented. This tool, using optimization techniques, determines optimal number
of waste incinerators and their locations and capacities. Based on some scenarios of waste
production in the Czech Republic in following years, this tool predicts waste incinera-
tors, besides those already standing or being built in Praha, Brno, Liberec, and Plzeň,
located in České Budějovice, Hradec Králové, Mělńık, Most, Úst́ı nad Labem, Jihlava,
and Otrokovice.

Besides those in the Czech Republic, waste incineration plants in other countries,
which are close enough, are involved in this problem too. This holds for Austrian and
German incinerators in Linz, Wels, Zwentendorf an der Donau, Zistersdorf, Wien, Schwan-
dorf, Nürnberg, Bamberg, Coburg, Zorbau, Leuna, Lauta, Großräschen, Ingolstadt, and
Burgkirchen.

In the Czech Republic, basically, there are three possible territorial divisions, into
14 districts, into 206 administrative units called obec s rozš́ıřenou p̊usobnost́ı (ORP) or into
6,245 municipalities. Another division might be considered, but it could be complicated
to get all the data. With respect to the numbers, for the waste management game, ORP
seems to be the best choice.

The division of waste producers and waste processors within the Czech Republic is
illustrated in Fig. 5.1.

The presented models and algorithms might be applied to any situation and any set
of data. Even the set of processors is only a prediction. The input data of capacities
and productions used in this thesis are in appendix B. The data on transportation are
not included because of their size. The strategies of processors in other countries are
considered being only one gate fee option of 70 EUR/t.

Stable, and therefore expected, strategies of processors require an analysis as well as
the cooperation of producers. The analysis is divided into two sections in the same way
like the chapters 3 and 4.

5.1 Conflict of Waste Processors

Firstly, to specify the strategy sets of the waste processors in waste management game in
the Czech Republic, the bounds were computed. Due to insufficient capacity of processors
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Fig. 5.1: Map of the producers (black dots) and processors (red
squares) for the waste management game in the Czech Republic
(source of spatial data: Arc ČR 500 v.3.2)

in other countries, however, the upper bounds could not be determined. Therefore, to
compute the upper bounds, the capacity of these processors is considered double. All
the computed bounds are shown in Table 5.1.

Table 5.1: Determined bounds on strategy sets for original and
double capacities of processors in other countries

Original capacities Double capacities

Lower bound Upper bound Lower bound Upper bound

Praha 106 – 102 126

České Budějovice 88 – 88 102

Brno 105 – 89 117

Hradec Králové 107 – 95 138

Liberec 104 – 98 122

Plzeň 95 – 92 108

Mělńık 97 – 93 125

Most 91 – 88 111

Úst́ı nad Labem 90 – 86 116

Jihlava 108 – 104 117

Otrokovice 109 – 0 118

To determine the strategy sets, lower bounds for the original capacities and upper
bounds for the double capacities were used. For each processor, the third strategy was
chosen exactly in the middle of these values. Table 5.2 shows these strategy sets.

For these sets of strategies, one Nash equilibrium point was found. Strategies forming
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Table 5.2: Strategy sets with the Nash equilibrium marked in bold

First strategy Second strategy Third strategy

Praha 106 116 126

České Budějovice 88 95 102

Brno 105 111 117

Hradec Králové 107 122.5 138

Liberec 104 113 122

Plzeň 95 101.5 108

Mělńık 97 111 125

Most 91 101 111

Úst́ı nad Labem 90 103 116

Jihlava 108 112.5 117

Otrokovice 109 113.5 118

the Nash equilibrium are in Table 5.2 marked in bold.

5.2 Conflict of Waste Producers

For the Nash equilibrium strategies of waste processors, the characteristic function val-
ues for all individual players were computed. These values represent the minimal cost
the producers are able to achieve on their own.

For comparison, also the approximations of the Shapley value and the nucleolus were
computed. The approximations were performed for input parameters cmax of 7 producers
in a coalition and dcrit of 30 km. These values represent the minimal cost the producers
are most likely able to achieve by a cooperation with all producers.

The potential in cooperation can be measured as the relative difference of these values.
Sorted by this difference in percents for the nucleolus, the Table 5.3 shows five producers
with the highest potential and five producers with the lowest potential. For the complete
list of producers, see appendix C.

It seems that the potential is high for the producers with the lowest waste production.
Hence, the approximations are probably not enough accurate. Assuming an absolute
difference as a measure of the potential and sorting by this difference for the nucleolus,
Table 5.4 is obtained. Again, for the complete list of producers, see appendix C.

Among the producers with high potential, for the nucleolus approximation, the abso-
lute difference seems to be a better measure. For these producers, therefore, the cooper-
ation seems meaningful and the potential for cooperation should be determined locally,
but more accurately, by using different methods.
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Table 5.3: Comparison of the characteristic function values for in-
dividual players and the divisions assigned to them according to
the Shapley value approximation ψ and the nucleolus approxima-
tion γ (5 producers with the highest relative difference and 5 pro-
ducers with the lowest relative difference)

v(ri) ψri γri

Rýmařov 192,487 6,376 97 % 27,989 85 %

Nepomuk 274,712 88,551 68 % 110,215 60 %

Blovice 315,234 129,091 59 % 150,737 52 %

Nová Paka 320,853 134,743 58 % 156,356 51 %

Pacov 323,636 137,518 58 % 159,139 51 %
...

...
...

...

Hradec Králové 5,693,671 5,506,497 3 % 5,514,629 3 %

Liberec 5,245,619 5,059,481 4 % 5,081,121 3 %

Plzeň 5,754,708 5,568,512 3 % 5,590,211 3 %

Brno 13,284,192 13,094,666 1 % 12,956,382 2 %

Praha 44,997,029 44,805,148 0 % 44,708,575 1 %

Table 5.4: Comparison of the characteristic function values for in-
dividual players and the differences between these and the divisions
assigned to them according to the Shapley value approximation ψ
and the nucleolus approximation γ (5 producers with the highest
absolute difference and 5 producers with the lowest absolute differ-
ence)

v(ri) v(ri)− ψri v(ri)− γri
Ostrava 12,190,256 191,957 1,134,853

Frýdek-Mı́stek 4,951,886 188,949 560,958

Olomouc 6,878,331 188,948 552,549

Hav́ı̌rov 4,313,879 188,227 520,260

Prostějov 4,075,878 188,432 479,842
...

...
...

...

Chomutov 2,134,450 186,306 164,497

České Budějovice 3,579,165 186,165 164,497

Liberec 5,245,619 186,138 164,497

Tábor 2,640,946 186,118 164,497

Karlovy Vary 2,498,259 186,107 164,497
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Conclusion

A game-theoretic model representing the decision-making situation in the waste man-
agement was created. The model was further divided into two parts, a noncooperative
game representing the conflict of waste processors and a cooperative game representing
the conflict of waste producers.

For the conflict of waste processors, the Nash equilibria are used to find optimal
strategies on gate fee values. The Nash equilibria guarantee a stability, the state that is
likely to stay unchanged for some time. Thus, it serves as a good prediction for the future.

For the conflict of waste producers, the cooperation is assumed and a cost distribution
is studied. The model determines the distribution using the Shapley value and the nu-
cleolus. It means that the grand coalition formation is supposed. For many producers,
it might seem naive, but this distribution can always serve as a benchmark for other
solutions showing the potential in cooperation.

For the conflict of waste producers, the core is proved to be nonempty. Whereas
the nucleolus is guaranteed to belong to the core, the same question for the Shapley value
remains unanswered. This should be, however, answered in order to guarantee a stability
of such solution.

With the number of players, the computation time for models of both conflicts grows
significantly. Therefore, other algorithms needed to be developed.

The strategy sets of waste processors in the first conflict may not contain many strate-
gies. Therefore, an algorithm to determine a lower bound and an upper bound was created.
It specifies the strategy sets as they can contain only strategies between the bounds.

In the conflict of waste producers, the computations of the Shapley value and the nu-
cleolus are not possible for more producers. Therefore, algorithms for approximations were
developed. These algorithms are based on an assumption that distant producers can not
influence each other. For different threshold values, computation tests were performed.

In the fifth chapter, the model was applied to a situation in the Czech Republic, a con-
flict of 11 decision-making waste processors and 206 decision-making waste producers.

For the conflict of waste processors, one Nash equilibrium was found. For the Nash
equilibrium strategies, the conflict of waste producers was investigated and the approx-
imations were computed. The results of the approximations are not much convincing.
Nevertheless, at least some producers with high potential in cooperation were recognized.

The problem in the approximations was that the threshold values for the algorithms
were not set correctly. Making the approximations more accurate would, however, lead
to long computation times again.

To shorten the computation time, the algorithm could yet be extended by adding other
conditions on reasonable coalitions. For example, assuming producers with large waste
production being more likely worth cooperating with seems to be one of the possibilities
for this extension.

It could be also helpful to use a different programming language for the implementa-
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tion. Whereas IBM ILOG CPLEX is commonly considered as very fast, MATLAB does
not belong among the fastest languages. The speed of the implementation of first steps
in MS Excel might seem questionable too.
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A List of Frequently Used Symbols

N = {p1, . . . , pn} set of players

π payoff or cost function

v characteristic function

(N, v) cooperative game with set of players N and characteristic
function v

ϕ = (ϕp1 , . . . , ϕpn) Shapley value

ψ = (ψp1 , . . . , ψpn) Shapley value approximation

% = (%p1 , . . . , %pn) nucleolus

γ = (γp1 , . . . , γpn) nucleolus approximation

dcrit distance beyond which a cooperation between any two players
is considered worthless

cmax maximum number of cooperating players

np number of processors

nr number of producers

P = {p1, . . . , pnp} set of processors

P0 ⊆ P set of processors with only one strategy

J = {1, . . . , np} set of indices of processors

J0 ⊆ J set of indices of processors with only one strategy

R = {r1, . . . , rnr} set of producers

I = {1, . . . , nr} set of indices of producers

wc
j capacity of processor pj

C g
j set of strategies of processor pj

c gj strategy of processor pj (gate fee)

c g,lj lower bound on strategies of processor pj

c g,uj upper bound on strategies of processor pj

wp
i production of producer ri

c ti,j cost of waste transportation from producer ri to processor pj

m very small positive number
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B Input Data for Waste
Management Game
in Czech Republic

The waste incinerator’s capacities data are shown in Table B.1. The ORP’s productions
data are shown in Table B.2 and Table B.3.

Table B.1: Yearly capacity of waste processors in kt

Praha 410,000 Zwentendorf an der Donau 262,500

České Budějovice 200,000 Zistersdorf 76,650

Brno 340,000 Wien 372,750

Hradec Králové 300,000 Schwandorf 202,500

Liberec 96,000 Nürnberg 103,500

Plzeň 95,000 Bamberg 54,900

Mělńık 300,000 Coburg 58,500

Most 150,000 Zorbau 148,500

Úst́ı nad Labem 200,000 Leuna 175,500

Jihlava 40,000 Lauta 99,000

Otrokovice 40,000 Großräschen 90,000

Linz 124,950 Ingolstadt 108,000

Wels 157,500 Burgkirchen 103,500
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Table B.2: Yearly production of waste producers in kt (part 1)

Aš 8,511 Hlinsko 5,866

Benešov 21,186 Hluč́ın 11,916

Beroun 17,639 Hodońın 18,888

B́ılina 5,779 Holešov 7,433

B́ılovec 6,052 Holice 4,097

Blansko 14,071 Horažd’ovice 4,318

Blatná 4,618 Horšovský Týn 4,435

Blovice 3,093 Hořice 6,120

Bohumı́n 11,313 Hořovice 11,285

Boskovice 14,344 Hradec Králové 51,331

Brandýs n. L.-S. Boleslav 41,797 Hranice 10,695

Brno 119,806 Humpolec 5,802

Broumov 4,473 Hustopeče 10,202

Bruntál 9,453 Cheb 16,836

Břeclav 19,561 Chomutov 22,103

Bučovice 4,147 Chotěboř 5,712

Bystřice nad Pernštejnem 4,841 Chrudim 23,157

Bystřice pod Hostýnem 4,843 Ivančice 8,108

Čáslav 7,931 Jablonec nad Nisou 14,040

Černošice 44,713 Jablunkov 5,641

Česká Ĺıpa 24,766 Jaroměř 4,446

Česká Třebová 5,523 Jeseńık 9,436

České Budějovice 40,329 Jič́ın 15,211

Český Brod 10,011 Jihlava 25,640

Český Krumlov 10,268 Jilemnice 5,843

Český Těš́ın 8,867 Jindřich̊uv Hradec 12,617

Dačice 6,054 Kadaň 14,204

Děč́ın 22,885 Kaplice 5,237

Dobruška 7,216 Karlovy Vary 25,171

Dobř́ı̌s 7,329 Karviná 21,874

Domažlice 9,675 Kladno 34,602

Dv̊ur Králové nad Labem 6,201 Klatovy 15,641

Frenštát pod Radhoštěm 5,052 Koĺın 34,061

Frýdek-Mı́stek 32,099 Konice 2,756

Frýdlant 8,079 Kopřivnice 16,721

Frýdlant nad Ostravićı 9,986 Kostelec nad Orlićı 6,735

Hav́ı̌rov 27,737 Kralovice 8,606

Havĺıčk̊uv Brod 17,531 Kralupy nad Vltavou 12,472
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Table B.3: Yearly production of waste producers in kt (part 2)

Kraslice 3,399 Nový Bydžov 4,977

Kravaře 5,193 Nový Jič́ın 12,323

Kráĺıky 2,795 Nymburk 16,659

Krnov 12,029 Nýřany 13,789

Kroměř́ıž 18,157 Odry 5,131

Kuřim 6,250 Olomouc 50,919

Kutná Hora 20,311 Opava 34,858

Kyjov 16,045 Orlová 12,588

Lanškroun 5,124 Ostrava 82,708

Liberec 50,333 Ostrov 7,454

Lipńık nad Bečvou 5,085 Otrokovice 10,346

Litoměřice 23,938 Pacov 3,138

Litomyšl 6,426 Pardubice 35,345

Litovel 7,126 Pelhřimov 13,687

Litv́ınov 13,171 Ṕısek 11,683

Louny 13,842 Plzeň 60,293

Lovosice 9,881 Podbořany 6,069

Luhačovice 5,126 Poděbrady 12,347

Lysá nad Labem 8,570 Pohořelice 4,057

Mariánské Lázně 9,080 Polička 4,735

Mělńık 17,996 Praha 421,456

Mikulov 4,836 Prachatice 8,108

Milevsko 4,892 Prostějov 29,322

Mladá Boleslav 36,791 Přelouč 8,529

Mnichovo Hradǐstě 4,793 Přerov 26,006

Mohelnice 6,042 Přeštice 6,006

Moravská Třebová 7,347 Př́ıbram 23,618

Moravské Budějovice 5,779 Rakovńık 18,238

Moravský Krumlov 6,307 Rokycany 17,998

Most 21,436 Rosice 6,974

Náchod 15,136 Roudnice nad Labem 7,595

Náměšt’ nad Oslavou 2,753 Rožnov pod Radhoštěm 10,416

Nepomuk 2,681 Rumburk 10,985

Neratovice 14,508 Rychnov nad Kněžnou 9,160

Nová Paka 2,794 Rýmařov 1,260

Nové Město na Moravě 4,690 Ř́ıčany 24,668

Nové Město nad Metuj́ı 3,637 Sedlčany 7,006

Nový Bor 9,279 Semily 5,987
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Table B.4: Yearly production of waste producers in kt (part 3)

Slaný 12,956 Uherský Brod 15,164

Slavkov u Brna 5,520 Uničov 7,493

Soběslav 7,039 Úst́ı nad Labem 29,269

Sokolov 21,032 Úst́ı nad Orlićı 8,204

Stod 6,726 Valašské Klobouky 5,120

Strakonice 12,327 Valašské Mezǐŕıč́ı 12,567

Stř́ıbro 5,592 Varnsdorf 7,067

Sušice 7,702 Velké Mezǐŕıč́ı 10,862

Světlá nad Sázavou 5,995 Veseĺı nad Moravou 9,128

Svitavy 7,745 Vimperk 5,111

Šlapanice 19,984 Vizovice 4,707

Šternberk 8,265 Vı́tkov 7,083

Šumperk 23,362 Vlašim 10,422

Tachov 11,774 Vodňany 3,988

Tanvald 6,046 Votice 4,519

Tábor 26,771 Vrchlab́ı 9,545

Telč 3,524 Vset́ın 14,186

Teplice 35,241 Vysoké Mýto 8,258

Tǐsnov 8,029 Vyškov 14,495

Trhové Sviny 5,011 Zábřeh 10,543

Trutnov 21,281 Zĺın 27,448

Třeb́ıč 19,105 Znojmo 24,822

Třeboň 8,555 Žamberk 8,342

Třinec 14,887 Žatec 9,150

Turnov 8,719 Žd’́ar nad Sázavou 12,097

Týn nad Vltavou 4,609 Železný Brod 3,054

Uherské Hradǐstě 24,179 Židlochovice 10,501

58



C Results for Conflict
of Waste Producers
in Czech Republic

Table C.1: Comparison of the characteristic function values for
individual players and the divisions assigned to them according
to the Shapley value approximation ψ and the nucleolus approx-
imation γ (part 1)

v(ri) ψri γri

Aš 825,577 639,411 23 % 661,079 20 %

Benešov 2,261,597 2,075,490 8 % 2,097,100 7 %

Beroun 1,868,340 1,682,141 10 % 1,703,842 9 %

B́ılina 565,676 379,563 33 % 401,178 29 %

B́ılovec 911,982 725,855 20 % 747,485 18 %

Blansko 1,827,069 1,640,167 10 % 1,662,571 9 %

Blatná 470,150 284,043 40 % 305,653 35 %

Blovice 315,234 129,091 59 % 150,737 52 %

Bohumı́n 1,743,874 1,557,287 11 % 1,579,377 9 %

Boskovice 1,907,697 1,719,650 10 % 1,743,200 9 %

Brandýs n. L.-S. Boleslav 4,674,952 4,487,045 4 % 4,386,498 6 %

Brno 13,284,192 13,094,666 1 % 12,956,382 2 %

Broumov 580,091 393,926 32 % 415,594 28 %

Bruntál 1,434,532 1,248,411 13 % 1,270,035 11 %

Břeclav 2,616,327 2,428,419 7 % 2,451,829 6 %

Bučovice 537,924 351,817 35 % 373,427 31 %

Bystřice nad Pernštejnem 590,831 404,486 32 % 426,333 28 %

Bystřice pod Hostýnem 692,757 506,636 27 % 528,260 24 %

Čáslav 933,522 747,415 20 % 769,025 18 %

Černošice 4,892,248 4,706,105 4 % 4,727,751 3 %

Česká Ĺıpa 2,443,118 2,256,740 8 % 2,278,620 7 %

Česká Třebová 717,963 531,599 26 % 553,465 23 %
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Table C.2: Comparison of the characteristic function values for
individual players and the divisions assigned to them according
to the Shapley value approximation ψ and the nucleolus approx-
imation γ (part 2)

v(ri) ψri γri

České Budějovice 3,579,165 3,393,000 5 % 3,414,668 5 %

Český Brod 1,145,214 958,575 16 % 980,717 14 %

Český Krumlov 958,998 772,832 19 % 794,500 17 %

Český Těš́ın 1,405,481 1,219,145 13 % 1,240,984 12 %

Dačice 675,367 489,202 28 % 510,870 24 %

Děč́ın 2,151,230 1,964,842 9 % 1,986,733 8 %

Dobruška 916,382 729,649 20 % 751,885 18 %

Dobř́ı̌s 863,667 677,560 22 % 699,170 19 %

Domažlice 995,040 808,902 19 % 830,543 17 %

Dv̊ur Králové nad Labem 737,332 551,010 25 % 572,835 22 %

Frenštát pod Radhoštěm 761,333 575,226 24 % 596,836 22 %

Frýdek-Mı́stek 4,951,886 4,762,937 4 % 4,390,928 11 %

Frýdlant 875,776 689,665 21 % 711,278 19 %

Frýdlant nad Ostravićı 1,527,414 1,340,987 12 % 1,362,916 11 %

Hav́ı̌rov 4,313,879 4,125,652 4 % 3,793,619 12 %

Havĺıčk̊uv Brod 1,973,998 1,787,829 9 % 1,809,501 8 %

Hlinsko 695,749 509,640 27 % 531,252 24 %

Hluč́ın 1,903,020 1,715,900 10 % 1,662,633 13 %

Hodońın 2,582,922 2,395,177 7 % 2,418,424 6 %

Holešov 1,050,995 864,803 18 % 886,498 16 %

Holice 509,831 323,182 37 % 345,333 32 %

Horažd’ovice 435,006 248,899 43 % 270,509 38 %

Horšovský Týn 462,108 275,970 40 % 297,611 36 %

Hořice 714,780 528,169 26 % 550,283 23 %

Hořovice 1,169,759 983,596 16 % 1,005,262 14 %

Hradec Králové 5,693,671 5,506,497 3 % 5,514,629 3 %

Hranice 1,547,600 1,361,226 12 % 1,383,103 11 %

Humpolec 675,063 488,929 28 % 510,565 24 %

Hustopeče 1,359,864 1,173,757 14 % 1,195,367 12 %

Cheb 1,562,363 1,376,256 12 % 1,397,866 11 %

Chomutov 2,134,450 1,948,144 9 % 1,969,953 8 %

Chotěboř 657,729 471,606 28 % 493,231 25 %

Chrudim 2,743,570 2,556,717 7 % 2,579,073 6 %

Ivančice 1,010,208 824,009 18 % 845,711 16 %
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Table C.3: Comparison of the characteristic function values for
individual players and the divisions assigned to them according
to the Shapley value approximation ψ and the nucleolus approx-
imation γ (part 3)

v(ri) ψri γri

Jablonec nad Nisou 1,490,295 1,304,171 12 % 1,325,797 11 %

Jablunkov 911,054 724,936 20 % 746,557 18 %

Jaroměř 538,623 352,122 35 % 374,126 31 %

Jeseńık 1,376,705 1,190,540 14 % 1,212,208 12 %

Jič́ın 1,719,571 1,533,462 11 % 1,555,074 10 %

Jihlava 2,781,573 2,595,408 7 % 2,617,075 6 %

Jilemnice 683,324 497,215 27 % 518,826 24 %

Jindřich̊uv Hradec 1,242,812 1,056,647 15 % 1,078,315 13 %

Kadaň 1,414,779 1,228,331 13 % 1,250,281 12 %

Kaplice 438,871 252,705 42 % 274,373 37 %

Karlovy Vary 2,498,259 2,312,152 7 % 2,333,762 7 %

Karviná 3,420,872 3,233,221 5 % 3,168,333 7 %

Kladno 3,911,736 3,725,135 5 % 3,747,238 4 %

Klatovy 1,607,246 1,421,138 12 % 1,442,749 10 %

Koĺın 3,906,750 3,720,170 5 % 3,742,252 4 %

Konice 394,239 206,858 48 % 229,741 42 %

Kopřivnice 2,522,435 2,335,408 7 % 2,338,995 7 %

Kostelec nad Orlićı 846,244 659,682 22 % 681,747 19 %

Kralovice 945,599 759,271 20 % 781,102 17 %

Kralupy nad Vltavou 1,363,172 1,176,571 14 % 1,198,675 12 %

Kraslice 324,634 138,469 57 % 160,137 51 %

Kravaře 818,470 632,349 23 % 653,973 20 %

Kráĺıky 375,965 189,800 50 % 211,468 44 %

Krnov 1,863,284 1,677,108 10 % 1,698,787 9 %

Kroměř́ıž 2,526,581 2,339,309 7 % 2,286,020 10 %

Kuřim 797,504 610,723 23 % 633,007 21 %

Kutná Hora 2,363,216 2,177,109 8 % 2,198,719 7 %

Kyjov 2,153,275 1,966,237 9 % 1,988,778 8 %

Lanškroun 679,997 493,343 27 % 515,500 24 %

Liberec 5,245,619 5,059,481 4 % 5,081,121 3 %

Lipńık nad Bečvou 725,087 538,961 26 % 560,590 23 %

Litoměřice 2,433,327 2,247,209 8 % 2,268,830 7 %

Litomyšl 833,413 646,652 22 % 668,916 20 %

Litovel 999,131 812,926 19 % 834,634 16 %
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Table C.4: Comparison of the characteristic function values for
individual players and the divisions assigned to them according
to the Shapley value approximation ψ and the nucleolus approx-
imation γ (part 4)

v(ri) ψri γri

Litv́ınov 1,255,136 1,068,872 15 % 1,090,638 13 %

Louny 1,344,888 1,158,163 14 % 1,180,391 12 %

Lovosice 995,503 809,385 19 % 831,005 17 %

Luhačovice 738,721 552,614 25 % 574,224 22 %

Lysá nad Labem 959,833 773,330 19 % 790,277 18 %

Mariánské Lázně 883,466 697,301 21 % 718,969 19 %

Mělńık 1,926,492 1,739,942 10 % 1,755,162 9 %

Mikulov 629,422 443,257 30 % 464,925 26 %

Milevsko 495,851 309,743 38 % 331,354 33 %

Mladá Boleslav 3,927,460 3,740,956 5 % 3,757,903 4 %

Mnichovo Hradǐstě 510,196 324,087 36 % 345,698 32 %

Mohelnice 832,552 646,070 22 % 668,055 20 %

Moravská Třebová 983,750 797,249 19 % 819,253 17 %

Moravské Budějovice 680,218 494,095 27 % 515,720 24 %

Moravský Krumlov 789,665 603,558 24 % 625,168 21 %

Most 1,993,657 1,806,889 9 % 1,829,159 8 %

Náchod 1,883,329 1,696,410 10 % 1,718,832 9 %

Náměšt’ nad Oslavou 324,075 137,740 57 % 159,578 51 %

Nepomuk 274,712 88,551 68 % 110,215 60 %

Neratovice 1,587,869 1,401,463 12 % 1,423,372 10 %

Nová Paka 320,853 134,743 58 % 156,356 51 %

Nové Město na Moravě 561,204 374,878 33 % 396,707 29 %

Nové Město nad Metuj́ı 454,858 268,534 41 % 290,361 36 %

Nový Bor 932,049 745,661 20 % 767,552 18 %

Nový Bydžov 587,278 401,169 32 % 422,780 28 %

Nový Jič́ın 1,836,703 1,650,123 10 % 1,672,206 9 %

Nymburk 1,853,319 1,667,064 10 % 1,688,822 9 %

Nýřany 1,355,377 1,169,231 14 % 1,190,880 12 %

Odry 766,292 580,167 24 % 601,795 21 %

Olomouc 6,878,331 6,689,383 3 % 6,325,782 8 %

Opava 5,444,522 5,255,597 3 % 5,020,755 8 %

Orlová 1,959,325 1,772,609 10 % 1,794,828 8 %

Ostrava 12,190,256 11,998,299 2 % 11,055,403 9 %

Ostrov 755,948 569,782 25 % 591,450 22 %
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Table C.5: Comparison of the characteristic function values for
individual players and the divisions assigned to them according
to the Shapley value approximation ψ and the nucleolus approx-
imation γ (part 5)

v(ri) ψri γri

Otrokovice 1,472,165 1,285,776 13 % 1,231,603 16 %

Pacov 323,636 137,518 58 % 159,139 51 %

Pardubice 4,049,752 3,862,899 5 % 3,870,709 4 %

Pelhřimov 1,454,925 1,268,818 13 % 1,290,428 11 %

Ṕısek 1,124,466 938,304 17 % 959,968 15 %

Plzeň 5,754,708 5,568,512 3 % 5,590,211 3 %

Podbořany 643,447 457,143 29 % 478,950 26 %

Poděbrady 1,386,609 1,200,501 13 % 1,222,111 12 %

Pohořelice 531,052 344,945 35 % 366,555 31 %

Polička 596,417 409,886 31 % 431,920 28 %

Praha 44,997,029 44,805,148 0 % 44,708,575 1 %

Prachatice 788,952 602,845 24 % 624,455 21 %

Prostějov 4,075,878 3,887,446 5 % 3,596,036 12 %

Přelouč 1,015,421 828,985 18 % 850,924 16 %

Přerov 3,647,503 3,459,272 5 % 3,290,082 10 %

Přeštice 610,970 424,773 30 % 446,472 27 %

Př́ıbram 2,485,810 2,299,703 7 % 2,321,313 7 %

Rakovńık 1,892,740 1,706,469 10 % 1,728,243 9 %

Rokycany 1,789,335 1,603,142 10 % 1,624,837 9 %

Rosice 843,825 657,651 22 % 679,328 19 %

Roudnice nad Labem 785,708 599,347 24 % 621,211 21 %

Rožnov pod Radhoštěm 1,550,913 1,364,443 12 % 1,386,415 11 %

Rumburk 1,133,092 946,801 16 % 968,595 15 %

Rychnov nad Kněžnou 1,157,809 971,081 16 % 993,312 14 %

Rýmařov 192,487 6,376 97 % 27,989 85 %

Ř́ıčany 2,740,621 2,554,209 7 % 2,576,124 6 %

Sedlčany 750,001 563,883 25 % 585,504 22 %

Semily 668,788 482,668 28 % 504,291 25 %

Slaný 1,337,351 1,150,790 14 % 1,172,853 12 %

Slavkov u Brna 707,690 520,111 27 % 470,886 33 %

Soběslav 673,296 487,188 28 % 508,798 24 %

Sokolov 2,043,276 1,857,169 9 % 1,878,779 8 %

Stod 676,921 490,745 28 % 512,424 24 %

Strakonice 1,204,997 1,018,889 15 % 1,040,499 14 %
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Table C.6: Comparison of the characteristic function values for
individual players and the divisions assigned to them according
to the Shapley value approximation ψ and the nucleolus approx-
imation γ (part 6)

v(ri) ψri γri

Stř́ıbro 563,910 377,745 33 % 399,413 29 %

Sušice 794,418 608,300 23 % 629,921 21 %

Světlá nad Sázavou 689,372 503,249 27 % 524,875 24 %

Svitavy 997,552 811,126 19 % 833,055 16 %

Šlapanice 2,522,994 2,335,489 7 % 2,186,386 13 %

Šternberk 1,192,177 1,005,859 16 % 1,027,680 14 %

Šumperk 3,123,975 2,937,301 6 % 2,959,478 5 %

Tachov 1,187,962 1,001,797 16 % 1,023,465 14 %

Tanvald 656,277 470,155 28 % 491,780 25 %

Tábor 2,640,946 2,454,828 7 % 2,476,449 6 %

Telč 386,783 200,665 48 % 222,286 43 %

Teplice 3,524,052 3,336,917 5 % 3,359,555 5 %

Tǐsnov 1,011,278 824,977 18 % 846,780 16 %

Trhové Sviny 460,487 274,322 40 % 295,990 36 %

Trutnov 2,559,443 2,372,718 7 % 2,394,946 6 %

Třeb́ıč 2,191,347 2,004,757 9 % 2,026,850 8 %

Třeboň 836,264 650,099 22 % 671,767 20 %

Třinec 2,375,186 2,188,168 8 % 2,210,688 7 %

Turnov 946,452 760,343 20 % 781,955 17 %

Týn nad Vltavou 444,317 258,210 42 % 279,820 37 %

Uherské Hradǐstě 3,377,574 3,189,534 6 % 3,041,669 10 %

Uherský Brod 2,153,343 1,966,133 9 % 1,916,540 11 %

Uničov 1,065,190 878,937 17 % 900,692 15 %

Úst́ı nad Labem 2,852,306 2,665,161 7 % 2,687,809 6 %

Úst́ı nad Orlićı 1,054,249 867,712 18 % 889,751 16 %

Valašské Klobouky 767,741 581,634 24 % 603,244 21 %

Valašské Mezǐŕıč́ı 1,846,677 1,660,115 10 % 1,682,179 9 %

Varnsdorf 717,270 531,152 26 % 552,773 23 %

Velké Mezǐŕıč́ı 1,307,798 1,121,186 14 % 1,143,301 13 %

Veseĺı nad Moravou 1,256,487 1,069,499 15 % 1,091,990 13 %

Vimperk 524,173 338,066 36 % 359,676 31 %

Vizovice 687,424 501,316 27 % 522,926 24 %

Vı́tkov 1,075,965 889,840 17 % 911,468 15 %

Vlašim 1,146,980 960,872 16 % 982,482 14 %
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Table C.7: Comparison of the characteristic function values for
individual players and the divisions assigned to them according
to the Shapley value approximation ψ and the nucleolus approx-
imation γ (part 7)

v(ri) ψri γri

Vodňany 374,310 188,203 50 % 209,813 44 %

Votice 469,567 283,449 40 % 305,069 35 %

Vrchlab́ı 1,127,735 941,625 17 % 963,237 15 %

Vset́ın 2,125,120 1,938,390 9 % 1,960,622 8 %

Vysoké Mýto 1,052,502 865,963 18 % 888,005 16 %

Vyškov 1,940,926 1,753,507 10 % 1,704,122 12 %

Zábřeh 1,433,871 1,246,931 13 % 1,269,374 11 %

Zĺın 3,947,818 3,759,401 5 % 3,497,688 11 %

Znojmo 3,061,252 2,875,129 6 % 2,896,755 5 %

Žamberk 1,076,999 890,317 17 % 912,501 15 %

Žatec 916,726 730,418 20 % 752,228 18 %

Žd’́ar nad Sázavou 1,421,949 1,235,420 13 % 1,257,452 12 %

Železný Brod 337,925 151,810 55 % 173,428 49 %

Židlochovice 1,361,982 1,175,433 14 % 1,171,311 14 %
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Table C.8: Comparison of the characteristic function values for in-
dividual players and the differences between these and the divisions
assigned to them according to the Shapley value approximation ψ
and the nucleolus approximation γ (part 1)

v(ri) v(ri)− ψri v(ri)− γri
Aš 825,577 186,165 164,497

Benešov 2,261,597 186,107 164,497

Beroun 1,868,340 186,199 164,497

B́ılina 565,676 186,112 164,497

B́ılovec 911,982 186,127 164,497

Blansko 1,827,069 186,901 164,497

Blatná 470,150 186,107 164,497

Blovice 315,234 186,144 164,497

Bohumı́n 1,743,874 186,587 164,497

Boskovice 1,907,697 188,048 164,497

Brandýs n. L.-S. Boleslav 4,674,952 187,907 288,454

Brno 13,284,192 189,525 327,809

Broumov 580,091 186,165 164,497

Bruntál 1,434,532 186,121 164,497

Břeclav 2,616,327 187,907 164,497

Bučovice 537,924 186,107 164,497

Bystřice nad Pernštejnem 590,831 186,345 164,497

Bystřice pod Hostýnem 692,757 186,121 164,497

Čáslav 933,522 186,107 164,497

Černošice 4,892,248 186,143 164,497

Česká Ĺıpa 2,443,118 186,377 164,497

Česká Třebová 717,963 186,364 164,497

České Budějovice 3,579,165 186,165 164,497

Český Brod 1,145,214 186,639 164,497

Český Krumlov 958,998 186,165 164,497

Český Těš́ın 1,405,481 186,336 164,497

Dačice 675,367 186,165 164,497

Děč́ın 2,151,230 186,388 164,497

Dobruška 916,382 186,733 164,497

Dobř́ı̌s 863,667 186,107 164,497

Domažlice 995,040 186,138 164,497

Dv̊ur Králové nad Labem 737,332 186,322 164,497

Frenštát pod Radhoštěm 761,333 186,108 164,497
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Table C.9: Comparison of the characteristic function values for in-
dividual players and the differences between these and the divisions
assigned to them according to the Shapley value approximation ψ
and the nucleolus approximation γ (part 2)

v(ri) v(ri)− ψri v(ri)− γri
Frýdek-Mı́stek 4,951,886 188,949 560,958

Frýdlant 875,776 186,110 164,497

Frýdlant nad Ostravićı 1,527,414 186,427 164,497

Hav́ı̌rov 4,313,879 188,227 520,260

Havĺıčk̊uv Brod 1,973,998 186,170 164,497

Hlinsko 695,749 186,109 164,497

Hluč́ın 1,903,020 187,120 240,387

Hodońın 2,582,922 187,745 164,497

Holešov 1,050,995 186,192 164,497

Holice 509,831 186,649 164,497

Horažd’ovice 435,006 186,108 164,497

Horšovský Týn 462,108 186,138 164,497

Hořice 714,780 186,611 164,497

Hořovice 1,169,759 186,163 164,497

Hradec Králové 5,693,671 187,174 179,042

Hranice 1,547,600 186,374 164,497

Humpolec 675,063 186,134 164,497

Hustopeče 1,359,864 186,107 164,497

Cheb 1,562,363 186,107 164,497

Chomutov 2,134,450 186,306 164,497

Chotěboř 657,729 186,123 164,497

Chrudim 2,743,570 186,852 164,497

Ivančice 1,010,208 186,199 164,497

Jablonec nad Nisou 1,490,295 186,124 164,497

Jablunkov 911,054 186,118 164,497

Jaroměř 538,623 186,502 164,497

Jeseńık 1,376,705 186,165 164,497

Jič́ın 1,719,571 186,109 164,497

Jihlava 2,781,573 186,165 164,497

Jilemnice 683,324 186,109 164,497

Jindřich̊uv Hradec 1,242,812 186,165 164,497

Kadaň 1,414,779 186,448 164,497

Kaplice 438,871 186,165 164,497
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Table C.10: Comparison of the characteristic function values for in-
dividual players and the differences between these and the divisions
assigned to them according to the Shapley value approximation ψ
and the nucleolus approximation γ (part 3)

v(ri) v(ri)− ψri v(ri)− γri
Karlovy Vary 2,498,259 186,107 164,497

Karviná 3,420,872 187,651 252,540

Kladno 3,911,736 186,601 164,497

Klatovy 1,607,246 186,108 164,497

Koĺın 3,906,750 186,580 164,497

Konice 394,239 187,381 164,497

Kopřivnice 2,522,435 187,027 183,441

Kostelec nad Orlićı 846,244 186,562 164,497

Kralovice 945,599 186,328 164,497

Kralupy nad Vltavou 1,363,172 186,601 164,497

Kraslice 324,634 186,165 164,497

Kravaře 818,470 186,121 164,497

Kráĺıky 375,965 186,165 164,497

Krnov 1,863,284 186,177 164,497

Kroměř́ıž 2,526,581 187,273 240,561

Kuřim 797,504 186,781 164,497

Kutná Hora 2,363,216 186,107 164,497

Kyjov 2,153,275 187,039 164,497

Lanškroun 679,997 186,654 164,497

Liberec 5,245,619 186,138 164,497

Lipńık nad Bečvou 725,087 186,125 164,497

Litoměřice 2,433,327 186,118 164,497

Litomyšl 833,413 186,762 164,497

Litovel 999,131 186,205 164,497

Litv́ınov 1,255,136 186,263 164,497

Louny 1,344,888 186,725 164,497

Lovosice 995,503 186,118 164,497

Luhačovice 738,721 186,107 164,497

Lysá nad Labem 959,833 186,503 169,556

Mariánské Lázně 883,466 186,165 164,497

Mělńık 1,926,492 186,550 171,330

Mikulov 629,422 186,165 164,497

Milevsko 495,851 186,107 164,497
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Table C.11: Comparison of the characteristic function values for in-
dividual players and the differences between these and the divisions
assigned to them according to the Shapley value approximation ψ
and the nucleolus approximation γ (part 4)

v(ri) v(ri)− ψri v(ri)− γri
Mladá Boleslav 3,927,460 186,503 169,556

Mnichovo Hradǐstě 510,196 186,109 164,497

Mohelnice 832,552 186,482 164,497

Moravská Třebová 983,750 186,501 164,497

Moravské Budějovice 680,218 186,123 164,497

Moravský Krumlov 789,665 186,107 164,497

Most 1,993,657 186,768 164,497

Náchod 1,883,329 186,919 164,497

Náměšt’ nad Oslavou 324,075 186,335 164,497

Nepomuk 274,712 186,161 164,497

Neratovice 1,587,869 186,406 164,497

Nová Paka 320,853 186,110 164,497

Nové Město na Moravě 561,204 186,326 164,497

Nové Město nad Metuj́ı 454,858 186,324 164,497

Nový Bor 932,049 186,388 164,497

Nový Bydžov 587,278 186,109 164,497

Nový Jič́ın 1,836,703 186,580 164,497

Nymburk 1,853,319 186,255 164,497

Nýřany 1,355,377 186,146 164,497

Odry 766,292 186,125 164,497

Olomouc 6,878,331 188,948 552,549

Opava 5,444,522 188,926 423,767

Orlová 1,959,325 186,716 164,497

Ostrava 12,190,256 191,957 1,134,853

Ostrov 755,948 186,165 164,497

Otrokovice 1,472,165 186,389 240,561

Pacov 323,636 186,118 164,497

Pardubice 4,049,752 186,853 179,042

Pelhřimov 1,454,925 186,107 164,497

Ṕısek 1,124,466 186,162 164,497

Plzeň 5,754,708 186,196 164,497

Podbořany 643,447 186,304 164,497

Poděbrady 1,386,609 186,107 164,497
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Table C.12: Comparison of the characteristic function values for in-
dividual players and the differences between these and the divisions
assigned to them according to the Shapley value approximation ψ
and the nucleolus approximation γ (part 5)

v(ri) v(ri)− ψri v(ri)− γri
Pohořelice 531,052 186,107 164,497

Polička 596,417 186,531 164,497

Praha 44,997,029 191,881 288,454

Prachatice 788,952 186,107 164,497

Prostějov 4,075,878 188,432 479,842

Přelouč 1,015,421 186,437 164,497

Přerov 3,647,503 188,231 357,422

Přeštice 610,970 186,197 164,497

Př́ıbram 2,485,810 186,107 164,497

Rakovńık 1,892,740 186,270 164,497

Rokycany 1,789,335 186,193 164,497

Rosice 843,825 186,174 164,497

Roudnice nad Labem 785,708 186,361 164,497

Rožnov pod Radhoštěm 1,550,913 186,470 164,497

Rumburk 1,133,092 186,291 164,497

Rychnov nad Kněžnou 1,157,809 186,727 164,497

Rýmařov 192,487 186,111 164,497

Ř́ıčany 2,740,621 186,413 164,497

Sedlčany 750,001 186,118 164,497

Semily 668,788 186,120 164,497

Slaný 1,337,351 186,560 164,497

Slavkov u Brna 707,690 187,578 236,804

Soběslav 673,296 186,107 164,497

Sokolov 2,043,276 186,107 164,497

Stod 676,921 186,177 164,497

Strakonice 1,204,997 186,107 164,497

Stř́ıbro 563,910 186,165 164,497

Sušice 794,418 186,118 164,497

Světlá nad Sázavou 689,372 186,123 164,497

Svitavy 997,552 186,426 164,497

Šlapanice 2,522,994 187,505 336,608

Šternberk 1,192,177 186,318 164,497

Šumperk 3,123,975 186,674 164,497
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Table C.13: Comparison of the characteristic function values for in-
dividual players and the differences between these and the divisions
assigned to them according to the Shapley value approximation ψ
and the nucleolus approximation γ (part 6)

v(ri) v(ri)− ψri v(ri)− γri
Tachov 1,187,962 186,165 164,497

Tanvald 656,277 186,122 164,497

Tábor 2,640,946 186,118 164,497

Telč 386,783 186,118 164,497

Teplice 3,524,052 187,135 164,497

Tǐsnov 1,011,278 186,301 164,497

Trhové Sviny 460,487 186,165 164,497

Trutnov 2,559,443 186,726 164,497

Třeb́ıč 2,191,347 186,590 164,497

Třeboň 836,264 186,165 164,497

Třinec 2,375,186 187,018 164,497

Turnov 946,452 186,109 164,497

Týn nad Vltavou 444,317 186,107 164,497

Uherské Hradǐstě 3,377,574 188,040 335,905

Uherský Brod 2,153,343 187,210 236,804

Uničov 1,065,190 186,253 164,497

Úst́ı nad Labem 2,852,306 187,145 164,497

Úst́ı nad Orlićı 1,054,249 186,537 164,497

Valašské Klobouky 767,741 186,107 164,497

Valašské Mezǐŕıč́ı 1,846,677 186,561 164,497

Varnsdorf 717,270 186,118 164,497

Velké Mezǐŕıč́ı 1,307,798 186,612 164,497

Veseĺı nad Moravou 1,256,487 186,988 164,497

Vimperk 524,173 186,107 164,497

Vizovice 687,424 186,107 164,497

Vı́tkov 1,075,965 186,125 164,497

Vlašim 1,146,980 186,107 164,497

Vodňany 374,310 186,107 164,497

Votice 469,567 186,118 164,497

Vrchlab́ı 1,127,735 186,110 164,497

Vset́ın 2,125,120 186,729 164,497

Vysoké Mýto 1,052,502 186,540 164,497

Vyškov 1,940,926 187,419 236,804
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Table C.14: Comparison of the characteristic function values for in-
dividual players and the differences between these and the divisions
assigned to them according to the Shapley value approximation ψ
and the nucleolus approximation γ (part 7)

v(ri) v(ri)− ψri v(ri)− γri
Zábřeh 1,433,871 186,940 164,497

Zĺın 3,947,818 188,417 450,131

Znojmo 3,061,252 186,123 164,497

Žamberk 1,076,999 186,682 164,497

Žatec 916,726 186,307 164,497

Žd’́ar nad Sázavou 1,421,949 186,530 164,497

Železný Brod 337,925 186,115 164,497

Židlochovice 1,361,982 186,549 190,672
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