BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
USTAV POCITACOVE GRAFIKY A MULTIMEDIi

MACHINE COMPREHENSION USING COMMONSENSE
KNOWLEDGE

STROJOVE POROZUMENI S POUZITIM ZNALOSTNI BAZE

BACHELOR'’S THESIS
BAKALARSKA PRACE

AUTHOR TOMAS DANIS
AUTOR PRACE
SUPERVISOR Ing. MARTIN FAJCIK

VEDOUCI PRACE

BRNO 2018

Brno University of Technology
Faculty of Information Technology

Department of Computer Graphics and Multimedia (DCGM) Academic year 2018/2019

Bachelor's Thesis Specification T
21703

Student: Dani$ Tomas

Programme: Information Technology

Title: Machine Comprehension Using Commonsense Knowledge

Category: Speech and Natural Language Processing

Assignment:

1. Describe the machine comprehension problem.
2. Research current machine comprehension methods, that are able to incorporate commonsense knowledge
information.
Choose and describe suitable method, describe how method differs from other related work.
Describe your evaluation process for the chosen method.
Describe available datasets for the problem.
Implement the method.
Evaluate the method.
Do an ablation study.
9. Compare achieved results with state-of-the-art.
Recommended literature:

e Ostermann, S. et al., 2018. SemEval-2018 Task 11: Machine Comprehension Using Commonsense
Knowledge. In Proceedings of The 12th International Workshop on Semantic Evaluation. New Orleans,
Louisiana: Association for Computational Linguistics, pp. 747-757. Available at:
http://aclweb.org/anthology/S18-1119

Requirements for the first semester:
e Complete items 1 to 4 of the assignment
Detailed formal requirements can be found at http://www.fit.vutbr.cz/info/szz/
Supervisor: Faj¢ik Martin, Ing.
Head of Department: Cernocky Jan, doc. Dr. Ing.
Beginning of work: ~ November 1, 2018
Submission deadline: May 15, 2019
Approval date: November 1, 2018

PNO O AW

Bachelor's Thesis Specification/21703/2018/xdanis05 Strana 1z 1

Abstract

In this thesis, the commonsense reasoning ability of modern neural systems is explored.
The goal is to provide insight into the current state of research in this area and identify
promising research directions. A state-of-the-art question-answering model has been imple-
mented and experimented with in various scenarios. Unlike in older approaches, the model
achieved comparable results with best available models for the target task without using
any task-specific architecture. Furthermore, unintended statistical biases are discovered
in a popular commonsense reasoning dataset which allow models to compute the correct
answer even when it does not have sufficient information to do so. Based on these findings,
recommendations and possible future research areas are suggested.

Abstrakt

V tejto praci je skumand schopnost pouzivat zdravy rozum v modernych systémoch za-
lozenych na neurénovych sietach. Zdravym rozumom je myslend schopnost extrahovat z
textu fakty, ktoré nie st priamo spomenuté, ale implikuje ich situdcia v texte. Cielom prace
je poskytnuf nahlad na sicasny stav vyskumu v tejto oblasti a najst slubné vyskumné smery
do budiicnosti. V préci je implementovany jeden z najmodernejsich modelov na odpovedanie
na otazky a je dalej pouzity na experimenty v roznych situdciach. Narozdiel od starsich
pristupov, tento model dosahuje porovnatelné vysledky s najlepsimi zndmymi modelmi aj
ked jeho architektiira neobsahuje ziadne prvky zamerané konkrétne na zlepSenie schopnosti
zdravo uvazovat. Taktiez boli ndjdené Statistické artefakty v popularnej sade dat s otdzkami
vyzadujicimi zdravé uvazovanie. Tieto artefakty mézu byt pouzité statistickymi modelmi
na najdenie spravnej odpovede aj v pripadoch, kedy by to nemalo byt mozné. Na zdklade
tychto zisteni st v praci poskytnuté odporicania a navrhy pre vyskum do budicnosti.

Keywords

neural network, commonsense reasoning, commonsense knowledge, machine learning, nat-
ural language processing, question answering, knowledge base

Klicova slova

neurénova siet, uvazovanie zdravym rozumom, znalostnd baza zdravého rozumu, strojové
ucenie, spracovanie prirodzeného jazyka, odpovedanie na otdzky, znalostna baza.

Reference

DANIS, Toméas. Machine Comprehension Using Commonsense Knowledge. Brno, 2018.
Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology. Su-
pervisor Ing. Martin Fajcik

Rozsireny abstrakt

Schopnost pouzivat zdravy rozum je povazovana za dolezity milnik v ceste za umelou in-
teligenciou podobnou ¢loveku. Zdravym rozumom je myslena schopnost extrahovat z textu
fakty, ktoré nie st priamo spomenuté, ale su implikované situdciou v texte. Tato praca
sa preto zameriava na prieskum sicasného stavu vyskumu do modelov schopnych pouzi-
vat zdravy rozum. Jej ciel je poskytnit ndhlad na stcasnu situaciu a identifikovat slubné
smery pre vyskum do budtcnosti. Praca poskytuje prehlad modernych metéd pouzivanych
v spracovani prirodzeného jazyka. Teoretickd cast zacina popisom zdkladnych principov
neurénovych sieti a pokracuje prezentaciou modernych architektir pouzivanych na strojové
porozumenie. Taktiez st popisané verejne pristupné sady dat urcené na trénovanie mode-
lov na odpovedanie na otizky, ktoré vyzaduja zdravy rozum na zodpovedanie. Nésledne st
vysvetlené sii¢asne pouzivané pristupy a ich spdsoby riesenia st porovnané. Jedna z tychto
architekttur dosahuje vysledky porovnatelné alebo presahujice najlepsie dosiahnuté aj bez
toho aby obsahovala externii bazu znalosti pre zdravy rozum. Namiesto toho bol tento
model predtrénovany vseobecnejsej tlohe predikcie slov na zdklade kontextu. Tento model
bol v praci implementovany, natrénovany a experimentovalo sa s nim v réznych situacidch
v snahe poskytnuf nahlad na jeho schopnosti uvazovania zdravym rozumom. Pri experi-
mentoch bola pouzitd sada dat MCScript, ktora obsahuje pribehy popisujice kazdodenné
udalosti z pohladu prvej osoby a otazky o tychto udalostiach, kazda s dvomi kandidat-
nymi odpovedami. Tato sada dat sa vyznacuje tym, ze nie vSetky odpovede na otazky sa
nachadzaju v texte. Pri niektorych otazkach je potrebné pouzit zdravy rozum na ich zod-
povedanie. V praci bolo spravenych péat hlavnych experimentov. V kazdom bol natrénovany
model so Specifickymi parametrami danymi experimentom a vyhodnoteny pomocou metriky
presnosti. Taktiez sa experimenty vyhodnotili hlbsiou analyzou ich vysledkov. V prvom
experimente sa natrénoval model na uz spomenutej sade dat a vyhodnotili sa vysledky,
hlavne s ohladom na otézky vyzadujice zdravy rozum. Ucelom tohto experimentu bolo
vyhodnotif schopnost stcasnych modelov zdravo uvazovat. Zistilo sa, ze sii¢asné modely
st schopné zdravého uvazovania aj bez explicitného tréningu tejto schopnosti. Otazky
vyzadujice zdravy rozum sice boli o nieco tazsie na zodpovedanie, ale hlavnym faktorom
limitujtacim presnost modelu bolo celkové porozumenie textu, nie zdravy rozum. Na ziskanie
lepsej predstavy ¢oho st dnesné modely schopné, v druhom experimente sa najprv model
predtrénoval na pribuznej sade dat SWAG, ktora taktiez vyzaduje pouzitie zdravého rozumu
na zodpovedanie. Nésledne bol tento predtrénovany model natrénovany na sade MCScript.
Ucelom tohto experimentu bolo otestovat, ¢ takéto predtrénovanie zlepsi schopnost mod-
elu zdravo uvazovat. Ukéazalo sa, ze sa tak nestalo a teda predtrénovanie na pribuznych
ulohach nepoméha pre uz predtrénované modely. Taktiez sa dospelo k zaveru, ze zdravy
rozum je jav vznikajuci pri vSeobecnej schopnosti porozumenia textu. Pre dalsi vyskum
zdravého rozumu sa teda odporica skiimat metddy, ktoré sa sutredia na porozumenie textu
na hlbsej trovni. V poslednych troch experimentoch sa trénoval model na sade MCScript,
avsak v kazdom z experimentov chybala modelu ista c¢ast vstupu. V tretom experimente
modelu nebol poskytnuty dokument s informéciami, vo Stvrtom otazka a v piatok ani
dokument ani otdzka. Bolo ocakévané, ze model bez tychto informécii nebude schopny
vybrat spravnu odpoved, avsak opak bol pravdou. Zatial ¢o v prvom experimente dosiahol
model presnost 88.38%, pri absencii dokumentu stdle dosahoval presnosti 78.08%. Bolo
zistené, ze tento jav je Ciastoc¢ne vysvetlitelny tym, ze model spravne odpovedd na otazky
vyzadujuce zdravy rozum a absencia dokumentu tito schopnost nenarusila. Avsak, toto
vysvetlenie nedokdzalo vysvetlit takd velkt devidciu od ocakdvanych 50%. Este viac prek-
vapujuci vysledok mal piaty experiment. Ked modelu boli na vstupe dané iba 2 kandidatne

odpovede, stale dosahoval presnosti 72.83%. Na zdklade tychto vysledkov sa dospelo k
zéveru, ze sada dat MCScript obsahuje statistické artefakty, na zdklade ktorych s modely
schopné vybrat spravnu odpoved aj v situdciach kedy by to nemalo byt mozné. Tieto arte-
fakty znemoznuji objektivne vyhodnotit schopnost modelu vykonavat cielovii iilohu. Na
zaklade tychto zisteni sa odporica vykonavat analyzu na néjdenie Statistickych artefaktov
pre vSetky sady dat pouzivané v strojovom uceni.

Machine Comprehension Using Commonsense Knowl-
edge

Declaration

Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of Ing. Martin Faj¢ik. All the relevant information sources, which were used
during preparation of this thesis, are properly cited and included in the list of references.

Tomés Danis
May 14, 2019

Acknowledgements

I would like to thank my supervisor Ing. Martin Fajéik for his guidance, constructive
feedback and help with the thesis.

Contents

1 Introduction
2 Natural language processing
2.1 Neural networks
2.2 Language representation in neural networks
2.3 Recurrent neural networkso oL
2.4 Attention mechanism Lo
2.5 Transformer encoder e
2.6 Bidirectional Encoder Representations from Transformers (BERT)
2.7 Hyper-parameter optimization algorithms
3 Datasets for statistical question answering
3.1 MCScript
3.2 SWAG e
4 Existing work on commonsense reasoning
4.1 Three-way attentive networks (TriAN)
4.2 General reading strategies Lo
4.3 BERT
5 Experiments
5.1 Stanford Attentive Reader baseline
5.2 BERT experiments L
6 Results and discussion
6.1 Experiment #1: Training BERT on MCScript
6.2 Experiment #2: Pre-training BERT on SWAG
6.3 Experiment #3: Question answering without the information document
6.4 Experiment #4: Question answering without the question
6.5 Experiment #5: Classifying stand-alone answers
6.6 SUMMAary e e e
7 Conclusion
Bibliography

17
17
19

21
21
22
23

24
24
25

27
27
29
29
30
31
32

34

35

Chapter 1

Introduction

In recent years, the rise of artificial intelligence techniques has allowed us to solve problems
that were impossible before. These algorithms often outperform even humans. However,
despite their strong performance, the algorithms are often easily confused and make a
mistake where a human never would. Consider the sentence “The waitress brought my
mother the food and she ate it all right away”. Who does “she” refer to, the mother or
the waitress? It is not possible to decide from the sentence alone without any context. A
text processing algorithm would struggle with this sentence. However, it is obvious to any
human that “she” in fact refers to the mother. It makes no sense for the waitress to eat
the food she just brought to a customer. People would call it common sense. And that is
exactly what a lot of modern algorithms lack.

Researchers have tried to instil common sense into algorithms before, but as the concept
of common sense is hard to grasp, these efforts had not been met with much success. Only
recently has there been some progress in this field. However, in order to build machines
that can do human tasks independently without supervision, it is of utmost importance that
they have common sense. The author believes it is a major limiting factor in advancing
artificial intelligence and thus was motivated to choose this topic for the thesis.

The goal of this work is to explore the current state of research into common sense
reasoning techniques, identify promising approaches and provide suggestions for future re-
search. The rest of this thesis is organised as follows: Chapter 2 contains the overview
of techniques used in natural language processing and common sense reasoning. It starts
off with an explanation of fundamental techniques common to a lot of machine learning
approaches and then continues to describe concepts specific to natural language processing.
Concepts used in machine comprehension are described in more detail as well. Chapter 3
describes publicly available datasets for machine comprehension tasks which require some
form of common sense reasoning. These datasets are used for training later in the the-
sis. Chapter 4 contains a portfolio of current models capable of common sense reasoning.
Architectures with various approaches to the problem were chosen to get an overview of
the current state of the field. Chapter 5 describes models used in the experiments in this
thesis and the nature of the experiments performed. The experiments are intended to pro-
vide insight into the model’s common sense reasoning capability and find its weaknesses or
strengths. Chapter 6 presents the results of the experiments and provides a deeper analysis
of the results of each experiment along with theories explaining them. Chapter 7 draws
conclusions from the results reported in the previous chapter and fulfils the goal of the
thesis by providing recommendations on future research in common sense reasoning and

natural language processing. These recommendations are based on the results found in the
thesis.

Chapter 2

Natural language processing

Natural language processing (NLP) is a branch of artificial intelligence that studies how to
process and analyse natural language using computers. It is concerned with analysing both
the syntax and the semantics of the given natural language. Main goals of NLP include
using computers to understand and speak natural languages at the human level.

In this chapter, the reader is introduced to the techniques currently used in NLP which are
relevant to this thesis. First, the fundamental concepts on which more advanced methods
are built on are described. Afterwards, the techniques specifically used in statistical question
answering which are applied in this thesis are explained.

2.1 Neural networks

The purpose of this section is to introduce the reader to the basics of neural networks.
We describe what they are, what is their purpose and how they work. We start with an
explanation of the principle of a single artificial neuron and then move on to networks with
multiple neurons. Finally, an overview of how neural networks learn is provided.

2.1.1 Artificial neuron

Information in this section were taken from [2].

The initial motivation for building neural networks was modelling biological neural
systems like the brain. A neuron is a basic computational unit of the brain. It is a cell
which has a number of connections called dendrites through which it receives input signals
and a single connection called an axon through which it produces output signals. The axon
branches and connects to dendrites of other neurons. In the biological model, the dendrites
carry the signal to the cell body where they all get summed. If the final sum is above a
certain threshold, the neuron can fire, sending a spike along its axon.

An artificial neuron is modeled after the description above. It is a computational unit
with a set of real-valued inputs x1, xo, x3...x,, and an output y. Each input x; also has a
corresponding weight w; which determines the influence of that input on the output. The
output of a neuron is the weighted sum of its inputs to which an activation function f is
applied. An activation function models the threshold for neuron firing. Figure 2.1 and 2.2
illustrates both models.

impulses carried
toward cell body
branches
of axon

axon

terminals

N impulses carried
away from cell body

Figure 2.1: Biological neuron [2]

o wWo
synapse
WoIo

4‘
axon from a neuron

cell body

f (Zwﬁi + b)
Z wW; T; + b .

output axon

activation
function

Figure 2.2: Artificial neuron [2]

There are multiple possibilities for an activation function. A common choice in the past

1

was the sigmoid function o = = (figure 2.3), but it is not used as often anymore due
e

to its limitations. Other possibilities are the tanh function (Figure 2.4) or Rectified Linear

Unit ReLU = maxz(0,z) (Figure 2.5).

Figure 2.3: Sigmoid function [2]

1.[1-/—

05k

Figure 2.4: Tanh function [2]

-10 -5 5 10
Figure 2.5: ReLU function [2]

The principle of an artificial neuron makes it appropriate for use as a binary classifier.
Depending on its weights, it outputs large values for some inputs and small values for
others. By thresholding the output, we can classify the inputs into 2 classes. For example,
the output of a neuron with a sigmoid activation function (>, x;w; +b) can be interpreted
as the probability of belonging to a class y P(y = 1|z1;x2;..; Tn; wi;we;..). In this case,
as the sigmoid function is restricted to the interval (0, 1), the threshold for classification
would be 0.5.

2.1.2 Neural networks

Information in this section were taken from [2].

By connecting multiple neurons (binary classifiers), we can detect more patterns in the
input data and solve more complex classification problems. In summary, neural networks
are acyclic directed graphs of neurons. Outputs of some neurons are connected to inputs
of other neurons and the calculation is propagated through the network. By convention,
neural networks are organised into layers where generally the input of a layer is the output
of a previous layer. However, there are layers which are interconnected in other ways. The
most common type of layer is the fully-connected layer where all neurons between adjacent
layers are connected with each other, but neurons within a single layer have no connections
between themselves.

Figure 2.6 illustrates examples of fully connected layers.

MUK
ey

i
)

output layer

)
Q)

input layer
hidden layer 1 hidden layer 2

Figure 2.6: 3-layer fully connected network [2]

2.1.3 Training neural networks for classification

In order for a neural network to perform the desired classification task, it needs to be
trained to do so. Training takes place using annotated data. Annotated data is a set of
inputs with a corresponding correct class. By feeding this data to the network, it can
adjust the weights on its neurons so that it predicts correct classes on the training data. To
facilitate training, a function which measures the difference between the correct classes and
the predicted classes based on the networks weights is defined. This function L(W) is called
a loss function with parameter W being a vector of all weights of all neurons in the network.
The goal of training is to minimise L(WW) as that will yield the most correctly predicted
classes. The training procedure is therefore a minimalisation problem. However, with a
large number of weights in the network, it is not feasible to solve it analytically. For this
reason, numerical methods such as gradient descent are used. However, gradient descent
requires the gradients of the loss function with respect to all its parameters as its input.
Computing these gradients is not a trivial task. To compute them, an efficient algorithm
called backpropagation has been developed. However, its description is not necessary for
understanding the contents of this thesis and therefore, it is not discussed here.

2.2 Language representation in neural networks

In this section, the reader is introduced to the concept of word embeddings. The concept
of word embeddings, the motivation for their usage and their properties are explained. In
the following subsection, word embedding models relevant to this thesis are described in
greater detail.

In order to process words using a neural network, they need to be converted into an
appropriate representation. As neural network input is a vector, the words need to be
transformed into vectors. A naive solution would be constructing a vocalbulary out of
all the words we want to process and using one-hot encoding to convert them into vector
representations. Each word would be an L-dimensional vector which is all zeros except
a single element which would be one. The non-zero element’s position would depend on
the position of the word in the vocalbulary. L is the size of the vocabulary. Figure 2.7
illustrates an example of this representation.

This approach has several problems. Firstly, the vectors are very sparse. This makes it
hard for the network the learn as only one neuron is activated with each word. Secondly,
this representation doesn’t capture any relations between the words. The vectors of all the
words are perpendicular to each other, making their dot product always 0. This would tell

us that words ,good“, ,better* and ,ship“ are totally different from each other, which is
obviously not true.

A better approach is using word embeddings. Word embeddings are dense vectors
representing words. They are shorter when compared to one-hot vectors, but every element
carries information instead of just one. Individual elements are in most cases not human
interpretable, but the vector as a whole captures 2 important pieces of semantic information:
semantic similarity between words, which is a measure of how similar is the meaning of
different words, and semantic relatedness, which is a measure of how related different words
are. Words are said to be related if their meaning ties to similar concepts, even if the words
themselves are not synonymous. For example, ,bus“ and ,car* are semantically similar,
but both are also semantically related to ,driving“. Figure 2.8 shows an example of word
embeddings.

Thanks to these properties, word embeddings help neural networks learn more complex
relationships and patterns in the text, allowing them to be used for more complicated tasks.
At the time of writing, there is a great variety of word embeddings for the English language.
Method of obtaining them is different for each variant. Examples include word2vec [13] or
GLoVe [17].

Paris

Rome\ \ word V\

Rome = [1; O B, 0y 0z 0. .. 07
Paris = [0; 1z O 0z 0 O ..u @1
ITtaly = [0 8 Ly 0, 0 0 = O
France = [0, 0, 0, 1, 0, 0, = 0]

Figure 2.7: Illustration of one-hot vectors for several words. [4]

] 1 2 3 4 B 6 7 a 9 .. 290 201 292
fox -0.34B6B0 -0.077720 OA77750 -0.094953 -0.452890 0.237790 0.209440 0.037886 0.035064 0.8%9010 .. -0.283050 0.270240 -0.654800 O0.10¢
ham -0.773320 -0.282540 0580760 0.841480 0.258540 0585210 -0.0218%0 -0.463680 0139070 0658720 .. 0464470 0481400 -0.82%200 0.35
brown -0.374120 -0.076264 0109260 0186620 0.02%343 0.182700 -0.631980 0.133060 -0.128980 0603430 .. -0.015404 0392890 -0.034826 -0.72(
beautiful 0471200 0534390 -0.348540 -0.097234 0101800 -0.170860 0.295650 -0.041816 -0.516550 2417200 .. -0.285540 0404670 0426310 042
jumps -0.334840 0.215990 -0.350440 -0.260020 O0.441070 0.154010 -0.386110 0.206380 0.386700 1.460500 .. -0.107030 -0.279480 -0.186200 -0.54:
eggs -0.417810 -0.035192 -0.126150 -0.215930 -0.669740 0513250 -0.7970%0 -0.068611 0.634660 1.256300 .. -0.232860 -0.139740 -0.681080 -0.37(
beans -0.423290 -0.264500 0.200870 0.082187 0.066944 1.027600 -0.989140 -0.259950 0.145960 0766450 .. O0.048760 0351680 -0.786260 -0.36f
sky 0.312550 -0.303080 0.019587 -0.354940 0.100180 -0.144530 -0.514270 0.886110 -0.530540 1.556600 .. -0.667050 0.279110 0.500970 -0.27%
bacon -0.430730 -0.016025 0.484620 04101320 -0.299200 0.761820 -0.353130 -0.3252%0 0.156730 0873210 .. 0304240 0413440 -0.540730 -0.03f
breakfast 0.073378 0.227670 0.208420 -04567%0 -0.078219 0601960 -0.0244%4 -0.467980 0.054627 2283700 .. 0647710 0373820 0.01%931 -0.03!
toast 0.130740 -0.193730 0.253270 0.090102 -0.272580 -0.030571 0.096%45 -0.115060 0.484000 0.848380 .. 0142080 0481910 0.045167 0.051
today -0.156570 0.594890 -0.031445 -0.077586 0.278630 -0.509210 -0.066350 -0.0B1890 -0.047986 2803600 .. -0.326580 -0.4133B0 0367910 -0.26:
blue 0129450 0.036518 0.0322%8 -0.060034 0.399840 -0.103020 -0.507880 0.076630 -0.422920 0815730 .. -0.501280 0169010 0.548250 -0.31¢
green -0.072368 0.233200 0437260 -0.156630 0.248440 0.349870 -0.241700 -0.091426 -0.530150 1.344300 .. -0.405170 0.243570 0.437300 -0.461
kings 0.259230 -0.8546%0 0.360010 -0.642000 0568530 -0.321420 0473250 0133030 -0.089720 1528600 .. -0.470090 0063743 -0.545210 -0.19:
deg -0.057120 0.052685 0.003026 -0.048517 0007042 0.041856 -0.024704 -0.039783 0.009614 0308446 .. 0.003257 -0.036864 -0.043878 0.000
sausages -0.174230 -0.064869 -0.046976 0.287420 -0.128150 0.647630 0.056315 -0.240440 -0.025094 0502220 .. 0302240 0195470 -0.653980 -0.2%¢
lazy -0.353320 -0.299710 -0.176230 -0.321%40 -0.285640 0586110 04411160 -0.418680 0.073093 1.486500 .. 0.402310 -0.038554 -0.288670 -0.24:
love 0.139490 0534530 -0.252470 -0.125650 O0.04B748 0.152440 0.199060 -0.065970 0.128830 2055200 .. -0.124380 0178440 -0.09246% 0.00¢
quick -0.445630 0191510 -0.245210 0465200 0161950 0.212780 -0.046480 0.021170 0417660 1.686900 .. -0.329460 0421860 -0.039543 0150
20 rows x 300 columns
Figure 2.8: Example of word embeddings for several words. [5]

2.2.1 WordPiece

Information in this section was taken from [24].

An approach to representing text as meaningful vectors similar to word embeddings
is using sub-word embeddings. In this case, instead of having a vector for each word in
the vocabulary, words are decomposed into their constituent parts. Embeddings are then
found for these parts and in a neural network, a word is represented by the vectors of its
constituent parts. In other words, some kind of sub-word units serve as the vocabulary
for the neural network. How exactly to split the words and what vectors to assign them
are problems each sub-word embedding methods solves differently. The advantage of these
approaches is that they can construct embeddings for new and unknown words. These
representations might also mirror the structure of real words more closely. For example,
in a lot of languages, words have prefixes and suffixes that slightly alter the meaning of
the word, but do not change it completely. Having individual embeddings for these word
modifiers might allow the vectors to capture these relationships. WordPiece is an approach
falling into this category that is described in this section as it is used later in the thesis.

To determine how to split words into their constituent parts (further referred to as
tokens), the WordPiece algorithm needs the desired number of tokens D to keep, e.g the
size of the vocabulary. With this, the objective of the algorithm is to find such D tokens,
that given a text training corpus, the number of tokens representing the corpus when all
words in it are split is minimal. This objective forces the algorithm to find the most most
common tokens, appearing in the largest number of words possible. Such tokens are more
likely to be meaningful.

The second task of the algorithm is to find vector representations for the found tokens.
This is accomplished through a language modelling task. In this task, the objective is to
predict a word in a text, given the sequence of words that precede it. In this case, tokens are

used in the task instead of words. Thanks to this, representations are found which capture
relationships between the tokens such as semantic similarity and semantic relatedness.

2.3 Recurrent neural networks

In this section, recurrent neural networks (RNNs) are described. RNNs are a special type
of a neural network used in natural language processing. First, the general concept is
introduced. Subsequently, RNNs used in this thesis are looked at in more detail.

2.3.1 General model

Recurrent neural networks share the same structure as neural networks described in section
2.1, except each layer also has an internal state, which captures information about previous
inputs of the layer. This allows the network to take past inputs into consideration when
processing current inputs. This internal state is often called a hidden state and effectively
serves as the network’s memory. Recurrent neural networks are widely used in NLP as they
allow temporal depedencies in the data, like context, to be captured. An RNN is illustrated
in figure 2.9.

Figure 2.9: A simple reccurent neural network. [3]

The hidden state is realized as a vector. At each input, a new hidden state is calculated
from the input and the previous hidden state. Output of the network is then calculated
from this new hidden state. The equations 2.1 and 2.2 show the formulas for a general
RNN. [3]

he = a(W R, + Wwhop,) (2.1)

yr = softmaz(W S hy) (2.2)

However, RNNs suffer from a range of problems. The hidden state cannot capture
all the information about previous inputs due to its limited size. This leads to the RNN
forgetting information from inputs further in the past, which makes processing of longer
texts infeasible. This issue has motivated researchers in development of more advanced
RNNs like the Gated Recurrent Unit [9], which we will now introduce.

10

2.3.2 Gated Recurrent Unit (GRU)

Gated recurrent unit (GRU) [9] is an advanced RNN that adds another layer of transfor-
mations between the input and the output. Instead of computing the new hidden state
directly from the input and the previous states, it first computes so-called gates. Gates
help the network determine the importance of current and past information so that it can
save the most relevant information in the new hidden state.

Specifically, GRU computes a reset gate r and an update gate z. The reset gate controls
how much information from the past is retained for future use. The update gate controls
how much information from the past should be used to compute the current output. The
equations 2.3 and 2.4 describe how to calculate the gate values.

Ty = J(W(T).Tt + U(T)ht_l) (23)
2t = O'(W(Z)IL‘t + U(Z)htfl) (24)

The gate vectors are used in the hidden state computation as shown in equations 2.5
and 2.6.

h, = tanh(Wz, + 1 - UP) (2.5)
hi =z - hi—1 + (1 — Z) . h; (26)

As can be seen from the formulas, when reset gate values are close to 0, the network
drops past information and mostly saves information from the current input. Similarly,
when the update gate values are close to 1, information from the past has a big part in
computing the new hidden state.

2.4 Attention mechanism

In this section, the attention mechanism and its uses are described. First, the general
definition of attention is provided and then its variants relevant to the thesis are explored.

2.4.1 General attention

According to [22], an attention function takes as input a set of key-value pairs and a query,
all of which are vectors. A compatibility function is computed between the query and all
given keys. This compability function outputs a score which signifies the relevance of the
value corresponding to the key with regards to the query. The output of the function is
a weighted sum of all the values with the scores computed by the compability function as
weights. [22] define attention as:

To provide some intuition on the definition, attention can be used to identify relevant
data with respect to some query. When the compatibility function of the query with each
key is computed, keys corresponding to important values with respect to the query will get
high scores while unimportant values will get low scores. When the output is computed as
a sum of the values weighted by the scores, the more important values will be a bigger part
of the output. We say that we are paying attention to these values.

The general advantage of attention mechanism is that it can look at the entire input
at once and choose the important passages. This is in contrast with RNNs which can only
work with the current input and the hidden state. In practice, the hidden state is unable

11

to capture past information about inputs deep in the past, which leads to loss of context.
Attention helps alleviate this issue. Attention is illustrated in figure 2.10.

[
o =
-~ Q = v
()] ©
5 25 © e 3 £ a T
0, 020m8SE,203598 &
© P e
NBESdEENSeoacc=z .V
La
destruction
de

I
équipement
signifie

que

la

Syrie

ne

peut

plus
produire

de
nouvelles
armes
chimigues

<end>

Figure 2.10: An illustration of attention on machine translation task. Matrix shows which
in french (rows) were paid attention when generating the English sentence (columns). [1]

2.4.2 Self-attention

Self-attention is an attention mechanism where the all the keys, values and the query are
from the same sequence. It is used to compute a new representation of this sequence. The
query is always a single element from the sequence while the keys and values are the entire
sequence. Output of this attention is a new representation of the element that was the
query. By progressively choosing every element as the query, a new representation of the
whole sequence is obtained.

2.5 Transformer encoder

Transformer encoder [22] is a neural architecture which is a combination of attention mech-
anisms and fully connected feed-forward network. The attention mechanism allows it to
learn dependencies in arbitrarily distant positions. Its architecture also allows for easy
parallelization during training.The remainder of this chapter describes the architecture of
a single transformer encoder unit which is illustrated in Figure 2.11.

12

I ~\
~—>{ Add & Norm

Feed
Forward

r

A

—

~>| Add & Norm |

Multi-Head
Attention
A+ 2

_ J

Figure 2.11: An architecture of a transformer encoder unit. [22]

Each transformer encoder unit is composed of two sub-layers. The first is a multi-
head self-attention layer, described later in this section, with the second one being a fully-
connected feed-forward neural network. Furthemore, there are also residual connections
around both sub-layers, followed by layer normalization. Residual connections connect the
unprocessed input to the output of the sub-layer and add them. Therefore, the output
of each sub-layer is defined by Layer Norm(x + Sublayer(x)) where z is the input and
Sublayer(x) is the function implemented by the sub-layer.

The multi-head attention sublayer is a modification of the self-attention mechanism
as described in section 2.4.2. The keys, values and query are all transformed using three
different linear layers. Afterwards, self-attention is applied to the sequence. The used key-
query compabatibility function is a simple dot product. A modification to the mechanism
lies in the fact that the attention scores are divided by v/d where d is the dimension of the
input vectors. This is done to decrease variance of the resultant dot product, which helps
with training as for some activation functions, gradients are biggest around values close to
zero. The described transformation is applied to the same input sequence multiple times
in parallel, but with different linear layer weights each time. The rationale is that thanks
to different transformations, the attention mechanism is able to attend to multiple aspects
of the input sequence, capturing its characteristics more robustly. Before applying the
softmax function to get the attention scores, it is possible to use a mask to mask out some
of the query-key scores, essentially assigning them the score of zero. This can be useful for
some tasks, but it is primarily used in other variations of the transformer architecture. The
output from each of the attentions is concatenated and transformed using a linear layer.
2.12 along with the equations 2.7, 2.8 and 2.9 illustrate this sublayer.

13

Scaled Dot-Product Attention Multi-Head Attention

MatMul

Mask (opt.)

Scaled Dot-Product u& h
Attention >

S S
[Linear]_][Linear],l[Linear]]

Q K Vv r

V K Q

Figure 2.12: An illustration of multi-head attention. [22]

. QKT
Attention(Q, K, V) = softmax 1% 2.7
(@) = sof (Nz) (2.7)
MultiHead(Q, K, V') = Concat(head;, heads, wo (2.8)
head; = Attention(QWiQ, KwWE vw)) (2.9)

The feed forward sublayer is a simple fully-connected layer network with 2 layers as
described in section 2.1. The output of the sublayer is described by the equation 2.10.

FFN(xz) =max(0,zW; + b1)W5 + by (2.10)

2.6 Bidirectional Encoder Representations from Transform-
ers (BERT)

BERT [11] is a neural architecture achieving state-of-the-art results in a wide range of NLP
problems. Structure-wise, it consists of L transformer encoder blocks stacked on top of
each other, with the result of the final block being the output of BERT.

The input of BERT consists of the following:

e A ,[CLS] token. Every input sequence of BERT begins with this token. Its pur-
pose is to have the corresponding output token serve as an aggregate input sequence
representation and use it for classification tasks.

e The sequence itself. In the case of sequence pairs, for example [Question, Answer],
they are packed together with a ,[SEP]“ token between them.Figure 2.14 illustrates
the high-level architecture of BERT and its input.

BERT uses the WordPiece embeddings described in section 2.2.1. However, to get the
final input representation, two other kinds embeddings are added to the WordPiece vectors:

e Segment embeddings. When working with sequence pairs, a learned segment embed-
ding A is added to every token of the first sequence and a learned segment embedding
B is added to every token of the second sequence. When the input consists of only
one sequence, only A embeddings are used.

14

e Positional embeddings as required due to using the transformer architecture.
An illustration of an example input can be found in Figure 2.13
w @EEEE
o (e [5][][5]
e -----------
e, EIEIEIEEEIEEE)

,,,,,

H
I
m

Figure 2.13: An illustration of BERT input format. [11]

Class
Label
_‘
[T][T] [Ty][Tiser)][T] [TM]
BERT
o | & [[B || B][& | []

/I_I\ G J1 ™ R S I U

]
_'_1 _’_l

Sentence 1 Sentence 2

Figure 2.14: BERT architecture and input. [11]

However, the main advantage of BERT does not lie in the architecture itself, but in
using pre-trained BERT models. Pretraining is a process where a model is trained on a
different task from the target task. The parameters learned from training are then used
as initial parameters for the model of the target task. The rationale behind this approach
is that pre-training allows the model to learn task-independent language features which
can be leveraged by the target task model. This technique has been shown to improve
performance in a wide range of NLP problems. [19]. BERT is pre-trained on 2 tasks:

e Masked language modelling. The task of the model in language modelling is to pre-
dict a given word based on its surrounding words. BERT pre-trains a bidirectional
language model, taking into account words before and after the given word. However,
in a multi-layer bidirectional language model, it is possible a layer asked to predict a
word could receive information about it from the representations of the surrounding
words outputted by the previous layer. To avoid this problem, 15% of words are
replaced with a ,[MASK]“ token and the model is only asked to predict those. Pre-
training on this task allows BERT to learn general features of the language which can
aid in any NLP task.

e Next sentence prediction. The input consists of 2 sentences and the task of the model
is to say whether the second sentence follows the first in a text. Pre-training on this

15

task allows the model to learn relationships between sentences, helping on sentence-
level tasks such as question answering.

2.7 Hyper-parameter optimization algorithms

Neural architecture have various hyperparameters such as the number of neurons in a layer,
training time or learning rate. It has been shown that varying these parameters can have
huge effects on the performance of the model, ranging from chance to state-of-the-art results.
[10]. Therefore, it is vital optimize these parameters use a method to its full potential. In
this chapter, techniques for hyperparameter optimization are described.

2.7.1 Grid search

The simplest technique for hyperparameter optimization is grid search. When using grid
search, a list of possible values for each hyperparameter is supplied by the user. The algo-
rithm tries every valid combination of hyperparameters and returns the set which performs
the best. This approach has several disadvantages. Firstly, the number of all combina-
tions can be extremely huge, making it computationally impossible to do an exhaustive
search. Secondly, the algorithm cannot deal with parameters which are expected to be in
a continuous range of values. These drawbacks have led to the development of alternatives
techniques, some of which are described below.

2.7.2 Random search

In random search, the hyperparameter space is once again given by the user. However,
compared to grid search, the space can be continuous and the algorithm will sample the
continous range when running trials. Furthermore, a probability distribution which to
sample can also be specified, allowing more refined control of which hyperparameter values
to try. Random search runs for a given number of iterations and in each, it samples each
hyperparameter from the distribution it has been given for it and tries those values as
the hyperparameter values. If the number of iterations is big enough, random search can
find hyperparameter values which are close to the optimum. However, this method does
not utilize any heuristics from previous runs, making the search inefficient and trials often
redundant. It is also possible to get unlucky and not find a good set of hyperparameters.

2.7.3 Hyperopt

Hyperopt [7] is a tool for optimizing over search spaces with real-valued, discrete, and
conditional dimensions. It uses algorithms with heuristics which consider previously tried
hyperparameter values and the corresponding results to how the individual parameters
affect the performance. With this information, it is possible to suggest a hyperparameter
values which are more likely to yield greater performance. One of these algorithms, the one
used for hyperparameter optimization of models in this thesis, is Tree of Parzen Estimators
[6]. However, its description is beyond the scope of this thesis and the curious reader is
referred to the original paper cited.

16

Chapter 3

Datasets for statistical question
answering

In this section, we describe publicly available datasets for question answering which are of
interest to us. The chosen datasets contain questions which often cannot be answered from
the text alone, but also require some commonsense knowledge about the world.

3.1 MCScript

MCScript [14] is a large dataset of narrative texts and question about these texts. These
texts describe every day events and activities such as going to the restaurant or taking a
shower from a first person perspective in chronological order. The reason for this format is
that the dataset is intended to test script knowledge. Script knowledge is knowledge most
modern humans have about how certain everyday scenarios, like going to the restaurant,
usually play out. In the restaurant example, the expected scenario is entering the restaurant,
getting seated, ordering food, waiting, eating, paying and leaving. As this is considered
common knowledge, a lot of information in the texts describing these scenarios is not
explicitly stated, but is implied by the situation. Therefore, answers to some question do
not have to be stated in the text, but a human could answer them correctly anyway. This
format makes it possible to what degree do machine comprehension system possess script
knowledge, which is the dataset’s purpose.

Each text has several question associated with it, each with 2 answer candidates and
exactly one correct answer. An example can be seen in Figure 3.1. The dataset was
published in 2018 and contains 13939 questions in total. 27.46% of these are marked as
requiring commonsense knowledge to answer correctly. 50.2% of the questions have the first
answer as the correct one, meaning the dataset is balanced class-wise. The dataset comes
split into training, development and test sets whose proportions are respectively 70%, 10%
and 20% of the dataset.

An analysis of the type of questions in the dataset has been performed. The motivation
behind this is to better understand the kind of reasoning necessary to answer them and to
evaluate performance of the models based on question type later in the thesis. A pie chart
depicting question type distribution can be be seen in Figure 3.2.

17

T I wanted to plant a tree. I went to the home
and garden store and picked a nice oak. After-
wards, I planted it in my garden.

Q1 What was used to dig the hole?
a. a shovel b. his bare hands

Q2 When did he plant the tree?
a. after watering it b. after taking it home

Figure 3.1: An example from the MCScript dataset [14]

other

how many/much

what/which
how long/often

how

where

yes/no

who/whose

Figure 3.2: Distribution of question types in the MCScript dataset

3.1.1 Test set

This section provides a separate analysis of the test set of the MCScript dataset. This
dataset will be used for evaluation of the models later in the thesis which is why its contents
are of particular interest.

The test sets contains 2797 questions of which 25.85% require commonsense knowledge
to answer. 50.77% of the questions have the first answer as the correct one. A subject
analysis can be found in Figure 3.3. It can be observed that both the proportion of com-
monsense question and the question types characteristics are similar to the ones in the
whole dataset. This is a good sign as it implies the test set is a representative sample from
the dataset.

18

other

how many/much

what/which
how long/often

where
yes/no

who/whose

Figure 3.3: Distribution of question types in the test set of the MCScript dataset

3.2 SWAG

SWAG [25] is a dataset containing descriptions of events in a video. Each item in the dataset
consists of a sentence describing the situation. The beginning of the next sentence is also
provided, along with 4 possible continuations. However, only one of these is correct. The
situations described are simple enough so that humans do not require to see the video to be
able to choose the correct continuation as it is usually natural given the setting. Therefore,
this dataset is suitable for testing machine comprehension system’s commonsense reasoning
ability. An example of an item from the dataset can be seen in Figure 3.4.

SWAG was published in 2018 and contains 113k multiple-choice question split into
training, development and test sets with respective sizes of 73k, 20k and 20k. To choose
incorrect candidate answers for each question, the authors of the dataset used a technique
called Adversarial Filtering to ensure that all 4 options are equally likely to be selected by
a system which considers only stylistic features of the answers such as matching or similar
words in the answer and the question. This ensures that to answer a question correctly,
the system must perform deep understanding of the text.

19

On stage, a woman takes a seat at the piano. She
a) sits on a bench as her sister plays with the doll.
b) smiles with someone as the music plays.
¢) is in the crowd, watching the dancers.
d) nervously sets her fingers on the keys.

A girl is going across a set of monkey bars. She
a) jumps up across the monkey bars.
b) struggles onto the monkey bars to grab her head.
¢) gets to the end and stands on a wooden plank.
d) jumps up and does a back flip.

The woman is now blow drying the dog. The dog
a) is placed in the kennel next to a woman’s feet.
b) washes her face with the shampoo.
c¢) walks into frame and walks towards the dog.
d) tried to cut her face, so she is trying to do something
very close to her face.

Figure 3.4: An example from the SWAG dataset [25]. The bolded answers are the correct
options.

20

Chapter 4

Existing work on commonsense
reasoning

This section presents recent approaches to commonsense reasoning and their results.

4.1 Three-way attentive networks (TriAN)

TriAN [23] is a recurrent neural network based model intended for the MCScript dataset
that uses attention to model interactions between the document, question and the answers.
It uses ConceptNet [20] as an external form of commonsense knowledge. ConceptNet is a
knowledge graph of words and phrases in natural language connected with labeled edges.
The label edges describe the relations between the connected items. Some examples of edge
labels are ,MadeOf*, ,IsA“, ,HasProperty“. TriAN has been submitted to Task 11 of the
SemEval 2018 competition [15] and placed 1st with at the time state-of-the-art result of
83.95% on the test set of the MCScript dataset.

The overall architecture of TriAN can be found in Figure 4.1. As input, they use
GloVe [17] embeddings. To these they concatenate binary vectors specifying the part-
of-speech role of the word, whether it is a named entity such as a location or a name and
handcrafted features. For words from the document, they query ConceptNet and determine
whether it shares an edge with some word from the question and the answer and include this
information as well. The next component in the architecture is an attention layer defined
by equations 4.1 and 4.2.

Attseq(u, {vitie,) = Z Q;v; (4.1)
i=1
o; = softmaz;(f(Wiu) " f(Wiv;)) (4.2)

Vector u serves as the query with the vectors v; being the keys and the values simulta-
neously. f is an activation function set to ReLU (Figure 2.5). This layer is used to model
interactions between the input. They calculate question-aware passage representation where
each word of the passage is used as the query for attention with keys and values being the
entire question. KEach such attention produces a new representation of the query word,
eventually giving a new representation for the whole document. Similarly, they calculate
passage-aware answer representation and question-aware answer representation.

21

Subsequently, for each input, they concatenate all its available representations and serve
them as an input into a bidirectional LSTM recurrent neural network [12] to obtain con-
textualized representations of the inputs. In the next layer, the answers and the question
are summarized into a fixed-length representation a and ¢ by self-attention over the con-
textualized tokens output by the LSTM layer. The used attention function is described by
equations 4.3 and 4.4.

Attgerr({ui}iy) z:azuZ (4.3)

o; = softmaz;(Wy u;) (4.4)

A fixed length passage p representation is computed by the Att,., attention function
defined by equations 4.1 and 4.2. The attention uses ¢ as the query and the contextualized
passage tokens from the LSTM are used as keys and values simultanously. Finally, the
probability of the answer a being correct for question ¢ given passage p is calculated as
defined by equation 4.5.

y=o(p' Wsa+q' Wia) (4.5)

e Used_for @
seq attention
At_location P q a
A 4 self- attentlon ¥ self- attentlon

BIiLSTM BILSTM BiLSTM

Related_to, !
passenger
ConceptNet vﬂ |:| |:| |:| |:| |:| |:|
query
passage question answer

Figure 4.1: An illustration of TriAN architecture. [23]

4.2 General reading strategies

In 2019, a machine reading comprehension technique inspired by cognitive science was in-

troduced. [21] The authors propose the implementation of general reading strategies for

humans into a neural network. They used the OpenAI GPT model [18] similar to BERT

(section 2.6) that uses a variation of the transformer architecture and is pre-trained as a uni-

directional language model. They complemented this model with the implemented general

reading strategies to achieve a new state-of-the-art of 89.5% on the MCScript dataset.
The authors of the technique proposed the following three reading strategies:

e Back and forth reading - This strategy imitates human reading process where they
go back and forth in the text to understand it better. The strategy is implemented
by considering both the original and reverse order of the input sequence. In the
basic design of the model, the input consists of the document concatenated with the
question, a delimiter token followed by the answer. With this strategy, they also

22

train a model where the input consists of the answer, a delimiter, the question and
the document. The two models are then ensembled.

e Highlighting - This reading strategy is inspired by people highlighting important in-
formation in a text to help them remember it. It is implemented as a set of 2 trainable
embeddings which are added to each word in the document. One of the embeddings
is used for important words and the other for the rest. Which embedding to use e.g
the importance of a word is determined by its part-of-speech tag and whether it also
appears in the question or the answer.

o Self-assesment - Self-asssesment is the process of asking oneself questions about a
just read text and checking if one can answer them. They implement this strategy
by taking the input document and generating questions with answer candidates to be
used for further pre-training. The questions are generated by selecting a few sentences
from the document. From these, find a span of text that is removed. The removed text
is used as an answer candidate along with other incorrect answer candidates generated
from different spans of text. The selected sentences after the answer removal is used
as a question and the model is asked to choose the correct text span to put into the
the now empty space.

4.3 BERT

BERT has already been described in Section 2.6. The reason why it is once again mentioned
is because even if there are no attempts to instill commonsense knowledge into the model
at training time, it still achieves state-of-the-art performance on commonsense reasoning
tasks. Specifically, it set the 86.3% state-of-the-art on the SWAG dataset (Section 3.2).
Previous approaches have tried to explicitly train commonsense reasoning and work with
commonsense knowledge. BERT sets an interesting precedent, indicating that commonsense
is not an ability on its own, but rather an emergent phenomenon. This is part of the reason
why BERT was chosen as the model the experiment with in this thesis.

23

Chapter 5

Experiments

This chapter presents the efforts of this thesis in exploration of the nature of commonsense
reasoning current models are able to perform. First, a baseline model was implemented and
trained where there was no attempt to instill any commonsense knowledge into it except by
training on the target dataset. This makes it possible to evaluate the efficiency of various
strategies that attempt to teach commonsense knowledge. The second part of this chapter
describes experiments with a state-of-the-art model which provide insight into the model’s
commonsense reasoning capabilities. In both cases, the PyTorch [16] framework was used
for implementation.

5.1 Stanford Attentive Reader baseline

The baseline has been inspired by the Stanford Attentive Reader model [8], but in this
thesis the author implemented it with a few modifications.

The model is trained on the MCScript dataset, described in section 3.1. As input, GloVe
embeddings [17] are used. The document, question, and both answers are all indepedently
contextualized using a GRU unit, described in section 2.3.2. To get a question-aware
document representation, document-to-question is performed. In more detail, for each
document token t1,%2..t, output by the GRU unit, attention score s; is computed using
the attention function. The query of the attention is the final hidden state of the GRU
unit for the question gq. These scores are then used to perform a weighted average of all
the document tokens, resulting in a final, question-aware document representation. As the
attention function, we use a bilinear interaction function with learnable parameters W, and
bias b. Equations 5.1 and 5.2 describe these calculations.

s; = Softmax(t;—Waq +b) (5.1)

t= Z Sjtj (52)
J
To obtain a score specifying how likely an answer is correct, another bilinear interaction
function with learnable parameters Wy between the document representation and the final
hidden state of the GRU unit for the answer a is used. Finally, a softmax function is
performed over the scores to transform them into probabilities and an answer is chosen
based on those. Equation 5.3 describes this process.

24

plalt, q) = softmaz(t’ Wa) (5.3)

An illustration of the architecture can be found in Figure 5.1.

P1,P2

T

Answer scoring

plalt, q) = softmax(t” Wa)

A A

8; = s/o_f"imam(ﬂjr Waq + b)

t=>3 st
i

Attention

A A

a1, @ q ity ty
GRU GRU GRU
Answers 1 and 2 Question Document

Figure 5.1: Modified Stanford Attentive Reader architecture used as a baseline in this
thesis.

5.2 BERT experiments

To explore current model’s commonsense reasoning capabilities, the BERT model, described
in section 2.6 was chosen. This model is interesting because it achieves state-of-the-art
results on difficult commonsense reasoning tasks like SWAG (Section 3.2) even though
there was no attempt to instill commonsense knowledge into the model at training time. It
also does not work with any external commonsense knowledge sources, indicating that the
knowledge is encoded within the parameters themselves. The author of this thesis sees this
approach to commonsense reasoning as promising and that is why this thesis investigates
it further.
Specifically, the following experiments are performed on the BERT model:

e BERT is trained on the MCScript dataset. The purpose of this experiment is to find
how much commonsense knowledge does BERT contain pretrained on out-of-the-box.
Hyperopt, described in section 2.7.3, is used to optimize the hyperparameters of the
model.

e BERT is trained on the SWAG dataset. This model is further trained on the MCScript
dataset. The purpose of this experiment is to see whether it is possible to instill

25

more commonsense knowledge into the model by pretraining on related tasks when
compared to out-of-the-box pretrained BERT.

e BERT is trained on the MCScript dataset, but not all the information is about the
question is given. Specifically, a model is trained which only gets the question and
the answers as the input, without the document. Furthermore, a model which only
gets the document and the answers (without the question) is also trained. Finally,
an experiment is performed where only the answers are given on the input. The
purpose of these experiments is to ascertain that the question cannot be answered
using stylistic features without deep understanding. In case some of the question are
answerable anyway, these experiments will provide insight into their nature and how
the model makes its decisions.

For all the experiments, BERT}4y4c architecture from the BERT paper [11] is used. This
model consists of 24 transformer blocks, each having 16 attention heads, hidden size 1024
and feed-forward size of 4096. This model contains approximately 340 million parameters.

26

Chapter 6

Results and discussion

In this chapter, results of the experiments described in the previous section are presented
and their implications are discussed. For quantitative evaluation, the models are evaluated
on the test set of the MCScript dataset and the accuracy metric is used. Accuracy in this
case is defined as the number of correctly answered questions divided by the total number of
questions. There is no need for more sophisticated evaluation metrics, such as the F1l-score,
as the dataset is class-wise almost perfectly balanced. Table 6.1 contains results from all
the experiments.

Model Accuracy
Baseline 68.54%
State of the art 89.50%
BERT 88.38%

BERT pre-trained on SWAG 87.69%
BERT without input document | 78.08%
BERT without input question 85.52%
BERT input answers only 72.83%

Table 6.1: Results of the experiments.

The results of the experiment seem very surprising for several reasons. For example,
it seems that pre-training an already pre-trained model does not seem to help, even if the
tasks are related. Furthermore, BERT is able to achieve high accuracies even when crucial
inputs, such as the document, are missing. In order to better understand these results, the
rest of this chapters examines the predictions made by the model in each experiment more
deeply.

6.1 Experiment #1: Training BERT on MCScript

In this experiment, the trained BERT model achieves accuracy of 88.38% on the MCScript
dataset. This is only 1.12% than the current state of the art [21]. However, unlike in [21],
BERT contains no task-specific architecture for the dataset or even machine comprehension
in general. This suggest that the main benefitting factor is the superior way of pre-training.
This is further supported by comparing the performance of BERT to the baseline. Neither

27

of the models are using any commonsense knowledge bases and BERT has over 20% increase
in performance.

When examining questions incorrectly answered by the model, it was found that 32.61%
are questions requiring commonsense reasoning to answer. This constitutes 14.66% out
of all commonsense questions. The proportion of commonsense questions in the set of
incorrectly answered question increased from the 25.85% present in entire test set, implying
that these questions are harder to answer when compared to questions having an answer in
the text. This is not surprising, but it shows the model is still struggling with commonsense
reasoning. However, there is only a difference of 6.76%), indicating that the main bottleneck
of the model does not come from lack of commonsense reasoning ability, but inability to
understand more complex relations in a text.

This is further supported by taking a look at the question type distribution of the
incorrectly answered questions. This can be found in Figure 6.1. When compared to the
overall distribution of question in the test dataset (Figure 3.3), it can be seen that the
proportion of ,yes/no“ and ,other® increased the most, indicating the model struggles with
them. A possible explanation is that these types of questions might sometimes require
complex reasoning to answer. On the other hand, more fact-based types of questions such
as ,who/whose* or ,,what/which“ decreased in proportion the most, possibly because they
do not require as much reasoning.

other

how many/much

what/which how long/often

how

when

where

who/whose yes/no

Figure 6.1: Question distribution of incorrectly answered questions in experiment # 1.

28

6.2 Experiment #2: Pre-training BERT on SWAG

Examining the incorrectly answered questions in the second experiment, it was found that
30.20% of them require commonsense reasoning. While this is less than 32.61% reported
in the first experiment (Section 6.1), these questions constitute 14.24% of all commonsense
questions. This is less than 14.66% reported previously, but it is not a statistically significant
difference. Furthermore, as reported in Table 6.1, the overall performance was worse.
Therefore, it seems that the pre-training has hurt the model’s ability to extract information
from text. This may be partly explained by the differences between the SWAG and the
MCScript dataset. Examples in SWAG always consist of 2 sentences. To answer them,
the model does not need to extract information from a longer text, unlike in the MCScript
dataset, where the documents are mostly 104 sentences long. It is therefore reasonable to
conclude that language model pre-training provides a sufficient foundation for downstream
tasks to benefit from and task-specific pre-training is no longer necessary.

Examining the distribution of question types of incorrectly answered questions (Figure
6.2) yields similar results as in Section 6.1. Explanation for these results is therefore also
similar.

other

how many/much

wh hich
at/whic how long/often

where

who/whose yes/no

Figure 6.2: Question distribution of incorrectly answered questions in experiment #2.

6.3 Experiment #3: Question answering without the infor-
mation document

The high performance of the model in this experiment is surprising. Furthermore, the
proportion of commonsense questions in the set of incorrectly answered set is only 17.45%.

29

In the set of all commonsense questions, these make up 14.79%, value very similar to the
one in previous experiments. In other words, the removal of the document did not harm
the model’s ability to answer commonsense questions at all. Given that the answers to the
commonsense questions are not found in the document, this result is intuitive. However,
the model was still able to answer text-based questions surprisingly well. Given current
performance on commonsense questions, if the model was answering text-based questions
randomly, the overall expected accuracy 59.10%. The difference of 18.98% between the
actual and expected performance indicates that the dataset contains biases and/or stylistic
features which the model was able to pick up on. Further work is necessary to pinpoint the
exact cause of this disrecipancy.

Examining the question type distribution of the incorrectly answered questions (Figure
6.3), it can be seen that it is mostly similar to the overall distribution in the test set (Figure
3.3) except for types ,who/whose“, ,how long/often“ and ,how many/much“, which are
considerably less represented. This is surprising as these questions inquire about factual
information. However, this confirms the presence of systematic biases in the dataset.

other

what/which how many/much

how long/often

yes/no

where

who/whose why

Figure 6.3: Question distribution of incorrectly answered questions in experiment #3.

6.4 Experiment #4: Question answering without the ques-
tion

There were no note-worthy results about commonsense questions. 33.50% of all incorrectly
answered questions were commonsense, constituting 18.53% of all commonsense questions.
These results are understandably slightly worse than in the first experiment (Section 6.1),

30

but are still comparable. However, this experiment showed the unimportance of the question
in contextualizing the answers in this dataset. The performance of 85.52% is only 2.85%
less than the best performance achieved. It seems that without the question, the model is
choosing answers which seem more relevant to the document. To confirm this, the results
were manually examined. It was found that in a lot of examples, the correct answer is
present in the text while the information in the incorrect one is not mentioned in the text
even in a different context, which could make it harder to choose without a question. This
way, it is easy for the model to learn to choose the answer more relevant to the text. This
argument is further supported by looking at the question type distribution in Figure 6.4. By
far the most prominent type is the ,;yes/no“ question type. In these questions, the answers
are sometimes just a single word indicating the answer. In this case, it is impossible to
make any reasonable guess about the correct answer without knowing the question, thus
explaining the poor performance on this question type.

other

what/which

how many/much

‘when how long/often

where how

who/whose

yes/no

Figure 6.4: Question distribution of incorrectly answered questions in experiment #4.

6.5 Experiment #5: Classifying stand-alone answers

In this experiment, 24.67% of incorrectly commonsense question required commonsense
knowledge. This is approximately equal with the distribution of questions in the test set, in-
dicating that the model has equal performance on both commonsense and non-commonsense
questions. However, the main finding in this experiment is that the answers contain enough
information to be distinguishable by themselves to some degree. Choosing the answers at
random, the expected accuracy would be 50%, 22.83% less than the observed performance.

31

Intuitively, the learned classification process must be meaningless in the context of actually
answering the underlying questions. This confirms the presence of an unintended stylistic
bias in the dataset. Further evidence can be found in Figure 6.5, depicting the question type
distribution of incorrectly answered questions. The types ,who/whose, ,how many/much*
and ,how long/often“ are underrepresented when compared to the distribution in the test
set. The same phenomenon could be observed in experiment 3 (Section 6.3), indicating
that both models are picking up on similar biases in the answers.

other

how many/much

how long/often

how

where

yes/no
who/whose

Figure 6.5: Question distribution of incorrectly answered questions in experiment #35.

6.6 Summary

The experiments described above yielded the following main findings:

e Pre-training on a language modelling task seems to instil enough commonsense knowl-
edge into the model for it not to have significantly more difficulty with commonsense
question than with text-based ones. In fact, while commonsense questions were a bit
harder to answer, the main bottleneck of performance is general text comprehension
ability, not commonsense reasoning.

e Pre-training models on related tasks to the target tasks no longer helps when the
model has already been pre-trained on a more general task, for example language
modelling. This further supports the argument that commonsense reasoning is an
ability arising from a solid language understanding, not a skill to be learned on its
own.

32

e The answer candidates in the MCScript dataset stylistic biases which allow them to
be distinguished even without their corresponding documents and questions. Further-
more, the information in the incorrect answer can often not be found in the document
in any context, making it possible to reliably choose the correct answer without even
knowing the question. These artifacts highlight the difficulty of collecting represen-
tative, unbiased machine learning datasets and call for more sophisticated techniques
to be developed.

33

Chapter 7

Conclusion

In this thesis, the commonsense reasoning abilities of machine comprehension models were
examined. A state-of-the-art model was implemented, trained and evaluted in various sce-
narios through several experiments. It was discovered that this model was capable of using
commonsense knowledge even without an external source of it or having it purposefully
instilled during training. Instead, commonsense reasoning ability seems to arise as a re-
sult of general text understanding. Therefore, instead of trying to make models learn a
high-level reasoning ability, the authors suggests improving the fundamentals of language
understanding through techniques such as transfer learning or multi-task learning. Fur-
thermore, it was also discovered that a popular commonsense reasoning dataset, MCScript,
contains statistical biases which help models bypass the need for language understanding
to answer the question. In one of the experiments, a model was able to correctly choose
the correct answer to a question 72% percent of the time even when the question and an
information document were not provided. Biases like these make it hard to evaluate model’s
true ability to deal with the target task in real-life scenarios as it is hard to check what fac-
tors influence the final decision. This discovery highlights the difficulty of collecting a truly
representative dataset and raises a call for the development of more sophisticated dataset
creation techniques which would detect and remove any unintended statistical biases. Per-
haps even more so however, it highlights the need for the development of better training
methodologies. It is unreasonable to expect a model to perform a high-level complex task
with reliability without being able to do any other similar tasks. Unlike a human, the
model has no way to tell which features are meaningful in the context of the target task
and which are just incidental correlations. Once again, the author sees transfer learning
and multi-task learning as a potential remedy for these problems if more progress in these
areas is made. Until these problems are solved, it is recommended to carry out an analysis
looking for statisticial biases in any dataset used for training neural models. A potential
continuation of this work could collect more datasets and perform this analysis. Another
possible contiuation would lie in exploration of other commonsense reasoning tasks and
identifying weaknesses of the current model.

34

Bibliography

1]

Attention and memory in deep learning and NLP. [Online; retrieved on 15.01.2019].
Retrieved from: http:
//www.wildml.com/2016/01/attention-and-memory-in-deep-learning-and-nlp/

CS231N Convolutional Neural Networks for Visual Recognition. [Online; retrieved on
15.01.2019].
Retrieved from: http://cs231n.github.io/neural-networks-1/

Natural Language Processing with Deep Learning CS224N, Recurrent Neural
Networks and Language Models. [Online; retrieved on 20.01.2019].

Retrieved from: https://web.stanford.edu/class/archive/cs/cs224n/
cs224n.1174/lectures/cs224n-2017-1lecture8.pdf

One hot encoding of text. [Online; retrieved on 15.01.2019].
Retrieved from:
https://medium.com/@athif.shaffy/one-hot-encoding-of-text-b69124bef0a7

Understanding feature engineering part 4: Deep learning methods for text data.
[Online; retrieved on 15.01.2019].

Retrieved from: https://towardsdatascience.com/understanding-feature-
engineering-part-4-deep-learning-methods-for-text-data-96c44370bbfa

Bergstra, J.; Bardenet, R.; Bengio, Y.; et al.: Algorithms for Hyper-Parameter
Optimization. In NIPS. 2011.

Bergstra, J.; Yamins, D.; Cox, D. D.: Making a Science of Model Search:
Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures.
In ICML. 2013.

Chen, D.; Bolton, J.; Manning, C. D.: A Thorough Examination of the CNN /Daily
Mail Reading Comprehension Task. In Association for Computational Linguistics
(ACL). 2016.

Cho, K.; van Merrienboer, B.; Giilgcehre, C.; et al.: Learning Phrase Representations
using RNN Encoder-Decoder for Statistical Machine Translation. CoRR. vol.
abs/1406.1078. 2014. 1406.1078.

Retrieved from: http://arxiv.org/abs/1406.1078

Cox, D. D.; Pinto, N.: Beyond simple features: A large-scale feature search approach
to unconstrained face recognition. Face and Gesture 2011. 2011: pp. 8-15.

35

http://www.wildml.com/2016/01/attention-and-memory-in-deep-learning-and-nlp/
http://www.wildml.com/2016/01/attention-and-memory-in-deep-learning-and-nlp/
http://cs231n.github.io/neural-networks-1/
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/lectures/cs224n-2017-lecture8.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/lectures/cs224n-2017-lecture8.pdf
https://medium.com/@athif.shaffy/one-hot-encoding-of-text-b69124bef0a7
https://towardsdatascience.com/understanding-feature-engineering-part-4-deep-learning-methods-for-text-data-96c44370bbfa
https://towardsdatascience.com/understanding-feature-engineering-part-4-deep-learning-methods-for-text-data-96c44370bbfa
1406.1078
http://arxiv.org/abs/1406.1078

[11]

[12]

[13]
[14]

[21]

[22]

[23]

Devlin, J.; Chang, M.; Lee, K.; et al.. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. CoRR. vol. abs/1810.04805. 2018.
1810.04805.

Retrieved from: http://arxiv.org/abs/1810.04805

Hochreiter, S.; Schmidhuber, J.: Long Short-term Memory. Neural computation.
vol. 9. 12 1997: pp. 1735-80. doi:10.1162/neco.1997.9.8.1735.

Mikolov, T.; Chen, K.; Corrado, G.; et al.: .

Ostermann, S.; Modi, A.; Roth, M.; et al.: MCScript: A Novel Dataset for Assessing
Machine Comprehension Using Script Knowledge. CoRR. vol. abs/1803.05223. 2018.
1803.05223.

Retrieved from: http://arxiv.org/abs/1803.05223

Ostermann, S.; Roth, M.; Modi, A.; et al.: SemEval-2018 Task 11: Machine
Comprehension Using Commonsense Knowledge. In Proceedings of The 12th
International Workshop on Semantic Evaluation. New Orleans, Louisiana:
Association for Computational Linguistics. June 2018. pp. 747-757.
doi:10.18653/v1/S18-1119.

Retrieved from: https://www.aclweb.org/anthology/S18-1119

Paszke, A.; Gross, S.; Chintala, S.; et al.: Automatic differentiation in PyTorch. 2017.

Pennington, J.; Socher, R.; Manning, C. D.: GloVe: Global Vectors for Word
Representation. In Empirical Methods in Natural Language Processing (EMNLP).
2014. pp. 1532-1543.

Retrieved from: http://www.aclweb.org/anthology/D14-1162

Radford, A.: Improving Language Understanding by Generative Pre-Training. 2018.

Razavian, A. S.; Azizpour, H.; Sullivan, J.; et al.. CNN Features off-the-shelf: an
Astounding Baseline for Recognition. CoRR. vol. abs/1403.6382. 2014. 1403.6382.
Retrieved from: http://arxiv.org/abs/1403.6382

Speer, R.; Chin, J.; Havasi, C.: ConceptNet 5.5: An Open Multilingual Graph of
General Knowledge. CoRR. vol. abs/1612.03975. 2016. 1612.03975.
Retrieved from: http://arxiv.org/abs/1612.03975

Sun, K.; Yu, D.; Yu, D.; et al.: Improving Machine Reading Comprehension with
General Reading Strategies. CoRR. vol. abs/1810.13441. 2018. 1810.13441.
Retrieved from: http://arxiv.org/abs/1810.13441

Vaswani, A.; Shazeer, N.; Parmar, N.; et al.: Attention is All you Need. In Advances
in Neural Information Processing Systems 30, edited by 1. Guyon; U. V. Luxburg;
S. Bengio; H. Wallach; R. Fergus; S. Vishwanathan; R. Garnett. Curran Associates,
Inc.. 2017. pp. 5998-6008.

Retrieved from:
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Wang, L.: Yuanfudao at SemEval-2018 Task 11: Three-way Attention and Relational
Knowledge for Commonsense Machine Comprehension. CoRR. vol. abs/1803.00191.

36

1810.04805
http://arxiv.org/abs/1810.04805
1803.05223
http://arxiv.org/abs/1803.05223
https://www.aclweb.org/anthology/S18-1119
http://www.aclweb.org/anthology/D14-1162
1403.6382
http://arxiv.org/abs/1403.6382
1612.03975
http://arxiv.org/abs/1612.03975
1810.13441
http://arxiv.org/abs/1810.13441
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

[24]

[25]

2018. 1803.00191.
Retrieved from: http://arxiv.org/abs/1803.00191

Wu, Y.; Schuster, M.; Chen, Z.; et al.: Google’s Neural Machine Translation System:
Bridging the Gap between Human and Machine Translation. CoRR. vol.
abs/1609.08144. 2016. 1609.08144.

Retrieved from: http://arxiv.org/abs/1609.08144

Zellers, R.; Bisk, Y.; Schwartz, R.; et al.: SWAG: A Large-Scale Adversarial Dataset
for Grounded Commonsense Inference. CoRR. vol. abs/1808.05326. 2018. 1808.05326.
Retrieved from: http://arxiv.org/abs/1808.05326

37

1803.00191
http://arxiv.org/abs/1803.00191
1609.08144
http://arxiv.org/abs/1609.08144
1808.05326
http://arxiv.org/abs/1808.05326

	Introduction
	Natural language processing
	Neural networks
	Language representation in neural networks
	Recurrent neural networks
	Attention mechanism
	Transformer encoder
	Bidirectional Encoder Representations from Transformers (BERT)
	Hyper-parameter optimization algorithms

	Datasets for statistical question answering
	MCScript
	SWAG

	Existing work on commonsense reasoning
	Three-way attentive networks (TriAN)
	General reading strategies
	BERT

	Experiments
	Stanford Attentive Reader baseline
	BERT experiments

	Results and discussion
	Experiment #1: Training BERT on MCScript
	Experiment #2: Pre-training BERT on SWAG
	Experiment #3: Question answering without the information document
	Experiment #4: Question answering without the question
	Experiment #5: Classifying stand-alone answers
	Summary

	Conclusion
	Bibliography

