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Abstract: As a global vibration characteristic, natural frequency often suffers from insufficient
sensitivity to structural damage, which is associated with local variations of structural material
or geometric properties. Such a drawback is particularly significant when dealing with the large
scale and complexity of sluice structural systems. To this end, a damage detection method in sluice
hoist beams is proposed that relies on the utilization of the local primary frequency (LPF), which is
obtained based on the swept frequency excitation (SFE) technique and local resonance response band
(LRRB) selection. Using this method, the local mode of the target sluice hoist beam can be effectively
excited, while the vibrations of other components in the system are suppressed. As a result, the
damage will cause a significant shift in the LPF of the sluice hoist beam at the local mode. A damage
index was constructed to quantitatively reflect the damage degree of the sluice hoist beam. The
accuracy and reliability of the proposed method were verified on a three-dimensional finite element
model of a sluice system, with the noise resistance increased from 0.05 to 0.2 based on the hammer
impact method. The proposed method exhibits promising potential for damage detection in complex
structural systems.

Keywords: hoist beam; damage detection; local primary frequency; local mode; local resonance
response band

1. Introduction

A sluice is considered as a typical structural system that is frequently used in the field
of water infrastructure engineering. To meet the demand of water conservancy functions
such as flood control, irrigation, drainage, water diversion, and environmental protection,
a great number of sluices have been constructed [1,2]. Hoist beams are important structural
components in sluice systems, bearing significant dynamic loads when the sluice gates
are opened. Unfavorable factors such as rain erosion, material aging, and over-load will
inevitably result in damage occurrence in the hoist beams [3]. The accumulation of damage
areas during operation seriously impairs the structural performance and may eventually
lead to catastrophic failure [4,5]. Therefore, it is an urgent requirement to develop effective
damage detection methods for hoist beams to guarantee the operational safety of sluice
structural systems.

Traditionally, damage detection in hoist beams relies heavily on visual inspection,
which is largely influenced by subjective factors [6–8]. In the past decade, several emerging
methods have been proposed to overcome the defects of the visual method [9]. While

Sensors 2021, 21, 6357. https://doi.org/10.3390/s21196357 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21196357
https://doi.org/10.3390/s21196357
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21196357
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21196357?type=check_update&version=2


Sensors 2021, 21, 6357 2 of 16

the methods relying mainly on ground-penetrating radar, ultrasonic, or infrared imaging
show advantages of objectivity over the traditional visual inspection method, they have
noticeable limitations. For example, ground-penetrating radar is only suitable for detecting
damage on large-scale structures. Ultrasonic detection cannot perceive closed cracks that
have an insignificant effect on ultrasonic propagation. The infrared imaging method is
effective only when the damage position is known. In addition, these methods depend on
localized or manual measurement, the efficiency of which is restricted in real-time global
information collection [10,11].

Vibration-based methods offer attractive solutions for damage detection in hoist
beams [12,13]. The principle of vibration-based methods relies on the fact that damage
will alter structural modal parameters [14,15], which, in turn, can reflect the damage
state [16–18]. Generally, the changes in modal parameters are obtained by conducting field
experiments, where the vibration responses of the sluice are measured combined with
experimental modal analysis procedures [19–22]. In theory, rich structural information
related to damage positions is contained in mode shapes [23]. However, the measured
modal shapes are normally incomplete, even when using multiple sensing positions [24].
On the other hand, the damping ratio is difficult to measure and susceptible to factors
such as the ambient temperature, which undermines the reliability of damage detection
results [25]. Comparatively, natural frequencies can be measured with high accuracy and
stability and thus show promising potential in engineering applications [26,27].

Natural frequency-based damage detection has been widely reported, with significant
progress achieved in recent decades [28–30]. Chondros et al. studied the relationship
between natural frequency changes and crack depths in a fixed beam based on theoretical
analysis and experiments [31,32]. Chinchalkar et al. simulated cracks using rotating
springs and studied the effect of the damage size and position on natural frequencies.
The first three-order natural frequencies were used to identify damage positions [33].
Wei et al. proposed a damage detection method based on the natural frequency vector
and its guarantee criterion. The numerical results demonstrated that the method can
accurately identify the damage position and degree in a simply supported beam [34]. Wang
et al. investigated the feasibility and effectiveness of using the acceleration frequency
function to identify the structural damage in underground tunnel structures [35]. Wang
et al. proposed a frequency-based method to describe the dynamic response of a structure
with an auxiliary mass combined with information of frequency shifting and amplitude
changing [36]. Nevertheless, the sensitivity of existing methods based on natural frequency
is not sufficient for local damage in complex, large-scale structures such as sluice structural
systems [37–39]. Therefore, it is crucial to effectively reflect the local damage in the global
complex structure.

This study attempted to develop a damage detection method for hoist beams based on
structural local modes. In structural dynamics, a local mode is defined as a specific mode for
a complex structural system consisting of multiple substructures, of which one substructure
vibrates, overwhelming other substructures. Such a substructure absorbs almost all of
the vibration energy, and the damage effect on this substructure will be significantly
magnified [40,41]. Mei et al. utilized local vibration under the excitation of piezoelectric
wafer active sensors to detect and quantify delamination in composite plates [42]. Hou
et al. defined the natural frequency corresponding to the local mode as the local primary
frequency (LPF) of the substructure. Due to the high sensitivity of the LPF to damage, a
single-order LPF is sufficient for damage identification in the substructure [43]. The premise
of using LPF to detect damage in the hoist beams is to fully stimulate the local mode, which
depends on suitable excitation methods. This study proposed a method of using swept
frequency excitation (SFE) combined with local resonance response band (LRRB) selection
to obtain the local modes of a sluice system. This work is a different attempt from other
methods, especially those focusing on algorithms, and is expected to break through the
shortcomings of existing methods from another perspective. The innovation of this method
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lies in the ingenious excitation and use of the local mode phenomenon to overcome the
insensitivity of frequency to damage, thus facilitating damage detection.

The rest of this paper is organized as follows: Section 2 theoretically demonstrates that
the LPF mainly reflects the vibration characteristics of the substructure by the frequency
sensitivity to substructure damage. Section 3 provides a numerical example of a fixed
beam to illustrate the realization of the proposed method with the assistance of the LRRB.
Section 4 constructs the numerical model of a sluice system to verify the effectiveness of
the method. Section 5 carries out a parametric study to discuss the influencing factors such
as the sensor position, excitation form, and measurement noise, and Section 6 presents the
conclusions.

2. Damage Factor Formation Based on Local Modes
2.1. Frequency Sensitivity to Substructural Damage

For an n DOF linear system comprising m substructures, the vibration characteristic
equation of the system can be expressed as(

K − ω2
r M
)
ϕr= 0 (1)

where K and M are the global stiffness and mass matrix, respectively; ωr and ϕr repre-
sent the rth-order angular frequency and modal shape, respectively. αi is defined as the
coefficient of stiffness reduction caused by damage on the ith substructure, and Ke

i is the
stiffness matrix of the substructure. Hence, the global stiffness matrix can be integrated
to be

K =∑m
i=1 αiKe

i (2)

Generally, the mass matrix is assumed to be irrelevant with damage, and the local
stiffness matrix of the jth (j 6= i) substructure is also not affected by damage existence; thus,
it has

∂M
∂αi

= 0;
∂Kj

∂αi
= 0 (3)

The frequency sensitivity coefficient can be defined as

ξr,i =
∂ωr

∂αi
=

ϕT
i,rK

e
i ϕi,r

2ωr
(4)

For a given system, the frequency sensitivities of different substructures are compared
at the same order of frequencyωr, and Ke

i can be constructed, meaning ξr,i is dependent
on the magnitudes of the modal shapes.

2.2. Local Modes of Substructures

For an n DOF system (comprising m substructures), a series of ξr,i (1< r < n) can
be constructed according to Equation (4) for damage identification on substructure i.
Assuming the highest ξr,i magnitude, corresponding to the vth vibration mode, is

ξv,i =
ϕT

i,vKe
i ϕi,v

2ωv
(5)

ξv,i is usually associated with a local mode of the system, where the response amplitude of
the ith substructure is the highest among all substructures, and the corresponding natural
frequency is defined as the local primary frequency, i.e.,ωLP [40]. Under the local mode,
a large amount of structural vibration energy is concentrated on the ith substructure, the
damage in which will, in turn, cause significant variation inωLP.
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2.3. Damage Index

Leveraging on the high damage sensitivity of local modes, the change ratio of ωLP
can be utilized to indicate the existence and severity of damage, giving rise to a damage
index defined as

DI =
ωLP,n −ωLP,d

ωLP,n
(6)

whereωLP,n andωLP,d are captured under undamaged and damaged states of structures,
respectively. In theory, the local mode andωLP can be identified by solving the characteris-
tic equation of vibration and by mode shape comparison. However, it is difficult to obtain
the local modes in engineering practice because of the uncertainties associated with factors
such as material/geometric parameters and boundary conditions.

3. Damage Identification Evoked by Swept Frequency Excitation
3.1. Swept Frequency Excitation (SFE)

For linear systems, vibration characteristics are often characterized using the vibration
amplification coefficient by referring to static displacement. Defining the frequency ratio as
β =ω/ωLP, the amplification coefficient is expressed as

λ =
1√

(1 − β 2
)2

+(2ξβ)2
(7)

where ξ is the damping ratio;ω is the frequency of excitation. For a structure with a given
damping ratio,ω =ωLP is able to generate the local mode with maximized λ. In contrast, λ
is minimal when ω and ωLP are largely different in frequency. To accurately identify ωLP
by taking into account structural uncertainties, SFE is an appropriate means to generate
the expected responses and prevent misleading results. Compared to hammer excitation
(HE), SFE is much more controllable and able to generate excitation energies distributed
widely and uniformly in the frequency domain, from which the expected local modes
can be accurately extracted. Specifically, SFE is performed using sinusoidal excitation
signals with a continuously varied frequency [44]. The range and transformation mode
of the frequency are the two main parameters considered in SFE [45], where the linear
transformation mode is commonly applied. Figure 1 shows a typical SFE waveform with
the linear transformation mode ranging between 0 and 25 Hz.
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3.2. Local Resonance Response Band (LRRB)

Local mode identification based on SFE was applied to a two-end fixed beam for
illustration. The beam can be regarded as a substructure in a structural system containing
multiple components. The sectional dimensions of this fixed beam are 0.60 m in width,
0.80 m in height, and 8.0 m in span. The elastic modulus and damping ratio of this fixed
beam are 3.1E10 Pa and 0.05, respectively. A finite element (FE) model of the beam was
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built using solid elements in the commercial software ANSYS/APDL, as shown in Figure 2.
SFE was applied at the excitation position with a frequency band ranging from 0 to 250 Hz,
and acceleration responses were collected subjected to the SFE at the sensor location.

Sensors 2021, 21, 6357 5 of 16 
 

 

3.2. Local Resonance Response Band (LRRB) 
Local mode identification based on SFE was applied to a two-end fixed beam for il-

lustration. The beam can be regarded as a substructure in a structural system containing 
multiple components. The sectional dimensions of this fixed beam are 0.60 m in width, 
0.80 m in height, and 8.0 m in span. The elastic modulus and damping ratio of this fixed 
beam are 3.1E10 Pa and 0.05, respectively. A finite element (FE) model of the beam was 
built using solid elements in the commercial software ANSYS/APDL, as shown in Figure 
2. SFE was applied at the excitation position with a frequency band ranging from 0 to 250 
Hz, and acceleration responses were collected subjected to the SFE at the sensor location. 

 
Figure 2. Finite element model of a two-end fixed beam. 

A total of 10,000 sampling points were collected within 5 s at a sampling frequency 
of 2000 Hz. Two resonance peaks in the response signals can be seen within the time pe-
riod, as shown in Figure 3. The excitation frequencies at these two peaks are close to the 
theoretical modal frequencies of 49.13 and 109.43 Hz, which can be calculated according 
to modal analysis. In applications, the local modes of a structural system can be identified 
according to such resonance, measured on a substructure, the responses of which are 
much more significant than those of other substructures. The responses close to the reso-
nance peaks are then used for damage assessment. In this study, the response areas between 
the maximum and half amplitudes are defined as the LRRB, as illustrated in Figure 3. 

 
Figure 3. Typical response of a two-end fixed beam in the time domain. 

  

Figure 2. Finite element model of a two-end fixed beam.

A total of 10,000 sampling points were collected within 5 s at a sampling frequency
of 2000 Hz. Two resonance peaks in the response signals can be seen within the time
period, as shown in Figure 3. The excitation frequencies at these two peaks are close to the
theoretical modal frequencies of 49.13 and 109.43 Hz, which can be calculated according to
modal analysis. In applications, the local modes of a structural system can be identified
according to such resonance, measured on a substructure, the responses of which are much
more significant than those of other substructures. The responses close to the resonance
peaks are then used for damage assessment. In this study, the response areas between the
maximum and half amplitudes are defined as the LRRB, as illustrated in Figure 3.
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3.3. Procedure of Damage Identification

The procedure of damage identification is shown in Figure 4: (1) arrange the positions
of sensors and load SFE excitations; (2) identify the LRRB from the time domain responses
based on the half amplitude area; (3) transform the LRRB section by FFT and identify
the LPF in the frequency domain; (4) quantify the damage based on the shift in the LPF
according to Equation (6).
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4. Application to Evaluation of Sluice Beam
4.1. Finite Element Model

In this section, a numerical model of a five-hole sluice is built to verify the proposed
method. The model is composed of the foundation, the baseplate, the gate pier, and the
hoist beams. The dimensions of the sluice are illustrated in Figure 5 (unit: m), and the
FE model of the sluice is constructed using 8-node solid elements and 4-node tetrahedral
elements, as presented in Figure 6. The bottom surface of the foundation is fully constrained,
and the upper and lower surfaces and the left and right surfaces of the foundation are
normally constrained. Table 1 shows the material properties of the sluice.
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Table 1. Material parameters of the sluice system.

Name M1 M2 M3 M4

Type Foundation Bottom plate Gate pier Hoist beam
Density (Kg/m3) 2450 2650 3100 2650

Elastic Modulus (MPa) 5E3 2.8E4 3.1E4 3E4
Poisson’s Ratio 0.28 0.167 0.167 0.2

4.2. Simulation of Damage

Although multiple types of damage may coexist in the sluice, single damage is most
likely to occur at the early service stage and is thus crucial to be detected accurately.
Specifically, mid-span damage in the hoist beams is elaborated by reducing the elastic
modulus of the damaged elements to mimic various degrees of damage, as shown in
Figure 6. Due to structural symmetry, only three beams are assumed to contain damage.
All damage cases are numbered in Table 2, where the ones with a relative amount of stiffness
reduction from 5 to 50%, with a uniform increment of 5%, are used for the construction of
the reference data, and the damage cases with a stiffness reduction of 12, 27, and 47% are
to be identified quantitatively.

Table 2. Damage situations for sluice hoist beams.

Reduction (%) 5 10 15 20 25 30 35 40 45 50 12 27 47

Beam 1 d11 d12 d13 d14 d15 d16 d17 d18 d19 d1t T1a T1b T1c
Beam 2 d21 d22 d23 d24 d25 d26 d27 d28 d29 d2t T2a T2b T2c
Beam 3 d31 d32 d33 d34 d35 d36 d37 d38 d39 d3t T3a T3b T3c

4.3. Damage Identification

Subjected to SFE, the responses of the hoist beams under healthy and damaged states
are firstly shown. Figure 7a,b present the time and frequency domain responses of case ‘d1t’,
respectively. It is seen in Figure 7a that the resonance peak shifts to the left due to damage.
The time domain signals within the LRRB are then selected and transformed using the FFT
algorithm, giving rise to the frequency domain responses shown in Figure 7b, where the
values ofωLP can be identified. Due to damage existence,ωLP apparently decreases from
78.13 to 74.22 Hz. On the other hand, the vibration responses under ‘d12′, which represents
a relatively slight damage case, are shown in Figure 8. Although the response variations
in the time and frequency domains are not as obvious as in ‘d1t’, the change ofωLP from
78.13 to 77.58 Hz can still be recognized. It should be noted that the responses obtained at
local modes have a strong immunity to the influence from other substructures. Therefore,
damage detection using SFE and LRRB is able to achieve high reliability.
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Figure 9 shows the results of damage identification in different cases, as presented in
Table 2. In general, the DI values (in Equation (6)) increase linearly along with an enlarged
damage severity, and it should be noticed that the three substructures are independent
in the variation in DI without mutual interference, benefiting from the adoption of local
modes. Based on the reference data in Figure 9, DI values are calculated to predict the
existence and degree of the nine damage cases in Table 2. The identification results are
presented in Table 3. The averaged and maximum errors between the identified and true
values are 1.59 and 4.17%, respectively, indicating a satisfactory accuracy of the proposed
method in estimating the damage severity in hoist beams. This method still works well
even in small damage cases of around 10%, which means that the method has the ability to
detect original damage.
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5. Parametric Discussions and Comparison with Hammer Excitation (HE) Method
5.1. Sensor Position

The effect of the sensor position was examined according to the responses of different
FE nodes, as shown in Figure 6, where the three beams to be studied have the same
sensor arrangement. Using the damage cases of d1t, d2t, and d3t as examples, the time
domain responses at the nine sensor positions are shown in Figure 10. The resonance
peaks associated with different sensor positions do not show a difference in time but in
amplitude. Only five responses are distinguishable due to the symmetry in the geometry of
the hoist beams. The response amplitudes measured by the sensors near the middle span
of the beam are the highest and are deemed proper to be used for damage identification.
The frequency domain identification results by using the LRRB under different damage
conditions are shown in Figure 11. Similar to the time domain response, there are several
peaks with significantly different amplitudes at different measurement positions. Therefore,
the position of the sensor has no effect on the obtained frequency value but has a significant
effect on the amplitude of the time domain responses and LRRB. The sensor should be
arranged in the position with a larger vibration amplitude as far as possible to improve the
signal quality, and the middle of the span should be selected for beam-type structures to be
detected.

5.2. Excitation

The effect of the form and position of the excitation on the local mode was studied.
Since there is no significant difference between the responses of beam 2 and beam 3, only
beam 1 and beam 3 were investigated. The positions of the excitation are denoted as Loc1
on the beam and Loc2 on the gate pier, and the forms of the excitation are denoted as
SFE and HE, respectively. The responses of beam 1 and beam 3 under four excitation
situations, i.e., HE-Loc1, HE-Loc2, SFE-Loc1, and SFE-Loc2, are presented in Figure 12.
Under the excitation of HE, the response decays rapidly due to energy absorption caused
by structural damping. Under the excitation of SFE, the response of the structure is related
to the frequency of the excitation varying in the time domain. As for the excitation position,
the response amplitudes obtained by direct excitation on the beam are larger, under both
the SFE and HE situations, compared with those on the gate pier.

From the frequency domain perspective, the spectrum is obtained by the FFT of the
original signal transformation, rather than the LRRB signal, because there is no presence
of the LRRB for HE, as shown in Figure 13. Although SFE and HE obtain an equal LPF,
the response amplitudes measured by SFE are larger because it provides a more sufficient
input energy to the structures. The responses measured on Loc2 are minimal in magnitude,
which means it is necessary to directly excite the substructure of interest.

5.3. Noise Immunity

The signals measured in actual practice are inevitably interfered with by noise orig-
inating from the measurement system or environment. Identifying LPFs under noisy
conditions is crucial in the implementation of the proposed method. To study the noise
robustness, different levels of Gaussian noise are added to the time domain acceleration
signals according to

Snoisy = Sclean + σ ∗ randn(N, 1) (8)

where Snoisy is the signal polluted by noise, Sclean is the original signal without a noise
influence, σ is the intensity of the noise signal, and N is the length of the signals.

The responses associated with excitations applied on the hoist beams were considered,
the responses at the middle span of beam 1 with a 50% damage degree were extracted, and
the HE and SFE signals are shown in Figures 14 and 15, respectively. For HE, the LPF peak
remains prominent at a small noise level, as shown in Figure 16a. With σ = 0.1, the LPF can
still be identified through the spectrogram, although a disturbing peak appears adjacent to
the true LPF peak. With the increase in noise, the LPF cannot be identified exactly because
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of the disturbing peaks occurring beside the real LPF peak, as it can be seen in Figure 16c,d.
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Comparatively, the noise robustness of SFE is superior to that of HE. As shown in
Figure 17, the interference of noise is insignificant compared to the noise-free signal, and
the LPF can be accurately identified.
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6. Conclusions

To address the issue of the insufficient sensitivity of frequency changes to local struc-
tural damage, a method for detecting damage in sluice hoist beams was proposed based
on the LPF of substructures. Numerical simulation of a five-hole sluice demonstrated
that in the complex sluice structural system, local modes of substructures can be excited
and utilized by adjusting the excitation forms and positions. The corresponding LPF was
mainly related to the dynamic characteristics of the substructure, and the sensitivity of the
LPF to damage in the substructure was high. Specifically, the damage degree of the sluice
hoist beam was correlated with the change ratio of the LPF. Relying on reference data con-
structed under several damage cases, the arbitrary damage degree can be identified using
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DI with errors limited within an acceptable range. In the ideal condition, the identified
frequency value is independent of the sensor positions. However, the sensor positions at
the middle span of the hoist beams are able to obtain high-amplitude responses suitable
for damage identification.

Compared with the most widely used hammer impact method, this method inputs
more energy into the sluice structure and has better controllability, which makes it easier
for the operator to obtain the LPF. In particular, the proposed method exhibits greater noise
immunity considering that the actual operation is interfered with by noise. According to
the defined noise intensity, this method increased the noise resistance from 0.05 to 0.2 based
on the hammer impact method. The proposed method applies a frequency index which
reflects the global character locally in the substructure and exhibits promising potential
in damage detection applications for large-scale complex structural systems. This work
preliminarily evaluated the damage degree based on a simple and practical damage index,
and the combination of local modes with other damage indicators will be the continuation
of this work.
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