
BRNO UNIVERSITY OF TECHNOLOGY  
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 

FACULTY OF ELECTRICAL ENGINEERING AND 

COMMUNICATION 

DEPARTMENT OF RADIOELECTRONICS  

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH 

TECHNOLOGIÍ  

ÚSTAV RADIOELEKTRONIKY 

NEURAL NETWORKS IN INERTIAL NAVIGATION 

SYSTEMS 

NEURONOVÉ SÍTĚ V INERCIÁLNÍCH NAVIGAČNÍCH SYSTÉMECH 

DOCTORAL THESIS 
DOKTORSKÁ PRÁCE 

AUTHOR    ING. LENKA TEJMLOVÁ 

AUTOR PRÁCE 

SUPERVISOR  DOC. ING. JIŘÍ ŠEBESTA, PH.D. 
VEDOUCÍ PRÁCE 

BRNO 2017



 

 

KEYWORDS 

IMU, INS, DR, inertial positioning, dead reckoning, artificial neural network, Arduino UNO, 

X-NUCLEO-IKS01A1, MATLABTM, Qt.  

KLÍČOVÁ SLOVA  

IMU, INS, DR, inerciální polohovací systém, umělá neuronová síť, Arduino UNO, X-NUCLEO-

IKS01A1, MATLABTM, Qt.  

 

DISERTAČNÍ PRÁCE JE ULOŽENA: 

Ústav radioelektroniky  

Fakulta elektrotechniky a komunikačních technologií 

Vysoké učení technické v Brně 

Technická 3082/12 

616 00 Brno 

 

 

© Lenka Tejmlová, 2017 



          

 

CONTENTS 

1 Introduction ................................................................................................................................. 1 

2 State of the art.............................................................................................................................. 3 

2.1 An example of implementation ............................................................................................ 3 

2.2 A different approach ............................................................................................................ 3 

2.3 Coordinate systems .............................................................................................................. 4 

2.4 Sensor models ...................................................................................................................... 5 

2.5 Sensor calibration ................................................................................................................. 5 

2.6 Orientation determination .................................................................................................... 6 

2.6.1 Euler angles .............................................................................................................. 6 

2.6.2 Quaternions .............................................................................................................. 7 

2.7 Artificial neural network ...................................................................................................... 7 

2.8 Kalman filtering ................................................................................................................... 8 

2.9 Trajectory reconstruction ..................................................................................................... 9 

2.10 Issues and dissertation objectives ........................................................................................ 9 

3 Inertial Measurement system ................................................................................................... 11 

3.1 Hardware ............................................................................................................................ 11 

3.2 Firmware ............................................................................................................................ 11 

3.3 Data acquisition .................................................................................................................. 12 

3.4 Sensor calibration and compensation ................................................................................. 13 

3.5 Neural Networks ................................................................................................................ 14 

3.6 Principle of ANN ............................................................................................................... 14 

4 Data processing .......................................................................................................................... 17 

4.1 The state is “still” ............................................................................................................... 17 

4.2 The state is “walking” ........................................................................................................ 20 

4.3 Problems and their solutions .............................................................................................. 21 

5 Software for the IMS – Tracker ............................................................................................... 21 

6 One of Experimental measurements........................................................................................ 23 

7 Conclusions ................................................................................................................................ 26 

References ....................................................................................................................................... 28 

Curriculum Vitae ........................................................................................................................... 31 

Abstract ........................................................................................................................................... 33 



NEURAL NETWORKS IN INERTIAL NAVIGATION SYSTEMS  

 

-  1  - 

1  INTRODUCTION 

An implementation of artificial intelligence into an automatic navigation systems is 

the one of opportunities how to improve performances of autonomous positioning 

systems. Well known positioning method which is used in many modern systems, such 

in cars, is the dead reckoning. This method is defined as the process of calculating 

current position by using a previous determined position and actual data from inertial 

sensors in combination with vehicle odometers. The implementation of this method 

defines actual position of moving object regarding to the initial position. It also defines 

the trajectory during the movement. 

This topic is often discussed nowadays and the research in this field can be divided to 

many way. To providing of more effective solutions than independent processing of 

inertial sensor data offers, additional methods, systems and devices are required. 

Research teams work on acquisition with intention to obtain more precise results 

provided by sensor data fusion, by increasing the number of sensors that are used to 

measure the same physical quantities, by adding various specific devices, such as Wi-Fi 

or other wireless equipment and its signal strength, by limitation of results 

determination, by monitoring of regularities in motions and finally by fusion with 

available GNSS/GPS, pedestrian navigation constrains, visual-aided constrains, map 

matching etc.   

There are three main issues arising from the fundamentals of inertial navigation. The 

first of all is the Earth’s gravity. We can measure the acceleration. It contains both, a 

linear acceleration (that is needed to determine the position) and Earth’s gravity 

acceleration. This is good when the accelerometers are placed horizontally (flat). The 

precise strength of Earth's gravity varies depending on location, nevertheless, at the 

Earth's surface the nominal average value (standard acceleration of free fall) should be 

in our case subtracted, because we are located on the Earth’s surface. The 

accelerometers are generally never horizontally placed though the position of inertial 

measurement unit is often approaching this state. For that reason it is very hard to 

separate Earth’s gravity and linear acceleration, both measured together by 

accelerometer. We highly focus on this issue in this document. The second difficulty is 

Earth’s rotation around its axis by 15 degrees per hour and around the sun by 0.041 

degrees per hour. This should be solved by using the gyrocompass and by 

implementation of proper compensations in computations. The third issue is a 

significant inaccuracy caused by sensitivity and typical characteristics of inertial 

sensors. Due to low signal to noise rate when the linear acceleration of the IMU or its 

orientation vary is the only inertial sensor navigation fundamentally inapplicable for 

precise localization. Thus nowadays, many localization methods are combined. 

When we are talking about inertial sensor data fusion we are always confronted by 

real world challenges. It is thought that nothing is exactly accurate and therefore we 

have to consider deviations and errors as an inseparable part of technique. The task is to 
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use knowledge and enrich it by our own thoughts that complexly lead to invention of 

better solution, innovation. The application of inertial sensor data fusion brings 

thorough considerations of error models and their implementation in calculations. In 

combination with artificial neural network, Kalman filtering and with the support of 

GNSS/GPS the dead reckoning system may achieve a sufficient accuracy to determine 

the orientation and the position where the inertial navigation system (INS) is located. 

An inertial navigation system (INS) is a navigation aid that uses a computer, motion 

sensors (accelerometers) and rotation sensors (gyroscopes, gyros) and maybe others to 

continuously calculate via dead reckoning (DR) actual position, actual orientation, and 

actual velocity (direction and speed of movement) of a moving object in time without 

any external references [1]. It has been called “Newtonian navigation” because its 

theoretical foundations have been known since time of Newton: 

Given the position x(t0) and velocity v(t0) of a vehicle at time t0, and its acceleration 

a(s) for times s>t0, then its velocity, v(t), and position, x(t), for all time t>0 can be 

defined as (1.1), (1.2). 


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(1.2) 

1. Sensors for measuring acceleration with sufficient accuracy: 

a. 3-axis acceleration sensor (accelerometer) 

b. 3-axis rotation sensor (gyroscope) 

2. Compatible methods based on integration of the sensor outputs to obtain position 

a. Methods integrating the gyro outputs to determine the orientation of the 

accelerometer 

b. Methods integrating the accelerations to obtain the velocities and integrating 

the velocities to obtain the position 

3. Hardware and software implementing these methods and for interpretation of the 

results 

4. Applications that could justify the investments in technology required for 

developing the solutions to the capabilities listed above 

 
 

 Figure 1.1 Recorded trajectory. 

This dissertation thesis heads with the state of the art, where the short history and 

current research state is described. The next Chapter outlines the objectives of the thesis 

and the rest of document deals with those objectives. At the end of the main document 

the results are discussed and the proposed method is evaluated. Annexes complement 

the described methods. 
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2  STATE OF THE ART 

Inertial navigation is a self-contained navigation technique in which measurements 

provided by accelerometers and gyroscopes are used to track the position and 

orientation of an object relative to a known starting point, orientation and velocity. 

Inertial measurement units (IMUs) typically contain three orthogonal rate-gyroscopes 

and three orthogonal accelerometers, measuring angular velocity and linear acceleration 

respectively, [2].  
By processing signals from these devices, it is possible to track the position and 

orientation of the device. This aim is often discussed nowadays and research is divided 

into many directions. To ensure better solution than which is offered by independent 

processing of sensor data, additional methods and equipment are required. Proposed 

inertial guidance system is based on dead reckoning method supplemented by artificial 

neural network (ANN) and Kalman filters (KF).  

2.1 AN EXAMPLE OF IMPLEMENTATION 

A very nice example of ANNs implementation for navigation system shows the 

paper from 12th International Conference on Control, Automation and Systems, Korea, 

2012 [3]. Researchers developed the indoor navigation system based on pedestrian dead 

reckoning (PDR) that uses various sensors in a smartphone. MEMS IMU was mounted 

on the waist, using sensors and ANN status; they estimated the step length adaptively. 

They used a map-matching method in addition. If the estimated trajectory was tracked 

wrong way or the estimated position in unavailable place to go, map matching arranged 

the estimated position to the coordinate defined in a map. So the computed position was 

“snapped” to link in the map or to the corner when rotation rate measured by a 

gyroscope increased in the moment. A barometer was used for to distinguish the floor 

where the IMU belongs.  

A major disadvantage of this method is that we need a map of the area where such a 

system is used. Without a map, the performance of positioning is not sufficiently 

accurate. Other examples can be found in [4] – [10]. 

2.2 A DIFFERENT APPROACH   

The presented method approaches to the issue from another point of view than 

previous solutions of PDR inertial units. It is based on the fact that we need to apply DR 

(INS) while the terrain is unknown; that means wireless connections are not available, 

terrain map is not defined, and GNSS signal is not available. It was investigated that 

sensor errors, deviations and drifts achieve significant values, thus, the error in 

positioning is large. The fusion of sensor data, Kalman filtering and artificial neural 

network offer a solution for the purpose. 
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2.3 COORDINATE SYSTEMS 

The coordinates for inertial systems are given to be natural to the problem at hand. 

We use LTP (local tangent plane) coordinates; first-order model of the earth as being 

flat, where they serve as local reference directions for representing vehicle attitude and 

velocity for operation – on the surface of the earth (or very close to). A common 

orientation for LPT coordinates has one horizontal axis (the north axis) in the direction 

of increasing latitude and the other horizontal axis (the east axis) in the direction of 

increasing longitude. 

Furthermore, we have to specify the ECI (earth cantered inertial) coordinates that are 

the favoured inertial coordinates in the near-earth environment. The origin of ECI 

coordinates is at the centre of gravity of the earth, with axis directions: 

x – the direction of the vernal equinox; 

z – parallel to the rotation axis of the earth (north polar axis); 

y – an additional axis to make a right handed orthogonal coordinate system. 

The equatorial plane of the earth is also the equatorial plane of ECI coordinates, 

nevertheless the earth itself is rotating relative to the vernal equinox by about 15.04109 

deg per hour1. ECEF (Earth Centred, Earth Fixed) coordinates have the same origin and 

third, polar axis as ECI coordinates, but rotate with the earth. Consequently, ECI and 

ECEF longitudes differ only by a function of time. ECI (indexed by “I”), ECEF 

(indexed by “e”) coordinates and LTP are shown in  Figure 2.1. 

 

 Figure 2.1 ECI, ECEF, and geodetic coordinate frame, [11]. 

In coordinate system NED (earth-fixed, north east down) right handed LTP system is 

preferred because the direction of a right (clockwise) turn is in the positive direction 

with respect to a downward axis and NED coordinate axes coincide with vehicle-fixed 

RPY (body fixed, roll pitch yaw) coordinates when the vehicle is in the flat position and 

headed to north. The other, commonly used right handed LPT system is ENU (east-

                                                 

 

1 World Book Encyclopaedia Vol 6. Illinois: World Book Inc.: 1984: 12. 
"It takes 23 hours 56 minutes 4.09 seconds for the Earth to spin around once 2π 
radians/86164.09 seconds"  
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north-up) and the transformation matrix between ENU and NED is described in my 

thesis. The ENU coordinate system is preferred in this thesis. The relation between 

ECEF coordinate frame and ENU coordinates can be found in APPENDIX A, part A.5. 

RPY coordinates are vehicle fixed, as noted above, with the roll axis in the nominal 

direction of motion of the vehicle, the pitch axis out the right hand side, and the yaw 

axis such that tight turning is positive. This is used also for surface ships and ground 

vehicles, called SAE coordinates. 

2.4 SENSOR MODELS 

Inertial navigation performance is hardly limited by the performance of used inertial 

sensors. Basic formula, Newton’s model, gives us an overview of the inertial navigation 

system’s error evolution over time. The performance significantly decreases with the 

time and the system based only on integrated data from sensor is inapplicable. 

The errors in measurement arise from many various reasons. Inertial navigation has 

been called “black box navigation” because it is entirely self-contained. It interferes 

what is going on outside by what it can sense inside. In addition, inertial sensors are 

called black boxes for the same reason. There are more events outside the sensor than 

just accelerations or rotations, see Figure 2.2.  

The important fact to realize is that accelerometers do not measure gravitational 

acceleration, but inertial acceleration. That means, they measure “specific force” a=F/m, 

where F is the physically applied force and m is the mass it is applied to [12]. 

 

Figure 2.2 Sensor black-box model. 

The dissertation includes definitions and appropriate suggestions for compensation of 

various sensor errors. 

2.5 SENSOR CALIBRATION 

To calibrate and compensate offsets, biases, scale factors and misalignments, affine 

(linear plus offset) model is used. Biases are included in offsets and the rest is linear. 

When we define output as shown in relation (2.1), where zinput is the vector representing 

the inputs (accelerations or rotation rates), zoutput is the vector representing the 

acceleration (a) 

INERTIAL 

SENSOR 

angular rate (ω) 

temperature (T)
    

magnetic field (B) 

power variation 

electromagnetic interference 

“other” 

f (a, ω, T, …) 
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corresponding outputs, bz is the vector of sensor output biases and M represents the 

linear input-output model. 

 zinputoutput bzMz 
 

(2.1) 

zoutputinput bzMz  1
 (2.2) 

To estimate the values of M and bz, several pairs of given input-output vectors [zinput, 

k, zoutput, k] have to be defined, . These outputs are measured while controlled calibration 

conditions, thus we get a pair of input-output recorded under these conditions and 

applicable for sensor compensation. This result can be generalized for a cluster of N ≥ 3 

gyroscopes or accelerometers. For more information, see [12] and [13].   

2.6 ORIENTATION DETERMINATION 

The absolute orientation of the inertial measurement unit or its tilt is unknown in a 

real terrain and it is perhaps the most important step to estimate this state as accurate as 

possible. Any inaccuracy leads to wrong derotation from RPY coordinates to other 

coordinates, e.g. ENU, ECEF [12]. 

2.6.1 Euler angles 

This way, the orientation might be defined as rotation angles about each of axes (vehicle 

roll, pitch and yaw axis), called Euler angles, named for the Swiss mathematician 

Leonard Euler (1707-1783). With this approach, it is always necessary to specify the 

order of rotations when specifying Euler angles. The rotation from RPY coordinates to 

NED coordinates can be composed from three Euler rotation matrices, consecutively 

yaw ψ, pitch θ and roll φ, as is shown in (2.3), respectively (2.4). 
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(2.4) 

This approach leads to problem with discontinuity when the pitch angle equals 90 

degrees. Roll axis is then pointed upwards and any change in pitch or yaw causes ±180 

degrees changes in heading angle. This is called “gimbal lock” and it is the reason why 

we do not use Euler angles for the orientation determination of IMUs.  

In addition, it depends on the sample rate of angular rate sensing and how precise the 

sensor is, in the other words, computations of φ, θ and ψ during the time from 

gyroscope outputs, body angular rates, are mathematically very complicated.  

Other methods that can be used for 3D position determination, such DCM (Direction 

cosine matrix) or Rotation vectors are described in my thesis. In this project, 

quaternions were chosen as the suitable tool. 
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2.6.2 Quaternions 

Quaternions are members of a noncommutative division algebra first invented by 

William Rowan Hamilton. They are a single example of a more general class of 

hyper-complex numbers discovered by Hamilton, (2.5), [14]. While the quaternions are 

not commutative, they are associative, and they form a group known as the quaternion 

group, [15]. 

1222  kjikji
 

(2.5)
 

Quaternion multiplication is noncommutative, the result depends on the order of 

multiplication. A single quaternion product, the final rotation, is determined by the 

quaternion product qn x qn-1 … q3 x q2 x q1., can implement each successive rotation. 

The quaternion equivalent of the rotation  with , and where u is a unit 

vector, is (2.6). 
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When the two coordinate systems are aligned, the initial value of q[0] equals 

[1 0 0 0]T. In inertial measuring systems the initial q[0] is determined during INS 

alignment procedure. We can then define the calibrated value of the orientation, 

quaternion qk, as a quaternion product as shows (2.7), where qk-1 is a prior value of 

attitude (a quaternion that is determined from the vector as [0; v1; v2; v3]) and Δq is the 

change in orientation, all represented in quaternion form. 

*

1 kkkk qqqq    
(2.7)

 

The attitude representations and rotation sequences for quaternion expressions are 

available in [16] and [17] for example.  

2.7 ARTIFICIAL NEURAL NETWORK  

An artificial neural network (ANN) enables to decide how the result of the issue 

should be, without any equations, relations between physical quantities, and 

probabilistic filters. It is based on an artificial intelligence (AI), which is the intelligence 

exhibited by machines or software and such problematics including learning, reasoning, 

knowledge, planning, communication, perception and the ability to move and 

manipulate objects, please see [18], [19] and [20].  

Each ANN has its input values, variables on which the ANN output depends. As an 

output, in our case, we have one value that determines the state of the system. In other 

cases, more outputs may be present, see [21]. The number of hidden layers and the 
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number of neurons in particular layers depends on the complexity of the problem we 

solve, [22], lecture 2. 

ANNs were used in systems for tracking, positioning or navigation as it is presented 

for example in [23], [24] or [25]. These applications nevertheless do not use the ANN to 

find out the state of the system and also these developments combine the IMU with an 

additional data sources. The ANNs are used to solve many specific types of issues. 

Always the appropriate type of ANN and the method of training and other parameters 

have to be chosen.  

Our task is to correctly define the state in time. It offers the classification ANN as an 

appropriate network for the data processing. However, the task is time dependent and 

thus it is necessary to analyse the data during the time. The dynamic time series ANN 

was chosen, [26]. There are lot of kinds and types of ANNs that solve completely 

different issues, detailed information are provided in Chapter 5 of the thesis. 

2.8 KALMAN FILTERING  

Kalman filter (KF) (see literature [27] and [28]), also known as linear quadratic 

estimation (LQE), had become the important instrument of systems that integrate more 

data sources to give the solution. You can imagine this filter as an algorithm that uses 

sets of measurements observed over time (containing random variations of noise) and 

produces the estimates of unknown variables in order to obtain more precise result. An 

introduction to concepts gives P. S. Maybeck in [29]. 

 

Figure 2.3 Kalman filter process, [33]. 

With respect to data from sensors and other available information, the KF estimates 

the result by using a form of a feedback control loop. The filter estimates the result and 

obtains feedback in the form of (noisy) measurement. After that, the process repeats 
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(see Figure 2.3). In our case, the KF gets the data from the IMU, please have a look at 

principles in [30]. The adaptive Kalman filtering for low-cost INS/GPS is shown in [31] 

and [32].The theory of the optimal state estimation is also described. 

2.9    TRAJECTORY RECONSTRUCTION  

Trajectory reconstruction is difficult process when the high precision is supposed to 

be reached and when there is not any support of additional external information system 

or auxiliary system implemented, [34], [35]. The successive computation of position is 

called strapdown navigation. In addition, Heading from the magnetometer should be 

taken into account. Nevertheless, surrounding environment may differ with the time and 

place where the measurement is performed. Thus the data from magnetometer is not 

always included into the strapdown IMU system. This issue is discussed in, [33]. 

The essential processing function includes double integration of acceleration to 

obtain the position, [36]. The measured angular rates are also integrated to maintain the 

knowledge of the IMU orientation. The initial position, velocity and orientation must be 

known before the initialization of integration [12]. Figure 2.4 shows the simple 

strapdown INS and its outputs. 
 

Figure 2.4 Simple strapdown INS and its outputs [12]. 

2.10    ISSUES AND DISSERTATION OBJECTIVES 

 During the measurement, drifts and offsets arise on the output of the calibrated 

gyroscopes. The IMU orientation is defined (RPY to ENU). With time, the inaccuracy 

of orientation determination rises and thus the velocity and position is computed with 

enormous errors (in direction and in size). 

 The acceleration also drifts during the time. Then the measured acceleration is 

not exactly 1 g while the IMU stays still. When the IMU stays still, the acceleration may 

be averaged and normalised. Nevertheless, during the walk or any other motion, the 

acceleration drift is not fully compensated and thus the estimated velocity (and position) 

may differ from the true values due to the integration of the acceleration. 

 Metal objects placed close to the IMU affects the magnetometer output. It is 

called as soft iron offset. We assume that when the metal objects are present at a 

distance of at least fifteen centimetres, they do not affect measured values with the 

impact on the result (the magnetic north determination). The hard iron offset (the effect 

of the PCB, electronical components, etc.) has to be suppressed. 
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 SYSTEM FOR TERRESTRIAL EVALUATION OF THE CURRENT STATE  

This may furnish for example GNSS navigation when the signal is lost, but, also and 

above all, this may be used for terrestrial indoor navigation or position determination 

for short distances, up to several meters, while walking, jogging, driving, etc.  

The task is to develop a system that works without any step detection algorithms 

and map assigning, purely based on sensor outputs processing, with sufficient accuracy. 

It is also desirable to get a system that can be hold in the hand during its operation.  

Therefore, we can define the following objectives of the dissertation: 

 To develop the method for determination of the sensors orientation with respect 

to the navigation coordinates using only the sensor outputs while the system is 

essentially stationary. 

 To develop the method for determination of the sensors orientation with respect 

to the navigation coordinates using only the sensor outputs while the system is 

not stationary and while it moves. 

Those tasks lead to coordinate alignment ability and thus to ability of subtraction of 

split g-force (measured gravitational acceleration) from particular axes with eminent 

focus on accuracy. 

 To create an artificial neural network (ANN) that recognizes and defines “what is 

going on” with the system and to implement it. 

It leads to reduction of the positioning errors due to parasitic sensed rotation rates and 

accelerations. It also ensures that the integration errors will not be cumulated during 

whole measurement. 

 To create a Kalman filter; that is a necessary element where data from the inertial 

sensors are used for the position determination. 

After performing all these tasks, integrations may follow and the velocity and position 

in time may be computed as well as the trajectory of the moving object can be 

reconstructed. In addition, the determination of the unit orientation and heading as a 

function of time is available. 

 To develop an IMU with application that evaluates all previous tasks and presents 

results.  

Developed IMU will be based on proper modules with 3-D accelerometer, 3-D rotation 

rate sensor and 3-D magnetometer connected to appropriate MCU. Proposed application 

running on PC will process data from the IMU and MCU including graphical 

representation of results and verification of the system in which a new method of fully 

inertial positioning is implemented. 

 To perform and evaluate series of experiments. 

The complex system will be experimentally tested in different scenarios to verify 

improvements in positioning. 
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3  INERTIAL MEASUREMENT SYSTEM 

These steps lead to obtaining of the basic orientation and linear acceleration used for 

IMU positioning from inertial sensors.  

3.1 HARDWARE 

The X-NUCLEO-IKS01A1 board that consists of motion MEMS and environmental 

sensors was chosen. It is compatible with Arduino Uno. Measured data are sent by BT 

or by USB cable to a PC and may be processed in real time or saved for further 

processing. This sensor board is designed around STMicroelectronics LSM6DS0 3-axis 

accelerometer and gyroscope, the LIS3MDL 3-axis magnetometer and the HTS221 

humidity and temperature sensor and the LPS25HB* pressure sensor is available. 

3.2 FIRMWARE 

The function of Arduino UNO is to read data from sensors and send them directly to 

the PC. I2C protocol is used for data retrieval from the sensors. Arduino Uno was 

programmed in Arduino IDE application using a programming language similar to C++. 

The firmware code is divided into two sections, the first part (setup function) is 

performed on start-up of Arduino and applies the settings. Arduino is set as a master 

and sensors are set as slaves. The second part (loop function) reads the sensor data and 

sends them to the PC. Arduino Uno was programmed in Arduino IDE application using 

a programming language C++. 

 

void loop()  

{ 

 String output = "";         

 readFrom(30, B00101000, 6);              // Magnetometer reading 

 while (Wire.available()) 

 { 

   short c = Wire.read(); 

   c += (Wire.read() << 8); 

   output += String(c, DEC) + " "; 

 } 

 readFrom(107, B00011000, 6);    // Gyroscope reading 

 while (Wire.available()) 

 { 

   short c = Wire.read(); 

   c += (Wire.read() << 8); 

   output += String(c, DEC) + " "; 

 } 

 readFrom(107, B00101000, 6);    // Accelerometer reading 

 while (Wire.available()) 

 { 

   short c = Wire.read(); 

   c += (Wire.read() << 8); 

   output += String(c, DEC) + " "; 

 } 

 output += String(millis(), DEC) + " ";          // timestamp  

 if(digitalRead(buttonPin) == HIGH)     // button state  

      output += "0"; 

 else output += "1"; 

 Serial.println(output);      // send to PC  

 delay(7); 

} 
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3.3 DATA ACQUISITION 

The firmware in Arduino defines the format in which the data are sent. In our source 

code, the package contains measured accelerations in x, y and z-axis from accelerometer 

(Figure 3.2), angular rate in x, y and z-axis from gyroscope (Figure 3.1) and magnetic 

field in x, y and z-axis from magnetometer (Figure 3.3). There is the possibility to 

receive the time stamp to get precise Δt, in other words, to get accurate time between 

two samples. In addition, Arduino sends the button state. This button allows our system 

to receive additional bool value that is defined by user. 

Axes of all sensors have essentially the same origin but magnetometer has a different 

right-handed axis system than accelerometer and gyroscope. Thus the measured 

magnetic field vector has to be rotated. We obtain one united vehicle-fixed coordinate 

system RPY (Figure 3.4).  

    

Figure 3.1 Direction of detectable angular 
rates 

 Figure 3.2 Direction of detectable accelerations 

  

Figure 3.3 Direction of detectable 
magnetic field 

 
  

Figure 3.4 Body-fixed RPY (roll-pitch-yaw) 
axis 

Arduino sends just a raw data from converters. Based on the register settings, the 

acceleration is measured in range of ±2 g and the sensitivity is then 0.061 mg/LSB. The 

rotation rate sensor is set to range of ±500 dps, the sensitivity is then 17.5 mdps/LSB. 

The magnetometer measures magnetic field in range of ±4 gauss and the sensitivity is 

then 0.146 mGauss/LSB. Resolution of all sensors is 16 bits. Typical magnetic field at 

places where the measurements were performed is about 48.897 nT (488.977 mGauss).  

Finally, we get 11 values from 9-DOF device per sample (this is what the device 

sends: [magx, magy, magz, gyrx, gyry, gyrz, accx, accy, accz, time, button], and those sets 

are sent with frequency of about 86 Hz. 

The required sampling frequency is given by the spectrum of the measured data 

during typical and particular movements. For the walk and staying still the sampling 

frequency about 80 Hz is satisfactory. 
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3.4 SENSOR CALIBRATION AND COMPENSATION 

Sensor calibration is the process determining the parameters of the compensation 

model. Sensor compensation is the process recovering the sensor inputs from the sensor 

outputs. We calibrated and compensated sensors, appropriate steps and are described in 

details in my dissertation. We are not able to determine the heading of the IMU unless 

we have data from the calibrated magnetometer and we know the magnetic declination 

(δ) of the place where the measurement was performed. The rotation to the flat position 

must be applied to the calibrated magnetometer data in order to determine the heading 

correctly in 3D. Then, Figure 3.5 shows calibrated magnetometer data. The sin(x) and 

cos(x) function that is formed when the IMU rotates along a single axis by 360° with 

starting and ending heading equal δ – the x-axis points straight to magnetic north. 

 

Figure 3.5 Calibrated magnetometer data (360° rotation), x-axis in [s], y-axis in [mGauss] . 

Recalibration may be done also manually during the measurement. Nevertheless it is 

necessary to ensure the conditions for the calibration. The measurement of the still-

shake-still state of the IMU is shown in Figure 3.6. 

 

Figure 3.6 Data from calibrated sensors while shaking, x-axis in [s], y-axis in [g], [°/s]. 

As you can see, the rotation rate and the acceleration show “what is going on“ with 

the IMU in the body coordinate frame in time. The IMU is placed on the table but it is 

not perfectly in flat position (in a horizontal plane). The y-axis of the gyroscope has the 

value of 0.248 °/s after the movement. This is the drift and it has to be suppressed for 

further processing. Thus, the calibration of the gyroscope is necessary during the 

measurement. This is exactly what the “soft” calibration performs. 

y 

x 
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3.5 NEURAL NETWORKS 

The new proposed approach is primarily based on the artificial neural network that is 

designed in order to determine state – “what it is going on”. In this work, recognition of 

two states are presented. The first case is that the IMU walks, the second case is that the 

IMU is static regardless of its orientation. In principal, further states may be added, for 

example jogging, running, driving, riding, shaking, flying, falling etc. 

The very important piece of information is that when the ANN determines the state 

of the IMU incorrectly, there are two cases of the wrong decision.  

1. The ANN determines the walk and the IMU is still 

2. The ANN determines that the IMU stays still and the IMU walks. 

The first case does not bring complications, however it is undesirable, since the ANN 

does not improve the positioning. The second case is unacceptable, the orientation of 

the moving IMU is recalculated as it is “still” (from the actual accelerometer data). The 

further processing of data after the incorrect determination of the orientation causes the 

error with a very high severity.  

3.6 PRINCIPLE OF ANN 

I decided to create time-delayed neural network, since the static values of one sample 

do not have any predictive value. Figure 3.7 shows principle of used ANN type, FFTD 

(feed-forward time-delayed) network, [37].  

To obtain the training data we recorded a walk with stops. The person holding the 

IMU used the button to determine if he is walking or is standing still. Then, the neural 

network was trained with the input set consisting of measured data and the button state 

as the target output. 

The script in MATLAB was written to automatic creation, training and simulation of 

FFTD ANN. While the train function is given, the time delay (the number of previous 

samples used) and the number of neurons in hidden layer changes. The training set is 

divided to three blocks - training part, validation part and test part. The goals has to be 

set appropriately. 

Parameter and architecture properties such as training, performance, divide, 

adaptation, transfer function etc. also have a significant impact on ANN output, please 

see dissertation for details. 

 

Figure 3.7 FFTD ANN principle 

 

Figure 3.8 FFTD ANN structure used. 

[x(t), x(t-1),.. x(t-n)] ANN hidden layer y(t) 
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The issue is extensively described in my doctoral thesis, including particular 

functions and algorithms. Figure 3.9 shows the response of the ANN that was evaluated 

as the most suitable ANN for our purpose. The comparison of many TD ANNs is 

performed in the document, also the examples of other ANN types applied on our 

problematics are presented.  

As the best-input parameters seem to be a vector of raw data from the accelerometer 

and a vector of raw data from the gyroscope, both in all three axes. The magnetometer 

data were discarded due to important dependence on the surrounding magnetic strength.  

The ANN may be also trained by adjusted data from the accelerometer and 

gyroscope, e.g. by gravitational vector length as the first input parameter and rotation 

vector length as the second input parameter. Nevertheless, trained network showed 

worse result. Two additional ANNs were created to demonstrate the function of the 

ANN in INS. One of them is trained to decide on the state “still” or “anything else” and 

is very useful when we check the functionality of the ANN behind the PC. The second 

one is trained for state changes only. 

The training of the ANN with chosen structure (Figure 3.8) is relatively 

computationally complex, see [38] and [39]. It had been trained on PC (16 GB RAM, 

Intel® CORE™ 4 x i5-4690K CPU @ 3.50GHz, SSD) using MATLABTM. 

 

Figure 3.9 Time-series response, epoch 73, TDNN_dividerand_3_TS.  

TABLE 3.1 Comparison of networks – training parameters. 

Name of  ANN Duration* [h] Epochs Performance Reliability 

TDNN_divideblock_1 4:49:57 140 0.006440 0.993560 

TDNN_dividerand_1 7:50:28 215 0.007870 0.992130 

TDNN_divideblock_2 5:48:42 1000 0.006900 0.993100 

TDNN_dividerand_2 0:29:49 86 0.000940 0.999060 

TDNN_divideblock_3 1:52:03 367 0.000999 0.999001 

TDNN_dividerand_3 0:27:15 81 0.000997 0.999003 

* PC: 16 GB RAM, Intel® CORE™ 4 x i5-4690K CPU @ 3.50GHz, SSD, using MATLABTM (used for all following experiments) 
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Figure 3.10 Graphical comparison of trained feed forward time delayed networks. 

TABLE 3.2 Comparison of networks II – training parameters 

Name of  ANN Duration [h] Epochs Performance Reliability 

TDNN_divideblock_1_TS 0:01:26 29 6.2310-22  1 

TDNN_dividerand_1_TS 0:00:46 27 9.7710-22  1 

TDNN_divideblock_2_TS 0:01:11 28 5.6210-22  1 

TDNN_dividerand_2_TS 0:02:00 28 5.9910-22  1 

TDNN_divideblock_3_TS 0:14:36 90 0.00187 0.99813 

TDNN_dividerand_3_TS 0:09:46 73 0.00229 0.99771 

   

 

Figure 3.11 Graphical comparison of trained feed forward time delayed networks - TS 

The duration, final number of epochs and achieved performance of some of the 

particular networks trainings are shown in TABLE 3.1, TABLE 3.2, Figure 3.10 and 

Figure 3.11. The reliability is shown as a complement of the performance to 1. 
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4  DATA PROCESSING 

Thanks to the ANN we know the state of the IMU. Provided we trust it, the attitude 

of the IMU in time can be determined with higher accuracy. Whenever the state defined 

by the ANN is “still”, the accurate (absolute) tilt of the IMU can be recalculated. The 

only property that still remains to be absolutely determined is heading. 

The determination of heading comes from magnetometer data. The value that has to 

be checked before heading determination is total magnetic field. If the value is too low 

or too high, there are other influences than Earth’s magnetic field, and the heading 

cannot be determined by the magnetometer. In that case we have to rely on integrated 

data from gyroscope. 

In the second case, when the value of total magnetic field falls within the given 

range, the heading can be computed. However, it can be done after the acceleration data 

tilt compensation – derotation into the flat level. After the proper magnetometer data 

derotation the heading value can be determined only from x-axis and y-axis of 

magnetometer data. The absolute attitude of the IMU can be finally determined. 

4.1 THE STATE IS “STILL” 

The neural network decides that the IMU state is “still”. Then, there are more ways, 

as described in theoretical part, how to rotate the IMU back into flat level (horizontal 

plane). Figure 4.1 clearly shows all three Euler stages of derotation from IMU (RPY) 

coordinates into inertial, ENU coordinates.  

At first, the derotation of heading needs to be done by an angle . This rotation is 

solved separately after the derotation into flat position. Rotations by angles  and  

define the tilt of the IMU in RPY coordinates and through them the IMU coordinates 

from RPY coordinate system into relative ENU coordinates can be converted. 

    
    

Figure 4.1 Derotation from the RPY (body) coordinates to relative ENU coordinates. 

The Euler angles or direction cosine matrix (DCM) method seems to be easy to use. 

Nevertheless, the gimbal lock is the fundamental problem for the INS. For this reason 

the application of quaternions must be implemented. In proposed algorithms, the 

rotation around z axis is denoted by symbol Ψ, the rotation around y axis is denoted by 

symbol θ, and the rotation around x axis is denoted by symbol Φ.  

From accelerometers, after axis alignment, compensation and calibration, the 

accelerations in particular axes are obtained, the vector 

 for each time step. In the source code, the 

calibrated accelerometer output is stored in three-dimensional vector acc with 
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components acc.x, acc.y and acc.z. In each cycle the computation of  is 

performed. It expresses the angle between the acceleration vector acc and last 

acceleration vector (accXlast, accYlast, accZlast). The vector of the last 

acceleration  is always  in order to get absolute attitude. That means it is 

set to the value that is present on the accelerometer output in case that the IMU is placed 

horizontally. The angle α  is used in formulas (4.1) – (4.4) and based on that we are 

able to determine the quaternion, in my source code called orientation (Figure 4.2). 

 
(4.1) 

 

(4.2) 

 

(4.3) 

 
(4.4) 

 

Figure 4.2 Quaternion orientation determination. 

For further application, the quaternion orientation equals ORI.  

The  and the  angle are subsequently determined from quaternion by formulas (4.5) 

and (4.6): 

 
(4.5) 

 

(4.6) 

where:  
 

                

This algorithm derotates the IMU to the nearest flat level (by the smallest angle). It 

means that there may occur some undesirable rotation around z-axis during this 

derotation. It is defined as zrot and expressed by (4.7). This must be subtracted (the 

IMU is rotated by the zrot quaternion in opposite direction) from computed attitude, 

see the part of the source code, Figure 4.3.  

Now the IMU’s tilt is defined by the quaternion rotToFlat. Then the last rotation 

around the z-axis by the heading angle is performed to the orientation of the IMU into 

the ENU coordinate system. The acceleration in the ENU coordinates is then expressed 

by the vector accDerot. Once the ORI is defined, the acceleration acc may be 

rotated by the ORI quaternion conjugation. After that, the full size of gravitational 

acceleration occurs in z-axis and thus the gravitational acceleration (1 g) can be 

subtracted in the z-axis to getting of the IMU inertial acceleration only. 

orientation = QQuaternion::fromAxisAndAngle(p, q, r, angle) 

//p = rotVecX; q = rotVecY; r = rotVecZ; 

//angle = -alfa*180/M_PI); 
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(4.7) 

where: 
 

 

 
 

 

 

Figure 4.3 A part of c-code for derotation. 

As it was written above, when the IMU is still, we can compute the heading from the 

magnetometer. When the measured data are rotated to flat level (magFlat, Figure 4.3) 

and the result of absolute magnetic field meets the conditions (the outcome has to be 

found within the interval 〈44985.24;52808.76〉 nT , this is 

± 8 % from the standard environment where the measurements were performed, 

obtained as an average value from long-term measurement). 

The computation of the heading from magnetometer in 2D is shown in relation (4.8); 

the vector magFlat is used. Because data measured by magnetometer are transformed 

into flat level, the determination of the heading (δ) in 2D is correct. When the 

magnetometer data are not derotated into level, another formula for declination 

determination has to be used. 

           when  

(4.8) 

        when  

   when    and  

   when    and      

// attitude from accelerometer    

 float alfa, cosAlfa; 

 float rotVecX, rotVecY, rotVecZ; 

 float accXlast=0, accYlast=0, accZlast=1; 

 acc.normalize(); 

 cosAlfa=accXlast*acc.x()+accYlast*acc.y()+accZlast*acc.z(); 

 alfa=acos(cosAlfa); 

 rotVecX=1/sin(alfa)*((accYlast*acc.z()-accZlast*acc.y())); 

 rotVecY=1/sin(alfa)*((accZlast*acc.x()-accXlast*acc.z())); 

 rotVecZ=1/sin(alfa)*((accXlast*acc.y()-accYlast*acc.x()));    

// remove parasite 

 orientation = QQuaternion::fromAxisAndAngle(0,0,-1,zrot)*orientation;  

 rotToFlat = orientation; 

 orientation = QQuaternion::fromAxisAndAngle(0,0,1,heading)*orientation; 

// derotation 

 QVector3D accDerot = orientation.rotatedVector(acc); 

 QVector3D magFlat = rotToFlat.rotatedVector(mag); 
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This gives us the heading (azimuth), the direction of the IMU x-axis due to the magnetic 

north (inertial x-axis), [42]. To be correct, the geodetic declination must be added to get 

the heading regarding to the geographic north. Of course, it has to be adjusted for 

different locations by different values, which are determined in map charts [40]. For 

Brno, Kohoutovice, the declination reaches 4.16 ° [41]. This is positive, east declination 

and thus the value has to be subtracted from the calculated true azimuth. 

4.2 THE STATE IS “WALKING” 

ANN decides that the IMU state is “walking”. The accelerometer measures the 

gravitational acceleration mixed with inertial acceleration that it needs to be separated. 

At first, the transfer from RPY to ENU coordinates is performed. This is quite difficult 

since the gyroscope has almost full confidence. Then the full size of gravitational 

acceleration occurs in z-axis again and 1 g can be subtracted to get the inertial 

acceleration only.  

The accelerometer data cannot be used for the attitude determination and we have to 

use only the data that was measured by the gyroscope. Figure 4.4 shows how the 

quaternion deltaFrame is defined and how the quaternion orientation is rotated by 

deltaFrame to find out the new orientation.  

 

Figure 4.4 Single step of successive attitude determination. 

The matrix dcm (direct cosinus matrix, DCM) is created from recalculated 

quaternion orientation (after the deltaFrame effect application). All over, the θ and the 

φ angle are determined. The rotation around the z-axis, zrotation, is computed by 

equation (4.8). The last rotation, the rotation around the z-axis, is then performed. The 

acceleration in the ENU coordinate frame is then expressed by the accDerot vector.  

 

(4.9) 

where:   

 
 

 

// attitude from gyro 

    QQuaternion deltaFrame; 

    float q0=1, q1=0, q2=0, q3=0, gy, gz, gx; 

        gx=gyr.x()/180*M_PI; 

        gy=gyr.y()/180*M_PI; 

        gz=gyr.z()/180*M_PI; 
 

    float qDot1,qDot2,qDot3,qDot4; 

        qDot1 = 0.5 * (-q1 * gx - q2 * gy - q3 * gz); 

        qDot2 = 0.5 * (q0 * gx + q2 * gz - q3 * gy); 

        qDot3 = 0.5 * (q0 * gy - q1 * gz + q3 * gx); 

        qDot4 = 0.5 * (q0 * gz + q1 * gy - q2 * gx); 
 

        q0 += qDot1 * frameTime; 

        q1 += qDot2 * frameTime; 

        q2 += qDot3 * frameTime; 

        q3 += qDot4 * frameTime; 

        deltaFrame = QQuaternion(q0,q1,q2,q3); 
 

orientation = orientation * deltaFrame;    //successive attitude determ. 

headG = headingFromQuat(orientation) *180/M_PI; //heading after the mov.  

orientation = QQuaternion::fromAxisAndAngle(0,0,-1,headG)*orientation; 
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The heading is computed the same way as in the case when the IMU is “still”. In this 

case, when the IMU state is “walking” there is not parasite rotation present. On the 

other hand, the heading is computed only from the integrated data that was measured by 

the gyroscope as well as the tilt and this leads to growing inaccuracy with time, as 

mentioned above. We can improve the accuracy by replacing heading calculated from 

the gyroscope by absolute heading from the magnetometer. 

4.3 PROBLEMS AND THEIR SOLUTIONS 

Because of data history is needed in process, the type of the ANN cannot be from group 

of the classification ANNs. It results in a fact that the continuous output is in the range 

from -1 to +1 (in classification ANN the output is exactly -1 or +1, see Chapter 5 in 

dissertation). To distinguish of two states (walking and staying still) a decision border 

has to be defined. In addition, the neural network output is filtered by a KF and due to 

this filtering, some delay in network decision on state occurs. The movement is then 

evaluated later and the orientation is determined in a bad way. 

To avoid this, two additional steps are performed: 

1. Auxiliary condition has to be met to classify the IMU state as “still”, see (4.10), 

where δacc is the actual deviation in [g] of the measured acceleration and (4.11), where 

δgyr is defined by maximum value of rotation rate. This condition block is called 

SillyStatus filter and it returns “0” when any of the values was out of required range in 

last N samples, otherwise it returns “1”. Tolerance of acceleration deviation δACC was 

set to 0.01 g and the rotation rate tolerance was set to 2 °/s. 

2. The second step is to delay the data processing by N samples in order to be able 

to “see the future”. Whenever the state changes to “walking”, the walk processing 

algorithm runs using N samples in advance and thus the KF delay and ANN delay are 

eliminated. This ensures that the orientation quaternion is not absolutely computed 

from accelerometer while the IMU is already moving. 

Another issue is heading computation when the IMU’s x-axis points upwards or 

downwards. When such a situation occurs, the heading is not defined and the 

orientation (particularly the rotation around ENU z-axis) is computed fully from 

rotation rate sensor, regardless of whether the IMU is “still” or not. 

5  SOFTWARE FOR THE IMS – TRACKER 

As a suitable environment Qt has been chosen. Qt is the leading independent technology 

for cross-platform development. An application for data processing and visualization 

was created including visualization. Besides the main.cpp file, further C++ source files 

have been developed: 

Main source codes for processing: 

receiver.cpp 

calibrator.cpp 

 

derotator.cpp 

integrator.cpp 

 

filehandler.cpp 

brain.cpp 

 

(4.10) 

 
(4.11) 
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Visuals source codes: 

calstatus.cpp 

glcubevidget.cpp 

qcustomplot.cpp 

tcompass.cpp 

 

 

Utils source codes: 

brain.cpp 

pplotgroup.cpp 

putils.cpp 

ANN source codes: 

genericnetwork.cpp 

mod.cpp 

User interface source codes: 

cubedialog.cpp 

customtab.cpp 

packformater.cpp 

settings.cpp 

vizualizer.cpp

The pointer with an arrow defines the deviation from the North and the number of 

consequently incoming samples in last state (still, walk, other IMU modes), see Figure 

5.1. Application allows to track the IMU body in 3D and it shows information about the 

number of samples per second (SPS), the position, the velocity and the actual 

orientation quaternion value in time (Figure 5.2). 

       

Figure 5.1 State pointers. 

 

 Figure 5.2 Cube view. 

All functions that may be plotted in the application:  

Raw Acc. Raw accelerometer data Cal. Acc. Calibrated accelerometer data 

Raw Gyro Raw gyroscope data Cal. Gyro Calibrated gyroscope data 

Raw Mag. Raw magnetometer data Cal. Mag. Calibrated magnetometer data 

ENU ACC Linear acceleration in ENU  ENU KF ACC Linear acceleration in ENU after KF 

Euler angles Euler angles of actual orientation Velocity Velocity in ENU coordinate frame 

Neural output 
ANN output, ANN output after KF, 

combined state (with SillyStatus) 
Position Position in ENU coordinate frame 



          

23 

 

Figure 5.3 Integrated data. 

Figure 5.3 represents two of twelve possible output functions processed by the 

developed TRACKER software – computed velocity and position in time during the 

measurement. 

6  ONE OF EXPERIMENTAL MEASUREMENTS 

Step and Stop motion, the IMU is held in the hand 

Step and Stop measurement contain both, steps and the still phases. The measurement 

was performed in Brno, Cerna pole. The true shape of the trajectory is a square with a 

side length of about a = 4 m (A => B => C => D). This trajectory repeats for 5 minutes. 

The detailed positions are shown in Figure 6.1. These data are summarized in TABLE . 

The direction to the North (x-axis of the IMU) is positive. The direction to the East 

(y-axis of the IMU) is negative.  

 
Figure 6.1 Detailed positions of Step and Stop measurement. 
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The direction to the East (y-axis of the IMU) is negative. That is why the minus is 

present in calculations when the distance in y-axis is computed. 

TABLE 6.1 Positions of Step and Stop measurement. 

square part length sum [m] position [m] azimuth [°] 

1.  A => B 4 A = [ 0.00; 0.00; 0] 30 

2.  B => C 8 B = [3.464; 2.0; 0] 120 

3.  C => D 12 C = [1.464; 5.464; 0] 210 

4.  D => A 16 D = [-2.0; 3.464; 0] 300 

The first three steps are presented in following figures. In this example you can 

observe the rising inaccuracy in time. The SillyStatus state (red coloured) and neural 

network output (raw output is green coloured, output after Kalman filtration is blue 

coloured) is shown in Figure 6.2. The x-axis of all graphs represents time in [s]. 

In Figure 6.3 the velocity in ENU coordinate system in UOG mode is shown.  The 

corresponding position in time is depicted in Figure 6.6. Again, the velocity in ENU 

coordinates in shown in Figure 6.4, however the estimation in time is adjusted by 

SillyStatus filter. The corresponding position in time to this result is depicted in Figure 

6.7. The last one mode is shown in Figure 6.5. This is the velocity in ENU coordinates 

estimated when the ANN is applied. The corresponding position shows Figure 6.8 

 

Figure 6.2 SillyStatus state (red) and ANN output state in time [s]. 

TABLE 8.8 in dissertation thesis shows the estimated outputs in all three modes, 

UOG mode, SillyStatus mode and the mode with our ANN in process. The expected 

values, if available, are shown in the last column. 

 

Figure 6.3 ENU velocity estimated in UOG mode, x-axis represents meas. time in [s]. 
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Figure 6.4 ENU velocity estimated with SillyStatus filter, x-axis represents meas. time in [s]. 

 

Figure 6.5 ENU velocity estimated with ANN in process, x-axis represents meas. time in [s]. 

 

Figure 6.6 ENU position estimated in UOG mode, x-axis represents meas. time in [s]. 

 

Figure 6.7 ENU position estimated with SillyStatus filter, x-axis represents meas. time in [s]. 

 

Figure 6.8  ENU position estimated with ANN in process, x-axis represents meas. time in [s]. 
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Inaccuracies arise when rotations by 90 degrees occurs. The applied ANN is not 

trained to rotations around z axis without human steps. The graph of distances from the 

(0, 0, 0) position in ENU coordinate system is shown in Figure 6.9. Figure 6.10 shows 

the reconstructed 2D trajectory (East-North view) and Figure 6.11 shows the 

reconstructed 3D trajectory (East-North-Up view) of this measurement using the inertial 

measurement system only. Graphs show 60 seconds of measurement. 

  

Figure 6.9 Particular distances from [0,0,0] 
position in ENU coordinates. 

Figure 6.10 Trajectory in ENU 
coordinates, 2D, [m]. 

 

Figure 6.11 Trajectory in ENU coordinates, 3D, [m]. 

Other experimental measurements are fully described in detail in my dissertation. 

7  CONCLUSIONS 

In proposed dissertation thesis, the processing of inertial navigation sensor data is 

presented. As the new approach method I decided to estimate the state of the IMU by an 

artificial neural network without any support of auxiliary or global positioning system. 

It ensures that the data from the inertial sensors are processed typically (with the 

integration disadvantages) only for a vital period. The orientation of the IMU is fully 

derivate from inertial sensors.  

The correction of the IMU orientation is performed during data processing when 

the ANN decides that the IMU is still. That leads to more accurate positioning based on 

DR, regardless of the environment (indoor, outdoor, underground, etc.). As the IMU 
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hardware, Arduino UNO was chosen in combination with ST Nucleo expansion board, 

which contains all used inertial sensors. 

Special positioning system software called Tracker was developed in C++ 

programming language using Qt framework. It also offers graphical environment for the 

user. It process the data from the IMU and presents various intermediate and final 

results. The system also allows to record data into a file in adjustable format –

 raw/calibrated/derotated sensor data, Euler angles, heading, velocity and position in all 

available modes. A window with 3D IMU model is also available. 

Proposed ANN was designed in MATLABTM software and estimates the state of 

the IMU based on the previous 40 values from inertial sensors, the type of the ANN is 

time-delayed feed-forward. It does not take the data from magnetometer into account, 

because of the magnetic field typically extremely fluctuates. The output of the ANN 

defines the state of the IMU – „walking“ or „staying still“, which is applied in data 

processing to improve positioning. 

Such a system works very precisely in case that the IMU stays still on the table or 

stays still in the hand. In those cases, the error in positioning reached about 

2 millimetres in the case the IMU was lying on the table and about 20 centimetres in 

case the IMU was held in the hand, after 2 minutes of acquisition.  

The very interesting results were achieved when the IMU was held in the hand 

and the user performed a walk that often changes with still phases. Such a motion can 

be seen for example in a museum or in an art gallery. In these cases proposed system 

achieves very small positioning errors compared to the systems based purely on DR 

method. As shown in Chapter 8.3 in the dissertation, the INS achieved the error of only 

2 meters after 2 minutes of measurement in 2D (horizontal positioning). The error in 

vertical z-axis reached up to 5 meters and that was caused by subtraction of the 

inaccurately determined earth’s gravitational acceleration constant.  

In situations when the ANN decides that the IMU is still, the system is recalibrated 

and the cumulative error caused by integration is reset. Thus the position during 

discontinuous walking is effectively estimated with low error. When the walking 

motion is present during the measurement only, this method fails and the INS works as 

a simple DR system (however, in a real world a man must stop anytime). 

In this dissertation thesis, proposed method based on ANN state recognition has been 

successfully validated by experiments focused on pedestrian movements. Anyway, 

more applications can be found in a human life in which this method could improve 

positioning, for example in specific professions, military applications or different types 

of vehicles. It opens new opportunities in future research for specific applications where 

the suitable artificial neural network structure have to be investigated and properly 

trained or modified with wider classification group (more types of movements). 
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ABSTRACT  

The dissertation is focused on inertial navigation systems and dead reckoning positioning. The 

issue in the problematics is that the dead reckoning systems and inertial navigation systems are 

inaccurate for medium-term and long-term application due to cumulative errors, assuming that the 

positioning is not supported by another external system. The dissertation shows possible 

approaches to the issue of more accurate positioning system based only on the inertial sensors. 

Basically we are talking about 9-DOF inertial measurement unit that allows sensing the global 

acceleration, rotation rate and magnetic field strength in three particular axes. The new approach 

brings artificial neural networks into data processing, where proper neural network is able to 

recognize the character of motion leading to improvement in positioning. The description of the 

proposed method includes an analytical procedure of its development and, if possible, the 

analytical performance assessment. Proposed artificial neural networks are modelled in 

MATLABTM and they are used for the determination of the state of the inertial unit. Due to this 

determination, the position of the inertial measurement unit is evaluated with higher accuracy. An 

application using Qt framework was developed to create an evaluation system with user interface 

for standard inertial measurement unit. The designed system based on artificial neural networks 

was verified by experiments using real sensor data.   

ABSTRAKT  

Disertační práce je zaměřena na oblast inerciálních navigačních systémů a systémů, které pro 

odhad polohy používají pouze výpočty. Důležitým faktem v dané problematice je vysoká 

nepřesnost určení polohy při střednědobém a dlouhodobém využívání takového systému díky 

kumulativní chybě za předpokladu, že inerciální systém není podpořen žádným dalším přídavným 

systémem. V disertační práci jsou uvedeny možné přístupy k této problematice a návrh na zvýšení 

přesnosti určování polohy pouze na základě inerciálních senzorů. Základem inerciální měřicí 

jednotky je systém s 9 stupni volnosti, který umožňuje snímat celkové zrychlení, rychlost rotace a 

sílu magnetického pole, jednotlivě ve třech osách. Klíčovou myšlenkou je zařazení umělých 

neuronových sítí do navigačního systému tak, že jsou schopny rozpoznat charakteristické rysy 

pohybů, a tím zvýšit přesnost určení polohy. Popis navrhovaných metod zahrnuje analytický 

postup jejich vývoje a tam, kde je to možné, i analytické hodnocení jejich chování. Neuronové sítě 

jsou navrhovány v prostředí MATLABTM a jsou používány k určení stavu inerciální jednotky. 

Díky implementaci neuronových sítí lze určit pozici jednotky s řádově vyšší přesností. Aby byl 

inerciální polohovací systém s možností využití neuronových sítí demonstrativní, byla vyvinuta 

aplikace v prostředí Qt. Navržený systém a neuronové sítě byly použity při vyhodnocování 

reálných dat měřených senzory. 

 


