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NEURAL NETWORKS IN INERTIAL NAVIGATION SYSTEMS

1 INTRODUCTION

An implementation of artificial intelligence into an automatic navigation systems is
the one of opportunities how to improve performances of autonomous positioning
systems. Well known positioning method which is used in many modern systems, such
in cars, is the dead reckoning. This method is defined as the process of calculating
current position by using a previous determined position and actual data from inertial
sensors in combination with vehicle odometers. The implementation of this method
defines actual position of moving object regarding to the initial position. It also defines
the trajectory during the movement.

This topic is often discussed nowadays and the research in this field can be divided to
many way. To providing of more effective solutions than independent processing of
inertial sensor data offers, additional methods, systems and devices are required.

Research teams work on acquisition with intention to obtain more precise results
provided by sensor data fusion, by increasing the number of sensors that are used to
measure the same physical quantities, by adding various specific devices, such as Wi-Fi
or other wireless equipment and its signal strength, by limitation of results
determination, by monitoring of regularities in motions and finally by fusion with
available GNSS/GPS, pedestrian navigation constrains, visual-aided constrains, map
matching etc.

There are three main issues arising from the fundamentals of inertial navigation. The
first of all is the Earth’s gravity. We can measure the acceleration. It contains both, a
linear acceleration (that is needed to determine the position) and Earth’s gravity
acceleration. This is good when the accelerometers are placed horizontally (flat). The
precise strength of Earth's gravity varies depending on location, nevertheless, at the
Earth's surface the nominal average value (standard acceleration of free fall) should be
in our case subtracted, because we are located on the Earth’s surface. The
accelerometers are generally never horizontally placed though the position of inertial
measurement unit is often approaching this state. For that reason it is very hard to
separate Earth’s gravity and linear acceleration, both measured together by
accelerometer. We highly focus on this issue in this document. The second difficulty is
Earth’s rotation around its axis by 15 degrees per hour and around the sun by 0.041
degrees per hour. This should be solved by using the gyrocompass and by
implementation of proper compensations in computations. The third issue is a
significant inaccuracy caused by sensitivity and typical characteristics of inertial
sensors. Due to low signal to noise rate when the linear acceleration of the IMU or its
orientation vary is the only inertial sensor navigation fundamentally inapplicable for
precise localization. Thus nowadays, many localization methods are combined.

When we are talking about inertial sensor data fusion we are always confronted by
real world challenges. It is thought that nothing is exactly accurate and therefore we
have to consider deviations and errors as an inseparable part of technique. The task is to
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use knowledge and enrich it by our own thoughts that complexly lead to invention of
better solution, innovation. The application of inertial sensor data fusion brings
thorough considerations of error models and their implementation in calculations. In
combination with artificial neural network, Kalman filtering and with the support of
GNSS/GPS the dead reckoning system may achieve a sufficient accuracy to determine
the orientation and the position where the inertial navigation system (INS) is located.

An inertial navigation system (INS) is a navigation aid that uses a computer, motion
sensors (accelerometers) and rotation sensors (gyroscopes, gyros) and maybe others to
continuously calculate via dead reckoning (DR) actual position, actual orientation, and
actual velocity (direction and speed of movement) of a moving object in time without
any external references [1]. It has been called “Newtonian navigation” because its
theoretical foundations have been known since time of Newton:

Given the position x(to) and velocity v(to) of a vehicle at time to, and its acceleration
a(s) for times s>to, then its velocity, v(t), and position, x(t), for all time t>0 can be
defined as (1.1), (1.2).

v(t) = v(t,) + _t[ a(s)ds (1.1)
X(t) = X(t,) + j v(s)ds (1.2)

t
1. Sensors for measuring acceleration with sufficient accuracy:
a. 3-axis acceleration sensor (accelerometer)
b. 3-axis rotation sensor (gyroscope)
2. Compatible methods based on integration of the sensor outputs to obtain position

a. Methods integrating the gyro outputs to determine the orientation of the
accelerometer

b. Methods integrating the accelerations to obtain the velocities and integrating
the velocities to obtain the position
3. Hardware and software implementing these methods and for interpretation of the
results

4. Applications that could justify the investments in technology required for
developing the solutions to the capabilities listed above

=  True trajectory
= INS+DR system

----- GPS system

Figure 1.1  Recorded trajectory.

This dissertation thesis heads with the state of the art, where the short history and
current research state is described. The next Chapter outlines the objectives of the thesis
and the rest of document deals with those objectives. At the end of the main document
the results are discussed and the proposed method is evaluated. Annexes complement
the described methods.




2 STATE OF THE ART

Inertial navigation is a self-contained navigation technique in which measurements
provided by accelerometers and gyroscopes are used to track the position and
orientation of an object relative to a known starting point, orientation and velocity.
Inertial measurement units (IMUs) typically contain three orthogonal rate-gyroscopes
and three orthogonal accelerometers, measuring angular velocity and linear acceleration
respectively, [2].

By processing signals from these devices, it is possible to track the position and
orientation of the device. This aim is often discussed nowadays and research is divided
into many directions. To ensure better solution than which is offered by independent
processing of sensor data, additional methods and equipment are required. Proposed
inertial guidance system is based on dead reckoning method supplemented by artificial
neural network (ANN) and Kalman filters (KF).

21 AN EXAMPLE OF IMPLEMENTATION

A very nice example of ANNs implementation for navigation system shows the
paper from 12th International Conference on Control, Automation and Systems, Korea,
2012 [3]. Researchers developed the indoor navigation system based on pedestrian dead
reckoning (PDR) that uses various sensors in a smartphone. MEMS IMU was mounted
on the waist, using sensors and ANN status; they estimated the step length adaptively.
They used a map-matching method in addition. If the estimated trajectory was tracked
wrong way or the estimated position in unavailable place to go, map matching arranged
the estimated position to the coordinate defined in a map. So the computed position was
“snapped” to link in the map or to the corner when rotation rate measured by a
gyroscope increased in the moment. A barometer was used for to distinguish the floor
where the IMU belongs.

A major disadvantage of this method is that we need a map of the area where such a
system is used. Without a map, the performance of positioning is not sufficiently
accurate. Other examples can be found in [4] — [10].

2.2 ADIFFERENT APPROACH

The presented method approaches to the issue from another point of view than
previous solutions of PDR inertial units. It is based on the fact that we need to apply DR
(INS) while the terrain is unknown; that means wireless connections are not available,
terrain map is not defined, and GNSS signal is not available. It was investigated that
sensor errors, deviations and drifts achieve significant values, thus, the error in
positioning is large. The fusion of sensor data, Kalman filtering and artificial neural
network offer a solution for the purpose.



2.3 COORDINATE SYSTEMS

The coordinates for inertial systems are given to be natural to the problem at hand.
We use LTP (local tangent plane) coordinates; first-order model of the earth as being
flat, where they serve as local reference directions for representing vehicle attitude and
velocity for operation — on the surface of the earth (or very close to). A common
orientation for LPT coordinates has one horizontal axis (the north axis) in the direction
of increasing latitude and the other horizontal axis (the east axis) in the direction of
increasing longitude.

Furthermore, we have to specify the ECI (earth cantered inertial) coordinates that are
the favoured inertial coordinates in the near-earth environment. The origin of ECI
coordinates is at the centre of gravity of the earth, with axis directions:

X — the direction of the vernal equinox;

z — parallel to the rotation axis of the earth (north polar axis);

y — an additional axis to make a right handed orthogonal coordinate system.

The equatorial plane of the earth is also the equatorial plane of ECI coordinates,
nevertheless the earth itself is rotating relative to the vernal equinox by about 15.04109
deg per hour®. ECEF (Earth Centred, Earth Fixed) coordinates have the same origin and
third, polar axis as ECI coordinates, but rotate with the earth. Consequently, ECI and
ECEF longitudes differ only by a function of time. ECI (indexed by “I”’), ECEF
(indexed by “e”) coordinates and LTP are shown in Figure 2.1.
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Figure 2.1  ECI, ECEF, and geodetic coordinate frame, [11].

In coordinate system NED (earth-fixed, north east down) right handed LTP system is
preferred because the direction of a right (clockwise) turn is in the positive direction
with respect to a downward axis and NED coordinate axes coincide with vehicle-fixed
RPY (body fixed, roll pitch yaw) coordinates when the vehicle is in the flat position and
headed to north. The other, commonly used right handed LPT system is ENU (east-

1 World Book Encyclopaedia Vol 6. lllinois: World Book Inc.: 1984: 12.
"It takes 23 hours 56 minutes 4.09 seconds for the Earth to spin around once 2w
radians/86164.09 seconds”



north-up) and the transformation matrix between ENU and NED is described in my
thesis. The ENU coordinate system is preferred in this thesis. The relation between
ECEF coordinate frame and ENU coordinates can be found in APPENDIX A, part A.5.

RPY coordinates are vehicle fixed, as noted above, with the roll axis in the nominal
direction of motion of the vehicle, the pitch axis out the right hand side, and the yaw
axis such that tight turning is positive. This is used also for surface ships and ground
vehicles, called SAE coordinates.

24 SENSOR MODELS

Inertial navigation performance is hardly limited by the performance of used inertial
sensors. Basic formula, Newton’s model, gives us an overview of the inertial navigation
system’s error evolution over time. The performance significantly decreases with the
time and the system based only on integrated data from sensor is inapplicable.

The errors in measurement arise from many various reasons. Inertial navigation has
been called “black box navigation” because it is entirely self-contained. It interferes
what is going on outside by what it can sense inside. In addition, inertial sensors are
called black boxes for the same reason. There are more events outside the sensor than
just accelerations or rotations, see Figure 2.2.

The important fact to realize is that accelerometers do not measure gravitational
acceleration, but inertial acceleration. That means, they measure “specific force” a=F/m,
where F is the physically applied force and m is the mass it is applied to [12].

acceleration (a)

angular rate (w)

S INERTIAL [ERTCHTRAN
temperature (T) SENSOR

v

magnetic field (B) -

“other” I

power variation

electromagnetic interference

Figure 2.2 Sensor black-box model.

The dissertation includes definitions and appropriate suggestions for compensation of
various Sensor errors.

2.5 SENSOR CALIBRATION

To calibrate and compensate offsets, biases, scale factors and misalignments, affine
(linear plus offset) model is used. Biases are included in offsets and the rest is linear.
When we define output as shown in relation (2.1), where zinput IS the vector representing
the inputs (accelerations or rotation rates), zouput IS the vector representing the



corresponding outputs, b; is the vector of sensor output biases and M represents the
linear input-output model.

Zoutput: M '(Zinput+bz) (2.1)

_ -1
Zinput =M. Zoutput_

b, 22)

To estimate the values of M and b, several pairs of given input-output vectors [Zinput,
k, Zoutput, k] have to be defined, . These outputs are measured while controlled calibration
conditions, thus we get a pair of input-output recorded under these conditions and
applicable for sensor compensation. This result can be generalized for a cluster of N > 3
gyroscopes or accelerometers. For more information, see [12] and [13].

26 ORIENTATION DETERMINATION

The absolute orientation of the inertial measurement unit or its tilt is unknown in a
real terrain and it is perhaps the most important step to estimate this state as accurate as
possible. Any inaccuracy leads to wrong derotation from RPY coordinates to other
coordinates, e.g. ENU, ECEF [12].

2.6.1 Euler angles

This way, the orientation might be defined as rotation angles about each of axes (vehicle
roll, pitch and yaw axis), called Euler angles, named for the Swiss mathematician
Leonard Euler (1707-1783). With this approach, it is always necessary to specify the
order of rotations when specifying Euler angles. The rotation from RPY coordinates to
NED coordinates can be composed from three Euler rotation matrices, consecutively
yaw v, pitch 8 and roll ¢, as is shown in (2.3), respectively (2.4).

cos@w) -sin(y) 0| cos@ O sin(@)| |1 0 0
Chty =|sin(w) cos@w) 0| O 1 0 [-|0 cosp) -sin(p) (2.3)
0 0 1] |-=sin(@) 0 cos@)| |0 sin(p) cos(p)
cos)-cos(@) —sin(y)-cos(p) + cos(y) -sin(d) -sin(p)  sin(y) - sin(@) + cos(y) - sin(6) - cos(p)
CREY =| sin(y)-cos(@)  cos(y) - cos(p) +sin(y) -sin(8) -sin(p)  —cos(y) - sin(p) + sin(y) - sin(6) - cos(e) (2.4)
—sin(6) cos(@) - sin(ep) cos(#) - cos(p)

This approach leads to problem with discontinuity when the pitch angle equals 90
degrees. Roll axis is then pointed upwards and any change in pitch or yaw causes +180
degrees changes in heading angle. This is called “gimbal lock™ and it is the reason why
we do not use Euler angles for the orientation determination of IMUs.

In addition, it depends on the sample rate of angular rate sensing and how precise the
sensor is, in the other words, computations of ¢, 6 and y during the time from
gyroscope outputs, body angular rates, are mathematically very complicated.

Other methods that can be used for 3D position determination, such DCM (Direction
cosine matrix) or Rotation vectors are described in my thesis. In this project,
quaternions were chosen as the suitable tool.



2.6.2 Quaternions

Quaternions are members of a noncommutative division algebra first invented by
William Rowan Hamilton. They are a single example of a more general class of
hyper-complex numbers discovered by Hamilton, (2.5), [14]. While the quaternions are
not commutative, they are associative, and they form a group known as the quaternion
group, [15].

i=j*=k?=i-j-k=-1 (2.5)

Quaternion multiplication is noncommutative, the result depends on the order of
multiplication. A single quaternion product, the final rotation, is determined by the
quaternion product gn X gn-1...Q3X 02X 1., can implement each successive rotation.
The quaternion equivalent of the rotation vector p withlﬁl = B, and where u is a unit

vector, is (2.6).
| {ej I (0
coy — coy —
2 2

N—
I

o (0 . HJ
2L sin| = u, -sin| —

q(l;)df 0 2] | (2 (2.6)
P 0

, N (0
—=.sin| — u, -sin| —
iong)) |oel3)
22 sin 9 Ug -Sin 9
|0 2)] | 2)|

When the two coordinate systems are aligned, the initial value of qpo equals
[1000]". In inertial measuring systems the initial qpj is determined during INS
alignment procedure. We can then define the calibrated value of the orientation,
quaternion gk, as a quaternion product as shows (2.7), where qk-1 is a prior value of
attitude (a quaternion that is determined from the vector as [0; vi; v2; v3]) and Aq is the
change in orientation, all represented in quaternion form.

Ok = AGy X Gyy XAy 2.7)

The attitude representations and rotation sequences for quaternion expressions are
available in [16] and [17] for example.

2.7 ARTIFICIAL NEURAL NETWORK

An artificial neural network (ANN) enables to decide how the result of the issue
should be, without any equations, relations between physical quantities, and
probabilistic filters. It is based on an artificial intelligence (Al), which is the intelligence
exhibited by machines or software and such problematics including learning, reasoning,
knowledge, planning, communication, perception and the ability to move and
manipulate objects, please see [18], [19] and [20].

Each ANN has its input values, variables on which the ANN output depends. As an
output, in our case, we have one value that determines the state of the system. In other
cases, more outputs may be present, see [21]. The number of hidden layers and the



number of neurons in particular layers depends on the complexity of the problem we
solve, [22], lecture 2.

ANNSs were used in systems for tracking, positioning or navigation as it is presented
for example in [23], [24] or [25]. These applications nevertheless do not use the ANN to
find out the state of the system and also these developments combine the IMU with an
additional data sources. The ANNs are used to solve many specific types of issues.
Always the appropriate type of ANN and the method of training and other parameters
have to be chosen.

Our task is to correctly define the state in time. It offers the classification ANN as an
appropriate network for the data processing. However, the task is time dependent and
thus it is necessary to analyse the data during the time. The dynamic time series ANN
was chosen, [26]. There are lot of kinds and types of ANNs that solve completely
different issues, detailed information are provided in Chapter 5 of the thesis.

2.8 KALMAN FILTERING

Kalman filter (KF) (see literature [27] and [28]), also known as linear quadratic
estimation (LQE), had become the important instrument of systems that integrate more
data sources to give the solution. You can imagine this filter as an algorithm that uses
sets of measurements observed over time (containing random variations of noise) and
produces the estimates of unknown variables in order to obtain more precise result. An
introduction to concepts gives P. S. Maybeck in [29].

Correction step: = the predicted or a priori value of
a) Calculate the Kalman Gain k the estimated state vector
_ - 17T the corrected or a posteriori
S=HE " +R x;  value of the estimated state
. P H vector
K, = 4 the measurement or observation
S o ) vector
b) Correct the a priori state estimate R the sensor noise covariance or
X, =X + Kk (Zk _ h(x; ’0)) measurement encertainty .
. the dynamic disturbance noise
c) Correct the a posteriori error Q, -
. . . covariance
covariance matrix estimate p-  the predicted ora priori value of
P, =P - K _HP k estimation covariance
the corrected or a posteriori
Pk - . .
value of estimation covariance

‘(\_F K Kalman gain

Prediction step: Jacobian of the system model

a) Predict the state with respect to state

x}; _ 4xk71 H the measurement s_en51t1V1t_y
matrix or observation matrix

b) Predict the error covariance matrix

P = 4P 4 +0,,

h(x;,0)  the predicted measurement

7, — h(x;,0) innovations vector

Figure 2.3 Kalman filter process, [33].

With respect to data from sensors and other available information, the KF estimates
the result by using a form of a feedback control loop. The filter estimates the result and
obtains feedback in the form of (noisy) measurement. After that, the process repeats



(see Figure 2.3). In our case, the KF gets the data from the IMU, please have a look at
principles in [30]. The adaptive Kalman filtering for low-cost INS/GPS is shown in [31]
and [32].The theory of the optimal state estimation is also described.

2.9 TRAJECTORY RECONSTRUCTION

Trajectory reconstruction is difficult process when the high precision is supposed to
be reached and when there is not any support of additional external information system
or auxiliary system implemented, [34], [35]. The successive computation of position is
called strapdown navigation. In addition, Heading from the magnetometer should be
taken into account. Nevertheless, surrounding environment may differ with the time and
place where the measurement is performed. Thus the data from magnetometer is not
always included into the strapdown IMU system. This issue is discussed in, [33].

The essential processing function includes double integration of acceleration to
obtain the position, [36]. The measured angular rates are also integrated to maintain the
knowledge of the IMU orientation. The initial position, velocity and orientation must be
known before the initialization of integration [12]. Figure 2.4 shows the simple
strapdown INS and its outputs.

IMU BODY-FIXED ACC SENSED INERTIAL ACC VELOCITY POSITION
Taccel | 1 Pt Pttt
' SCALING, OFFSET, COORDINATE j‘ ‘[
ERROR COMPENS. TRANSFORMATION |/ r e

| =
R ® R NG X N

=

VAN

gyro !
SCALING, OFFSET, [

— ﬁ ERROR COMPENS. [—=| ATTITUDE UPDATE

GRAVITATION

v
- ‘I;I‘ - ATTI#UIiE RATE BOthTiITjDE SUBTRACTION

Figure 2.4 Simple strapdown INS and its outputs [12].

2.10 ISSUES AND DISSERTATION OBJECTIVES

- During the measurement, drifts and offsets arise on the output of the calibrated
gyroscopes. The IMU orientation is defined (RPY to ENU). With time, the inaccuracy
of orientation determination rises and thus the velocity and position is computed with
enormous errors (in direction and in size).

- The acceleration also drifts during the time. Then the measured acceleration is
not exactly 1 g while the IMU stays still. When the IMU stays still, the acceleration may
be averaged and normalised. Nevertheless, during the walk or any other motion, the
acceleration drift is not fully compensated and thus the estimated velocity (and position)
may differ from the true values due to the integration of the acceleration.

- Metal objects placed close to the IMU affects the magnetometer output. It is
called as soft iron offset. We assume that when the metal objects are present at a
distance of at least fifteen centimetres, they do not affect measured values with the
impact on the result (the magnetic north determination). The hard iron offset (the effect
of the PCB, electronical components, etc.) has to be suppressed.



» SYSTEM FOR TERRESTRIAL EVALUATION OF THE CURRENT STATE

This may furnish for example GNSS navigation when the signal is lost, but, also and
above all, this may be used for terrestrial indoor navigation or position determination
for short distances, up to several meters, while walking, jogging, driving, etc.

The task is to develop a system that works without any step detection algorithms
and map assigning, purely based on sensor outputs processing, with sufficient accuracy.
It is also desirable to get a system that can be hold in the hand during its operation.

Therefore, we can define the following objectives of the dissertation:
— To develop the method for determination of the sensors orientation with respect

to the navigation coordinates using only the sensor outputs while the system is
essentially stationary.

— To develop the method for determination of the sensors orientation with respect
to the navigation coordinates using only the sensor outputs while the system is
not stationary and while it moves.

Those tasks lead to coordinate alignment ability and thus to ability of subtraction of
split g-force (measured gravitational acceleration) from particular axes with eminent
focus on accuracy.

— To create an artificial neural network (ANN) that recognizes and defines “what is
going on” with the system and to implement it.

It leads to reduction of the positioning errors due to parasitic sensed rotation rates and
accelerations. It also ensures that the integration errors will not be cumulated during
whole measurement.

— To create a Kalman filter; that is a necessary element where data from the inertial
sensors are used for the position determination.

After performing all these tasks, integrations may follow and the velocity and position
in time may be computed as well as the trajectory of the moving object can be
reconstructed. In addition, the determination of the unit orientation and heading as a
function of time is available.

— To develop an IMU with application that evaluates all previous tasks and presents
results.

Developed IMU will be based on proper modules with 3-D accelerometer, 3-D rotation
rate sensor and 3-D magnetometer connected to appropriate MCU. Proposed application
running on PC will process data from the IMU and MCU including graphical
representation of results and verification of the system in which a new method of fully
inertial positioning is implemented.

— To perform and evaluate series of experiments.
The complex system will be experimentally tested in different scenarios to verify
improvements in positioning.
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3 INERTIAL MEASUREMENT SYSTEM

These steps lead to obtaining of the basic orientation and linear acceleration used for
IMU positioning from inertial sensors.

3.1 HARDWARE

The X-NUCLEO-IKS01AL1 board that consists of motion MEMS and environmental
sensors was chosen. It is compatible with Arduino Uno. Measured data are sent by BT
or by USB cable to a PC and may be processed in real time or saved for further
processing. This sensor board is designed around STMicroelectronics LSM6DS0 3-axis
accelerometer and gyroscope, the LISSMDL 3-axis magnetometer and the HTS221
humidity and temperature sensor and the LPS25HB™> pressure sensor is available.

3.2 FIRMWARE

The function of Arduino UNO is to read data from sensors and send them directly to
the PC. 12C protocol is used for data retrieval from the sensors. Arduino Uno was
programmed in Arduino IDE application using a programming language similar to C++.

The firmware code is divided into two sections, the first part (setup function) is
performed on start-up of Arduino and applies the settings. Arduino is set as a master
and sensors are set as slaves. The second part (loop function) reads the sensor data and
sends them to the PC. Arduino Uno was programmed in Arduino IDE application using
a programming language C++.

void loop ()
{
String output = "";
readFrom (30, B00101000, 6); // Magnetometer reading
while (Wire.available())
{
short ¢ = Wire.read();
c += (Wire.read() << 8);
output += String(c, DEC) + " ";
}
readFrom (107, B00011000, 6); // Gyroscope reading
while (Wire.available())
{
short ¢ = Wire.read();
c += (Wire.read() << 8);
output += String(c, DEC) + " ";
}
readFrom (107, B00101000, 6); // Accelerometer reading
while (Wire.available())
{
short ¢ = Wire.read();
c += (Wire.read() << 8);
output += String(c, DEC) + " ";
}
output += String(millis(), DEC) + " "; // timestamp
if (digitalRead (buttonPin) == HIGH) // button state
output += "0";
else output += "1";
Serial.println (output) ; // send to PC
delay (7);

11



3.3 DATA ACQUISITION

The firmware in Arduino defines the format in which the data are sent. In our source
code, the package contains measured accelerations in X, y and z-axis from accelerometer
(Figure 3.2), angular rate in x, y and z-axis from gyroscope (Figure 3.1) and magnetic
field in x, y and z-axis from magnetometer (Figure 3.3). There is the possibility to
receive the time stamp to get precise 4z, in other words, to get accurate time between
two samples. In addition, Arduino sends the button state. This button allows our system
to receive additional bool value that is defined by user.

Axes of all sensors have essentially the same origin but magnetometer has a different
right-handed axis system than accelerometer and gyroscope. Thus the measured
magnetic field vector has to be rotated. We obtain one united vehicle-fixed coordinate
system RPY (Figure 3.4).

z

N

Figure 3.1 Direction of detectable angular Figure 3.2 Direction of detectable accelerations
rates
Z x?(forward, roll)

X
; ' y °(right, pitch)
Y ‘g z”(down, yaw)

Figure 3.3 Direction of detectable Figure 3.4 Body-fixed RPY (roll-pitch-yaw)
magnetic field axis

Arduino sends just a raw data from converters. Based on the register settings, the
acceleration is measured in range of +2 g and the sensitivity is then 0.061 mg/LSB. The
rotation rate sensor is set to range of +500 dps, the sensitivity is then 17.5 mdps/LSB.
The magnetometer measures magnetic field in range of +£4 gauss and the sensitivity is
then 0.146 mGauss/LSB. Resolution of all sensors is 16 bits. Typical magnetic field at
places where the measurements were performed is about 48.897 nT (488.977 mGauss).

Finally, we get 11 values from 9-DOF device per sample (this is what the device
sends: [magx, magy, magz, gyrx, gyry, gyrz, accx, accy, acc;, time, button], and those sets
are sent with frequency of about 86 Hz.

The required sampling frequency is given by the spectrum of the measured data
during typical and particular movements. For the walk and staying still the sampling
frequency about 80 Hz is satisfactory.
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3.4 SENSOR CALIBRATION AND COMPENSATION

Sensor calibration is the process determining the parameters of the compensation
model. Sensor compensation is the process recovering the sensor inputs from the sensor
outputs. We calibrated and compensated sensors, appropriate steps and are described in
details in my dissertation. We are not able to determine the heading of the IMU unless
we have data from the calibrated magnetometer and we know the magnetic declination
(0) of the place where the measurement was performed. The rotation to the flat position
must be applied to the calibrated magnetometer data in order to determine the heading
correctly in 3D. Then, Figure 3.5 shows calibrated magnetometer data. The sin(x) and
cos(x) function that is formed when the IMU rotates along a single axis by 360° with
starting and ending heading equal & — the x-axis points straight to magnetic north.

750 F
Y| so0 2
50 Eoicdciiai o SETTPRSI R RO oo i
Y NN o S —
-250 _ e -
500 F S5 ST L
-750 E 1 1 1 1 ] 1 I
625,5 627 628,5 630 631,5 633 634,5

— X

Figure 3.5 Calibrated magnetometer data (360° rotation), x-axis in [s], y-axis in [mGauss] .

Recalibration may be done also manually during the measurement. Nevertheless it is
necessary to ensure the conditions for the calibration. The measurement of the still-
shake-still state of the IMU is shown in Figure 3.6.

Calibrated Accelerometer

N e 0.002
Tl W\W»W A -0.037
o S S S S 0.999

Calborated Gyro

I .

L N \ R
bl 0.086
300 i I,‘\I H ‘\ |I |\| i i ‘| I |1 H. || ]

\ AT \ |
| \ \ | | | | 1/ \ \
; AWANR “»,!L]‘- ANANANARAN AN SRANATP
TRV IR
Sl TA 'f“l"“‘ RIRIRIRIRIRIEI .
[
. o H ‘ ‘” ] | V
i M R ' i i
225 226,5 228 229 5 231 232,5 | |

Figure 3.6 Data from calibrated sensors while shaking, x-axis in [s], y-axis in [g], [*/S].

As you can see, the rotation rate and the acceleration show “what is going on* with
the IMU in the body coordinate frame in time. The IMU is placed on the table but it is
not perfectly in flat position (in a horizontal plane). The y-axis of the gyroscope has the
value of 0.248 °/s after the movement. This is the drift and it has to be suppressed for
further processing. Thus, the calibration of the gyroscope is necessary during the
measurement. This is exactly what the “soft” calibration performs.
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3.5 NEURAL NETWORKS

The new proposed approach is primarily based on the artificial neural network that is
designed in order to determine state — “what it is going on”. In this work, recognition of
two states are presented. The first case is that the IMU walks, the second case is that the
IMU is static regardless of its orientation. In principal, further states may be added, for
example jogging, running, driving, riding, shaking, flying, falling etc.

The very important piece of information is that when the ANN determines the state
of the IMU incorrectly, there are two cases of the wrong decision.

1. The ANN determines the walk and the IMU is still

2. The ANN determines that the IMU stays still and the IMU walks.

The first case does not bring complications, however it is undesirable, since the ANN
does not improve the positioning. The second case is unacceptable, the orientation of
the moving IMU is recalculated as it is “still” (from the actual accelerometer data). The
further processing of data after the incorrect determination of the orientation causes the
error with a very high severity.

3.6 PRINCIPLE OF ANN

| decided to create time-delayed neural network, since the static values of one sample
do not have any predictive value. Figure 3.7 shows principle of used ANN type, FFTD
(feed-forward time-delayed) network, [37].

To obtain the training data we recorded a walk with stops. The person holding the
IMU used the button to determine if he is walking or is standing still. Then, the neural
network was trained with the input set consisting of measured data and the button state
as the target output.

The script in MATLAB was written to automatic creation, training and simulation of
FFTD ANN. While the train function is given, the time delay (the number of previous
samples used) and the number of neurons in hidden layer changes. The training set is
divided to three blocks - training part, validation part and test part. The goals has to be
set appropriately.

Parameter and architecture properties such as training, performance, divide,
adaptation, transfer function etc. also have a significant impact on ANN output, please
see dissertation for details.

[X(t), x(t-1),.. x(t-n)] + 9% ANN hidden layer + 5% y(t)

Figure 3.7 FFTD ANN principle

Hidden Output
x(t) \ T y(
. 0‘.39-4‘ :I :
B =N IR
6 I! | n 1
15 1

Figure 3.8 FFTD ANN structure used.
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The issue is extensively described in my doctoral thesis, including particular
functions and algorithms. Figure 3.9 shows the response of the ANN that was evaluated
as the most suitable ANN for our purpose. The comparison of many TD ANNS is
performed in the document, also the examples of other ANN types applied on our
problematics are presented.

As the best-input parameters seem to be a vector of raw data from the accelerometer
and a vector of raw data from the gyroscope, both in all three axes. The magnetometer
data were discarded due to important dependence on the surrounding magnetic strength.

The ANN may be also trained by adjusted data from the accelerometer and
gyroscope, e.g. by gravitational vector length as the first input parameter and rotation
vector length as the second input parameter. Nevertheless, trained network showed
worse result. Two additional ANNs were created to demonstrate the function of the
ANN in INS. One of them is trained to decide on the state “still” or “anything else” and
is very useful when we check the functionality of the ANN behind the PC. The second
one is trained for state changes only.

The training of the ANN with chosen structure (Figure 3.8) is relatively
computationally complex, see [38] and [39]. It had been trained on PC (16 GB RAM,
Intel® CORE™ 4 x i5-4690K CPU @ 3.50GHz, SSD) using MATLAB™.

Response of Output Element 1 for Time-Series 1
1k Ty

i T i gl
1 . Training Targets

0.5 I +  Training Qutputs

+ \aldation Targets

+  Validation Outputs

Output and Target
[==]

. Test Targets ]
+  Test Outputs
Errors
05+ H Response .
-1
2 T T T
Targets - Outputs
S .
_2 i i i i i . 1
0 2000 4000 G000 8000 10000 12000 14000
samples

Figure 3.9  Time-series response, epoch 73, TDNN_dividerand_3_TS.

TABLE 3.1 Comparison of networks — training parameters.

Name of ANN Duration* [h] | Epochs Performance Reliability
TDNN_divideblock_1 4:49:57 140 0.006440 0.993560
TDNN_dividerand_1 7:50:28 215 0.007870 0.992130
TDNN_divideblock_2 5:48:42 1000 0.006900 0.993100
TDNN_dividerand_2 0:29:49 86 0.000940 0.999060
TDNN_divideblock_3 1:52:03 367 0.000999 0.999001
TDNN_dividerand_3 0:27:15 81 0.000997 0.999003

* PC: 16 GB RAM, Intel® CORE™ 4 x i5-4690K CPU @ 3.50GHz, SSD, using MATLAB™ (used for all following experiments)
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Training duration No. of training epochs Reliability

8:24:00 1200 1
7:12:00 1000 0.998
6:00:00 800 0.996
4:48:00
600 0.994
3:36:00
2:24:00 400 0992
1:12:00 I 200 I I 0.99
0:00:00 - 0 [] C L L 0.983
ANNs ANNs ANNSs

B TDNN_divideblock_1 B TDNN_dividerand_1
TDNN_divideblock_2 B TDNN_dividerand_2
B TDNN_divideblock_3 B TDNN_dividerand_3

Figure 3.10 Graphical comparison of trained feed forward time delayed networks.

TABLE 3.2 Comparison of networks Il — training parameters

Name of ANN Duration [h] | Epochs Performance Reliability
TDNN_divideblock 1 TS 0:01:26 29 6.23-10% ~1
TDNN_dividerand_1 TS 0:00:46 27 9.77-10% ~1
TDNN_divideblock_2_TS 0:01:11 28 5.62:10% ~1
TDNN_dividerand_2_TS 0:02:00 28 5.99-10% ~1
TDNN_divideblock 3 TS 0:14:36 90 0.00187 0.99813
TDNN_dividerand_3 TS 0:09:46 73 0.00229 0.99771

Training duration No. of training epochs Reliability
0:17:17 100 1.0005
0:14:24 20 1
0:11:31 0.9995
60 0.999
0:08:38
0 0.9985
0:05:46 0.998
0:02:53 20 I I I 0.9975 I
0:0000  Mmm [ 0 0.997
ANNs ANNs ANNs

B TDNN_divideblock_1 B TDNN_dividerand_1
TDNN_divideblock_2 B TDNN_dividerand_2
B TDNN_divideblock_3 B TDNN_dividerand_3

Figure 3.11 Graphical comparison of trained feed forward time delayed networks - TS

The duration, final number of epochs and achieved performance of some of the
particular networks trainings are shown in TABLE 3.1, TABLE 3.2, Figure 3.10 and
Figure 3.11. The reliability is shown as a complement of the performance to 1.
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4 DATA PROCESSING

Thanks to the ANN we know the state of the IMU. Provided we trust it, the attitude
of the IMU in time can be determined with higher accuracy. Whenever the state defined
by the ANN is “still”, the accurate (absolute) tilt of the IMU_can be recalculated. The
only property that still remains to be absolutely determined is heading.

The determination of heading comes from magnetometer data. The value that has to
be checked before heading determination is total magnetic field. If the value is too low
or too high, there are other influences than Earth’s magnetic field, and the heading
cannot be determined by the magnetometer. In that case we have to rely on integrated
data from gyroscope.

In the second case, when the value of total magnetic field falls within the given
range, the heading can be computed. However, it can be done after the acceleration data
tilt compensation — derotation into the flat level. After the proper magnetometer data
derotation the heading value can be determined only from x-axis and y-axis of
magnetometer data. The absolute attitude of the IMU can be finally determined.

41 THE STATE IS “STILL”

The neural network decides that the IMU state is “still”. Then, there are more ways,
as described in theoretical part, how to rotate the IMU back into flat level (horizontal
plane). Figure 4.1 clearly shows all three Euler stages of derotation from IMU (RPY)
coordinates into inertial, ENU coordinates.

At first, the derotation of heading needs to be done by an angle —&. This rotation is
solved separately after the derotation into flat position. Rotations by angles —% and —<
define the tilt of the IMU in RPY coordinates and through them the IMU coordinates
from RPY coordinate system into relative ENU coordinates can be converted.

1 +Z .z + Z

Figure 4.1 Derotation from the RPY (body) coordinates to relative ENU coordinates.

The Euler angles or direction cosine matrix (DCM) method seems to be easy to use.
Nevertheless, the gimbal lock is the fundamental problem for the INS. For this reason
the application of quaternions must be implemented. In proposed algorithms, the
rotation around z axis is denoted by symbol ¥, the rotation around y axis is denoted by
symbol 4, and the rotation around x axis is denoted by symbol ®.

From accelerometers, after axis alignment, compensation and calibration, the
accelerations in particular axes are obtained, the vector
a = (acc,, acc,, acc.)a = (acc,, acc,, acc,) for each time step. In the source code, the
calibrated accelerometer output is stored in three-dimensional vector acec with
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components acc.x, acc.y and acc.z. In each cycle the computation of « is
performed. It expresses the angle between the acceleration vector acc and last
acceleration vector (accXlast, accYlast, accZlast). The vector of the last
acceleration acc, . is always (0,0,1) in order to get absolute attitude. That means it is
set to the value that is present on the accelerometer output in case that the IMU is placed
horizontally. The angle a® is used in formulas (4.1) — (4.4) and based on that we are

able to determine the quaternion, in my source code called orientation (Figure 4.2).

a = acos(accXlast- acc. x + accYlast - acc.y + accZlast - acc.z) (4.1)
1
rotVeck = — - (acc¥last- ace. z — accZlast - acc.y) (4.2)
sin{ar)
1
rotVecy = — - (accZlast - acc.x — accXlast- ace.z) (4.3)
sin{a)
1
rotVecZ = — *(nccXlast- acc.y — accYlast- acc. x) (4.4
sin{ o)
orientation = QQuaternion::fromAxisAndAngle(p, 9, r, angle)

//p = rotVecX; g = rotVecY; r = rotVecZ;
//angle = -alfa*180/M PI);

Figure 4.2  Quaternion orientation determination.

For further application, the quaternion orientation equals ORI.
The & and the @ angle are subsequently determined from quaternion by formulas (4.5)
and (4.6):

. (4.5)
# = —asin (2-0R1.x-0ORl.z —2-0RIl.v - ORIl scalar)

A B
_ - - (4.6)
¢ = atan2 (cas(&'} ! cas(ﬁf})

where: A=2-0RlLy-0Rl.z+ 2-0RIl.x-0Rl.scalar
BE=1—-2-0RLx-0RlL.x— 2-0Rl.y-0ORlLy

This algorithm derotates the IMU to the nearest flat level (by the smallest angle). It
means that there may occur some undesirable rotation around z-axis during this
derotation. It is defined as zrot and expressed by (4.7). This must be subtracted (the
IMU is rotated by the zrot quaternion in opposite direction) from computed attitude,
see the part of the source code, Figure 4.3.

Now the IMU’s tilt is defined by the quaternion rotToFlat. Then the last rotation
around the z-axis by the heading angle is performed to the orientation of the IMU into
the ENU coordinate system. The acceleration in the ENU coordinates is then expressed
by the vector accDerot. Once the ORI is defined, the acceleration acc may be
rotated by the ORI quaternion conjugation. After that, the full size of gravitational
acceleration occurs in z-axis and thus the gravitational acceleration (1g) can be
subtracted in the z-axis to getting of the IMU inertial acceleration only.
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A B
= —_———— (4.7)
zrot atan2 (CGS(E} CGS(E})
where: A=2-0RLy-ORLx+ 2-0RIl.z- ORl.scalar

BE=1—-2-0RlL.z-0ORlL.z— 2-0RlLy-0RLy

// attitude from accelerometer

float alfa, cosAlfa;

float rotVecX, rotVecY, rotVecZ;

float accXlast=0, accYlast=0, accZlast=1l;

acc.normalize () ;
cosAlfa=accXlast*acc.x () +taccYlast*acc.y()taccZlast*acc.z () ;

alfa=acos (cosAlfa);

rotVecX=1/sin(alfa)* ((accYlast*acc.z () —accZlast*acc.y()));
rotVecY=1/sin (alfa) * ((accZlast*acc.x () —accXlast*acc.z()));
rotVecZ=1/sin(alfa)* ((accXlast*acc.y()-accYlast*acc.x()));

// remove parasite

orientation = QQuaternion::fromAxisAndAngle(0,0,-1,zrot) *orientation;
rotToFlat = orientation;

orientation = QQuaternion::fromAxisAndAngle (0,0,1,heading)*orientation;
// derotation

QVector3D accDerot = orientation.rotatedVector (acc);

QVector3D magFlat = rotToFlat.rotatedVector (maqg);

Figure 4.3 A part of c-code for derotation.

As it was written above, when the IMU is still, we can compute the heading from the
magnetometer. When the measured data are rotated to flat level (magFlat, Figure 4.3)
and the result of absolute magnetic field meets the conditions (the outcome has to be
found within the interval (44985.24;52808.76) nT (44985.24;52808.76} nT, this is
+8% from the standard environment where the measurements were performed,
obtained as an average value from long-term measurement).

The computation of the heading from magnetometer in 2D is shown in relation (4.8);
the vector magFlat is used. Because data measured by magnetometer are transformed
into flat level, the determination of the heading () in 2D is correct. When the
magnetometer data are not derotated into level, another formula for declination

determination has to be used.

8= HE— atarn (%) when mrngiat}? =0
2 magFlat.y

= 3-§—amn(

mﬁgFmrx)
2 magFlat.y

whenmagFlat.y < 0
(4.8)
0 = m whenmagFlat.y =0 and magFlat.x < 0

0 = 0 whenmagFlat.y =0 and wmagFlat.x =0
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This gives us the heading (azimuth), the direction of the IMU x-axis due to the magnetic
north (inertial x-axis), [42]. To be correct, the geodetic declination must be added to get
the heading regarding to the geographic north. Of course, it has to be adjusted for
different locations by different values, which are determined in map charts [40]. For
Brno, Kohoutovice, the declination reaches 4.16 ° [41]. This is positive, east declination
and thus the value has to be subtracted from the calculated true azimuth.

4.2 THE STATE IS “WALKING”

ANN decides that the IMU state is “walking”. The accelerometer measures the
gravitational acceleration mixed with inertial acceleration that it needs to be separated.
At first, the transfer from RPY to ENU coordinates is performed. This is quite difficult
since the gyroscope has almost full confidence. Then the full size of gravitational
acceleration occurs in z-axis again and 1g can be subtracted to get the inertial
acceleration only.

The accelerometer data cannot be used for the attitude determination and we have to
use only the data that was measured by the gyroscope. Figure 4.4 shows how the
quaternion deltaFrame is defined and how the quaternion orientation is rotated by
deltaFrame to find out the new orientation.

// attitude from gyro
OQuaternion deltaFrame;
float g0=1, gl=0, g2=0, g3=0, gy, gz, 9gx;
gx=gyr.x()/180*M PI;
gy=gyr.y()/180*M PI;
gz=gyr.z()/180*M PI;

float gDotl,gDot2,gDot3,gDot4;

gbotl = 0.5 * (-gl * gx - g2 * gy - 93 * gz);
gbot2 = 0.5 * (g0 * gx + g2 * gz - g3 * gy);
gbot3 = 0.5 * (g0 * gy - gl * gz + g3 * gx);
gbot4 = 0.5 * (g0 * gz + gl * gy - g2 * gx);

g0 += gDotl * frameTime;
gl += gDot2 * frameTime;
g2 += gDhot3 * frameTime;
g3 += gDot4 * frameTime;
deltaFrame = QQuaternion(g0,ql,g2,93);

orientation = orientation * deltaFrame; //successive attitude determ.

headG = headingFromQuat (orientation) *180/M PI; //heading after the mov.
orientation = QQuaternion::fromAxisAndAngle(0,0,-1,headG)*orientation;

Figure 4.4  Single step of successive attitude determination.

The matrix dcm (direct cosinus matrix, DCM) is created from recalculated
quaternion orientation (after the deltaFrame effect application). All over, the 6 and the
¢ angle are determined. The rotation around the z-axis, zrotation, is computed by
equation (4.8). The last rotation, the rotation around the z-axis, is then performed. The
acceleration in the ENU coordinate frame is then expressed by the accDerot vector.

zrotation = atan2 L i (4.9)
cos(8) ' cos(8)
where: A=2-0RlLy-0RlLx+ 2-0Rl.z- ORl.scalar
B=1—-—2-0Rlz*— 2-0RI.y*?
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The heading is computed the same way as in the case when the IMU is “still”. In this
case, when the IMU state is “walking” there is not parasite rotation present. On the
other hand, the heading is computed only from the integrated data that was measured by
the gyroscope as well as the tilt and this leads to growing inaccuracy with time, as
mentioned above. We can improve the accuracy by replacing heading calculated from
the gyroscope by absolute heading from the magnetometer.

4.3 PROBLEMS AND THEIR SOLUTIONS

Because of data history is needed in process, the type of the ANN cannot be from group
of the classification ANNS. It results in a fact that the continuous output is in the range
from -1 to +1 (in classification ANN the output is exactly -1 or +1, see Chapter 5 in
dissertation). To distinguish of two states (walking and staying still) a decision border
has to be defined. In addition, the neural network output is filtered by a KF and due to
this filtering, some delay in network decision on state occurs. The movement is then
evaluated later and the orientation is determined in a bad way.

To avoid this, two additional steps are performed:
1. Auxiliary condition has to be met to classify the IMU state as “still”, see (4.10),
where dacc IS the actual deviation in [g] of the measured acceleration and (4.11), where
dgyr IS defined by maximum value of rotation rate. This condition block is called
SillyStatus filter and it returns “0” when any of the values was out of required range in
last N samples, otherwise it returns “1”. Tolerance of acceleration deviation dacc was
set to 0.01 g and the rotation rate tolerance was set to 2 °/s.

| ﬂ ,, ,.
P ﬂl{acc_.r‘ + acc,*+ accz‘} -1 (4.10)

8gyr = max(gyr,, gyr,. gyTe) (4.11)

2. The second step is to delay the data processing by N samples in order to be able
to “see the future”. Whenever the state changes to “walking”, the walk processing
algorithm runs using N samples in advance and thus the KF delay and ANN delay are
eliminated. This ensures that the orientation quaternion is not absolutely computed
from accelerometer while the IMU is already moving.

Another issue is heading computation when the IMU’s x-axis points upwards or
downwards. When such a situation occurs, the heading is not defined and the
orientation (particularly the rotation around ENU z-axis) is computed fully from
rotation rate sensor, regardless of whether the IMU is “still” or not.

5 SOFTWARE FOR THE IMS - TRACKER

As a suitable environment Qt has been chosen. Qt is the leading independent technology
for cross-platform development. An application for data processing and visualization
was created including visualization. Besides the main.cpp file, further C++ source files
have been developed:

Main source codes for processing:

receiver.cpp derotator.cpp filehandler.cpp
calibrator.cpp integrator.cpp brain.cpp
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Visuals source codes: Utils source codes: User interface source codes:

calstatus.cpp brain.cpp cubedialog.cpp

glcubevidget.cpp pplotgroup.cpp customtab.cpp

gcustomplot.cpp putils.cpp packformater.cpp

tcompass.cpp ANN source codes: settings.cpp
genericnetwork.cpp vizualizer.cpp
mod.cpp

The pointer with an arrow defines the deviation from the North and the number of
consequently incoming samples in last state (still, walk, other IMU modes), see Figure
5.1. Application allows to track the IMU body in 3D and it shows information about the
number of samples per second (SPS), the position, the velocity and the actual
orientation quaternion value in time (Figure 5.2).

still for 129 Moving for 174 X axis is vertical.
samples. samples. Using only Gyro. [652]

Figure 5.1 State pointers.

SPS: 83

Position:
-0.75
0.165
-0.114

Velocity
-0.501
0.813
-0.161

Quaternion:
0.996
-0.087
-0.014
-0.026

up

View distance:

200,0
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NORTH

Calibrate
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EIEEE§I
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Figure 5.2  Cube view.

All functions that may be plotted in the application:

Raw Acc. Raw accelerometer data Cal. Acc. Calibrated accelerometer data

Raw Gyro Raw gyroscope data Cal. Gyro Calibrated gyroscope data

Raw Mag. Raw magnetometer data Cal. Mag. Calibrated magnetometer data

ENU ACC Linear acceleration in ENU ENU KF ACC  Linear acceleration in ENU after KF

Euler angles  Euler angles of actual orientation Velocity Velocity in ENU coordinate frame
ANN output, ANN output after KF, . L .

Neural output . . i Position Position in ENU coordinate frame
combined state (with SillyStatus)
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Figure 5.3 Integrated data.

Figure 5.3 represents two of twelve possible output functions processed by the
developed TRACKER software — computed velocity and position in time during the
measurement.

6 ONE OF EXPERIMENTAL MEASUREMENTS

Step and Stop motion, the IMU is held in the hand

Step and Stop measurement contain both, steps and the still phases. The measurement
was performed in Brno, Cerna pole. The true shape of the trajectory is a square with a
side length of about a = 4 m (A => B => C => D). This trajectory repeats for 5 minutes.
The detailed positions are shown in Figure 6.1. These data are summarized in TABLE .
The direction to the North (x-axis of the IMU) is positive. The direction to the East
(y-axis of the IMU) is negative.
North A=a,a, A=[0;0; 0] C=[1.464; -5.464; 0]
B=[3.464;-2;0] D=[-2;-3.464;0]

B
b,
a b, =4 cos(30)
a C b, = - 4sin(30)
“r d,= 4sin(-30)
| Ib,l /[P
Y E d, = -4 cos(-30)
A b, d /& [rast = ICFI=Ibl-ld,]
| ¢,=-|AF| =-(|b,|+]d,l)
dx‘ +
D G

Figure 6.1 Detailed positions of Step and Stop measurement.

23



The direction to the East (y-axis of the IMU) is negative. That is why the minus is
present in calculations when the distance in y-axis is computed.

TABLE 6.1 Positions of Step and Stop measurement.

square part length sum [m] position [m] azimuth [°]
1. A=>B 4 A =[0.00; 0.00; 0] 30
2. B=>C 8 B = [3.464; 2.0; 0] 120
3.C=>D 12 C =[1.464; 5.464; 0] 210
4, D=>A 16 D =[-2.0; 3.464; 0] 300

The first three steps are presented in following figures. In this example you can
observe the rising inaccuracy in time. The SillyStatus state (red coloured) and neural
network output (raw output is green coloured, output after Kalman filtration is blue
coloured) is shown in Figure 6.2. The x-axis of all graphs represents time in [s].

In Figure 6.3 the velocity in ENU coordinate system in UOG mode is shown. The
corresponding position in time is depicted in Figure 6.6. Again, the velocity in ENU
coordinates in shown in Figure 6.4, however the estimation in time is adjusted by
SillyStatus filter. The corresponding position in time to this result is depicted in Figure
6.7. The last one mode is shown in Figure 6.5. This is the velocity in ENU coordinates
estimated when the ANN is applied. The corresponding position shows Figure 6.8
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Figure 6.2  SillyStatus state (red) and ANN output state in time [s].

TABLE 8.8 in dissertation thesis shows the estimated outputs in all three modes,
UOG mode, SillyStatus mode and the mode with our ANN in process. The expected
values, if available, are shown in the last column.
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Figure 6.3 ENU velocity estimated in UOG mode, x-axis represents meas. time in [s].
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Figure 6.4 ENU velocity estimated with SillyStatus filter, x-axis represents meas. time in [s].
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Figure 6.5  ENU velocity estimated with ANN in process, x-axis represents meas. time in [s].
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Figure 6.6  ENU position estimated in UOG mode, x-axis represents meas. time in [s].
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Figure 6.7 ENU position estimated with SillyStatus filter, x-axis represents meas. time in [s].
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Figure 6.8  ENU position estimated with ANN in process, x-axis represents meas. time in [s].
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Inaccuracies arise when rotations by 90 degrees occurs. The applied ANN is not
trained to rotations around z axis without human steps. The graph of distances from the
(0, 0, 0) position in ENU coordinate system is shown in Figure 6.9. Figure 6.10 shows
the reconstructed 2D trajectory (East-North view) and Figure 6.11 shows the
reconstructed 3D trajectory (East-North-Up view) of this measurement using the inertial

measurement system only. Graphs show 60 seconds of measurement.
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Figure 6.9 Particular distances from [0,0,0] Figure 6.10Trajectory in ENU
position in ENU coordinates. coordinates, 2D, [m].
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Figure 6.11 Trajectory in ENU coordinates, 3D, [m].

Other experimental measurements are fully described in detail in my dissertation.

7 CONCLUSIONS

In proposed dissertation thesis, the processing of inertial navigation sensor data is
presented. As the new approach method | decided to estimate the state of the IMU by an
artificial neural network without any support of auxiliary or global positioning system.
It ensures that the data from the inertial sensors are processed typically (with the
integration disadvantages) only for a vital period. The orientation of the IMU is fully
derivate from inertial sensors.

The correction of the IMU orientation is performed during data processing when
the ANN decides that the IMU is still. That leads to more accurate positioning based on
DR, regardless of the environment (indoor, outdoor, underground, etc.). As the IMU
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hardware, Arduino UNO was chosen in combination with ST Nucleo expansion board,
which contains all used inertial sensors.

Special positioning system software called Tracker was developed in C++
programming language using Qt framework. It also offers graphical environment for the
user. It process the data from the IMU and presents various intermediate and final
results. The system also allows to record data into a file in adjustable format —
raw/calibrated/derotated sensor data, Euler angles, heading, velocity and position in all
available modes. A window with 3D IMU model is also available.

Proposed ANN was designed in MATLAB™ software and estimates the state of
the IMU based on the previous 40 values from inertial sensors, the type of the ANN is
time-delayed feed-forward. It does not take the data from magnetometer into account,
because of the magnetic field typically extremely fluctuates. The output of the ANN
defines the state of the IMU — ,,walking® or ,,Staying still, which is applied in data
processing to improve positioning.

Such a system works very precisely in case that the IMU stays still on the table or
stays still in the hand. In those cases, the error in positioning reached about
2 millimetres in the case the IMU was lying on the table and about 20 centimetres in
case the IMU was held in the hand, after 2 minutes of acquisition.

The very interesting results were achieved when the IMU was held in the hand
and the user performed a walk that often changes with still phases. Such a motion can
be seen for example in a museum or in an art gallery. In these cases proposed system
achieves very small positioning errors compared to the systems based purely on DR
method. As shown in Chapter 8.3 in the dissertation, the INS achieved the error of only
2 meters after 2 minutes of measurement in 2D (horizontal positioning). The error in
vertical z-axis reached up to 5 meters and that was caused by subtraction of the
inaccurately determined earth’s gravitational acceleration constant.

In situations when the ANN decides that the IMU is still, the system is recalibrated
and the cumulative error caused by integration is reset. Thus the position during
discontinuous walking is effectively estimated with low error. When the walking
motion is present during the measurement only, this method fails and the INS works as
a simple DR system (however, in a real world a man must stop anytime).

In this dissertation thesis, proposed method based on ANN state recognition has been
successfully validated by experiments focused on pedestrian movements. Anyway,
more applications can be found in a human life in which this method could improve
positioning, for example in specific professions, military applications or different types
of vehicles. It opens new opportunities in future research for specific applications where
the suitable artificial neural network structure have to be investigated and properly
trained or modified with wider classification group (more types of movements).
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FUSION METHODS FOR GNSS/INS USING NEURAL NETWORKS FOR PRECISION NAVIGATION

ABSTRACT

The dissertation is focused on inertial navigation systems and dead reckoning positioning. The
issue in the problematics is that the dead reckoning systems and inertial navigation systems are
inaccurate for medium-term and long-term application due to cumulative errors, assuming that the
positioning is not supported by another external system. The dissertation shows possible
approaches to the issue of more accurate positioning system based only on the inertial sensors.
Basically we are talking about 9-DOF inertial measurement unit that allows sensing the global
acceleration, rotation rate and magnetic field strength in three particular axes. The new approach
brings artificial neural networks into data processing, where proper neural network is able to
recognize the character of motion leading to improvement in positioning. The description of the
proposed method includes an analytical procedure of its development and, if possible, the
analytical performance assessment. Proposed artificial neural networks are modelled in
MATLABTM and they are used for the determination of the state of the inertial unit. Due to this
determination, the position of the inertial measurement unit is evaluated with higher accuracy. An
application using Qt framework was developed to create an evaluation system with user interface
for standard inertial measurement unit. The designed system based on artificial neural networks
was verified by experiments using real sensor data.

ABSTRAKT

Disertaéni prace je zaméfena na oblast inercidlnich navigacnich systémil a systémil, které pro
odhad polohy pouzivaji pouze vypocty. Dilezitym faktem v dané problematice je vysoka
nepfesnost ureni polohy pii sttednédobém a dlouhodobém vyuzivani takového systému diky
kumulativni chybé za ptedpokladu, Ze inercidlni systém neni podpofen Zadnym dal§im pfidavnym
systétmem. V disertacni préci jsou uvedeny mozné piistupy k této problematice a navrh na zvySeni
presnosti urCovani polohy pouze na zaklad¢ inerciadlnich senzord. Zakladem inercialni méfici
jednotky je systém s 9 stupni volnosti, ktery umoziuje snimat celkové zrychleni, rychlost rotace a
silu magnetického pole, jednotlivé ve tfech osach. Klicovou mySlenkou je zafazeni umélych
neuronovych siti do navigaéniho systému tak, Ze jsou schopny rozpoznat charakteristické rysy
pohybil, a tim zvysit pfesnost ureni polohy. Popis navrhovanych metod zahrnuje analyticky
postup jejich vyvoje a tam, kde je to mozné, 1 analytické hodnoceni jejich chovani. Neuronové sité
jsou navrhovany v prostiedi MATLAB™ a jsou pouzivany k uréeni stavu inercialni jednotky.
Diky implementaci neuronovych siti 1ze urcit pozici jednotky s fadové vyssi pfesnosti. Aby byl
inercialni polohovaci systém s moznosti vyuZziti neuronovych siti demonstrativni, byla vyvinuta
aplikace v prostfedi Qt. Navrzeny systém a neuronové sité byly pouzity pii vyhodnocovani
realnych dat méfenych senzory.
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