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ABSTRACT
This dissertation thesis deals with multi-objective evolutionary optimization algorithms with
a variable number of dimensions. Such an algorithm enables us to solve optimization tasks
that are otherwise solved only by assuming unnatural simplifications. The research of the
optimization algorithms with a variable number of dimensions required the development of
a new optimization framework. This framework contains, apart from various optimization
methods including two novel multi-objective algorithms for a variable number of dimensions
– VND-GDE3 and VND-MOPSO, a library of various benchmark problems. A set of multi-
objective benchmark problems with a variable number of dimensions is a part of the library
designed to assess and verify the novel methods with a variable number of dimensions. Novel
methods are exploited on several miscellaneous real-life optimization problems in the final
chapter of this thesis.

KEYWORDS
Evolutionary algorithms, EM structures design, FOPS, multi-objective optimization, variable
number of dimensions, VND-GDE3, VND-MOPSO.

ABSTRAKT
Tato dizertační práce pojednává o více-kriteriálních optimalizačních algoritmech s proměn-
ným počtem dimenzí. Takový algoritmus umožňuje řešit optimalizační úlohy, které jsou ji-
nak řešitelné jen s použitím nepřirozených zjednodušení. Výzkum optimalizačních method s
proměnnou dimenzí si vyžádal vytvoření nového optimalizačního frameworku, který obsahuje
vedle zmíněných vícekriteriálních metod s proměnnou dimenzí – VND-GDE3 a VND-MOPSO
– i další optimalizační metody různých tříd. Optimalizační framework obsahuje také knihovnu
rozličných testovacích problémů. Mezi nimi je také sada více-kriteriálních testovacích problémů
s proměnnou dimenzí, které byly navrženy pro nastavení a ověření nových metod s proměnnou
dimenzí. Nové metody jsou dále použity k optimalizaci několika různorodých optimalizačních
úloh z reálného světa.
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1 INTRODUCTION

These days, optimization is used in almost every discipline of engineering. Optimization
is a process of finding the best solution from a set of available solutions. The quality of
a solution is defined by fitness values calculated from fitness (objective, cost) functions.
The fitness functions describe the behavior of an optimized system with properties called
decision variables e.g. dimensions, reliability, or a price of a product. Therefore, fitness
values depend on the decision variables of the optimized system. The optimization process
is a process of finding minima (or maxima) of fitness functions.

If the system is described by one fitness function, the problem is called the Single-
Objective Optimization Problem (SOOP). If there are more fitness functions, the problem
is called multi-objective (MOOP). If the objectives are conflicting, the result is a set of
optimal trade-off solutions called Pareto-front.

The Pareto-Front, a set of trade-off solutions, is named after an Italian economist
Vilfred Pareto [1]. He defined that a member of the Pareto-front has to satisfy the Pareto
efficiency: improvement of the solution in one objective has to deteriorate the quality of
all other objectives.

Most of the real-world optimization problems are by its nature multi-objective and the
objectives are also conflicting. This aimed the research to develop various multi-objective
optimization methods.

A common optimization problem has a fixed number of decision variables. Therefore,
the optimization algorithm knows the dimensionality of the decision space and tries to find
the optimal position. Its fitness function depends only on decision variables. However,
there are some optimization problems where the fitness function depends on the number
of components of the decision vector as well. Such problems are called problems with a
Variable Number of Dimensions (VND). When optimizing VND problems, an algorithm
has to find not only the proper position vector but its dimension as well.

A real-life example of a VND problem is the placement of transmitters to broadcast
a radio signal. An optimizer tries to find the optimal placement of the transmitters,
the output power of the transmitters, but also the number of transmitters so that they
cover the whole area with minimal overlaps. Each transmitter is defined by three decision
variables – coordinates 𝑥, 𝑦, and 𝑝𝑜𝑤𝑒𝑟. The first fitness function describes the area
covered by the signal, and the second fitness function is the overlapped area. Other fitness
functions may reflect the cost of the connection between the backbone network and the
proposed locations of the transmitters. This problem is elaborated in Section 9.3. The
third fitness function there minimizes the number of transmitters.

The thesis is organized as follows: the next chapter deals with the theoretical back-
ground of the thesis. Afterward, a survey of the previous work is given, followed by the
motivation and objectives of this thesis. Chapter 4 presents the Fast Optimization Pro-
cedureS (FOPS) optimization framework. The framework was developed as a part of this
thesis. Chapter 5 shows the methodology for the creation of benchmark problems with a
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variable number of dimensions. The following two chapters propose the novel VND-GDE3
and VND-MOPSO optimization algorithms, respectively. Chapter 8 contains the verifica-
tion of the proposed VND algorithms on the benchmark problems, and Chapter 9 shows
several examples of exploiting the optimization with a variable number of dimensions in
real-life problems. Finally, Chapter 10 concludes the thesis.
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2 THEORETICAL BACKGROUND

This chapter treats the general concepts of optimization. In the beginning, the difference
between single- and multi-objective optimization methods is shown. Afterward, the per-
formance metrics for multi-objective optimization are described. The rest of the chapter
presents the non-parametric statistic tests. Both the performance metrics and the statistic
tests are used for the performance assessment of optimization methods.

The optimization methods are divided into two groups – local and global methods.
Local methods are commonly based on a derivation of a fitness function, which is an intu-
itive approach with the benefit of rapid convergence into extremes of the fitness function.
The problem is that although they converge to an extreme, it is not guaranteed whether
it is the global extreme or a local one. The performance of a local method is affected by
the initial guess, which the user has to define.

Note that extremes (minima and maxima) are discussed here generally, but for the
rest of this thesis, only the minimization optimization problems are taken into account. If
the fitness function is to be maximized, it is simply converted to a minimization function
by multiplying the fitness value by −1.

Global methods overcome the risk of being caught in a local optimum of a fitness
function. Usually, the global optimization method works with multiple sets of decision
variables that are modified in each iteration of an algorithm. These population-based
and stochastic methods, inspired by the theory of evolution, are generally called Evo-
lutionary Algorithms (EAs), which covers Genetic Algorithms (GA) [2], Particle Swarm
Optimization (PSO) [3], Differential Evolution (DE) [4], etc.

Although the researchers initially worked with single-objective optimization prob-
lems, it was only by assuming huge simplifications. As was mentioned before, most
nature-inspired optimization tasks are multi-objective ones. Therefore, the need for multi-
objective optimization algorithms soon emerged.

An optimization problem can be described by:

Minimize: 𝑓𝑚 (x) , 𝑚 = 1, 2, . . . , 𝑀, (2.1)
subject to: 𝑔𝑘 (x) ≥ 0, 𝑘 = 1, 2, . . . , 𝐾, (2.2)

𝑥
(min)
𝑗 ≤ 𝑥𝑗 ≤ 𝑥

(max)
𝑗 , 𝑗 = 1, 2, . . . , 𝐷, (2.3)

where 𝑀 denotes the number of objectives, 𝐷 denotes the number of decision variables,
x is the vector of decision variables, x(min) and x(max) are the lower and upper bounds of
decision variables, and 𝐾 is the number of constraints 𝑔.

2.1 Single-objective Optimization

Single-objective optimization methods were used for a long time, even on problems with
multiple objective functions [5, 6]. The problem is that a single-objective optimization
produces single solution as a result. When the multiple objectives are conflicting, it is
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advantageous to have a set of trade-off solutions, i.e. Pareto-front. A Pareto-front with a
single-objective algorithm can only be achieved by optimizing the same problem several
times with different settings. There are various methods to handle multiple objective
functions by a single-objective method.

The simplest and most commonly used method for transforming MOOP to SOOP is
the Weighted Sum Method (WSM). This method converts 𝑀 objective functions into one
fitness function 𝐹 :

𝐹 =
𝑀∑︁

𝑚=1
𝑤𝑚𝑓𝑚, (2.4)

where 𝑤𝑚 denotes the weight of the 𝑚-th objective function. A difficulty with the WSM
method is that the user has to determine the weights for all the objectives and the opti-
mization process produces only one solution that strongly depends on the user-specified
weights. Therefore, the user has to have some knowledge about the shape of the Pareto-
front, but it is unknown in most cases.

There are other methods such as the 𝜖-Constrained Method [7] or the Rotated Weighted
Metric Method [5, Chapter 3], but all these methods need additional knowledge about the
optimized problem and produce only one solution from the Pareto-front per one simula-
tion run. The need for a "pure" multi-objective optimizer has arisen with more complex
optimization problems and shortcomings of single-objective methods.

−4 −2 0 2 4−4

−2

0
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4

x1

x2

(a) Decision space

0 10 20 30 40 50 60 700

10

20

30

40

50

60
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(b) Objective space

Figure 2.1: Both spaces of the Poloni’s study. Dark red "×" - true Pareto-front, light
blue "·" - dominated solutions.
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2.2 Multi-objective Optimization

The "pure" multi-objective optimization techniques originated at the turn of the 21st
century. In most cases, the popular and well-known algorithms were modified to handle
several objective functions – Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II)
[8], the successor of GA; Multi-objective Particle Swarm Optimization (MOPSO) [9], the
successor of PSO; Generalized Differential Evolution (GDE3) [10], the successor of DE;
and other EAs and their numerous modifications [11].

The multi-objective optimization algorithm confronts two fundamental requirements:

• Minimize the distance between found solutions produced by the optimization algo-
rithm and the true Pareto-front.

• Maximize the spread of found trade-off solutions, so the solutions are distributed as
uniformly as possible over the whole Pareto-front.

The multi-objective optimization process deals with a finite number of fitness functions.
There are two spaces in multi-objective optimization – the decision space and the objective
space. Both spaces are connected by fitness functions. Figure 2.1 shows both spaces of
Poloni’s study [5] (dark red "×" solutions represent the true Pareto-front).

2.2.1 Principle of Dominance

In the case of a single-objective problem, the best solution in a set of solutions is simply
the one with the lowest fitness value. However, when the problem is multi-objective and
the solutions are described by multiple fitness values, it is necessary to take into account
all the objectives at once. Most multi-objective algorithms use the concept of dominance
[5]. The principle of dominance is a comparison of two solutions with respect to all fitness
values. There are three scenarios for two solutions x1 and x2:

𝑓1

𝑓2

- non-dominated solution
- dominated solutions

(a) One solution dominates all the other
solutions.

𝑓1

𝑓2

- non-dominated solutions
- dominated solutions

(b) Set of mutually non-dominated solu-
tions (filled circles).

Figure 2.2: Principle of dominance [5].
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• The solution x1 dominates the solution x2.
• The solution x1 is dominated by the solution x2.
• The solutions x1 and x2 are non-dominated.

The solution x1 is said to dominate the solution x2 if both following conditions are true:

• The solution x1 is no worse than the solution x2 in all objectives.
• The solution x1 is strictly better than the solution x2 in at least one objective.

Figure 2.2 further clarifies the principle of dominance. In Figure 2.2a, the non-dominated
solution (full circle) is not worse in any objective compared to dominated solutions (empty
circles) and strictly better in one or both objectives. Figure 2.2b shows several non-
dominated solutions. One of any two non-dominated solutions (full circles) has the first
fitness value lower than the other non-dominated solution but is worse in the second
objective and vice versa. Therefore, it can not be said which non-dominated solution is
better. In other words, trade-off solutions were found.

2.2.2 Non-dominated Sorting

The non-dominated sorting procedure determines which solutions from a set of solutions
𝑄 are non-dominated, based on the dominance principle. The simplest but the time-
demanding approach is to compare all solutions from set 𝑄 with all the other solutions of
set 𝑄.

The most computationally efficient but difficult to understand is Kung et al.’s method
[12]. The first step is to sort the set of solutions according to the first objective function
value in descending order. Then a recursive Front function is called. In the Front function,
the set of solutions is halved to the top (𝑇 ) and bottom (𝐵) sub-populations repeatedly
until one of the sub-populations has only one member. When any of the sub-populations
has exactly one member, the merging phase begins. Solutions of 𝐵 are checked for domina-
tion by the members of 𝑇 . All non-dominated solutions of 𝐵 are combined with members
of 𝑇 . All such merged solutions are returned as a result of the Front function.

2.2.3 Maintenance of Diversity

The goal of multi-objective optimization is to find as many non-dominated solutions as
possible, but also as diverse as possible. The maximal number of trade-off solutions in the
process of optimization is usually fixed due to the growing computational complexity. A
common assumption is that a convenient number of non-dominated solutions is identical
to the number of agents in the population. The overall number of trade-off solutions can
rapidly grow during the optimization process, which leads to a computationally demanding
non-dominated sorting routine in every iteration of an algorithm. Therefore, some non-
dominated solutions have to be discarded from time to time. However, it is not a simple
task to determine which non-dominated solution is worse than the other. When the

12



diversity of the non-dominated set is to be maintained, only non-dominated solutions that
are less crowded in the objective space should be preserved rather than the one with
multiple neighbors close to it.

The closeness of neighboring solutions is estimated by crowding distance [8]. The
crowding distance of a given solution is the combination of Euclidean distances from two
neighboring (closest) solutions in objective space, as shown in Figure 2.3.

Two Euclidean distances from the nearest neighboring solutions are multiplied, and a
solution with the smallest crowding distance in the set of non-dominated solutions should
be eliminated. If another solution has to be discarded, only the crowding distances of
neighbors of the eliminated solution have to be updated while the crowding distances of

𝑓1

𝑓2

𝑖 − 1

𝑖

𝑖 + 1

𝑑1

𝑑2

0

𝑁

Figure 2.3: Crowding distance estimation [8].

𝑓1

𝑓2

1

1

(a) Two-dimensional objective space.

𝑓1

𝑓2

𝑓3

1

1

1

(b) Three-dimensional objective space.

Figure 2.4: Principle of Equal-average Nearest Neighbor Search method [13].
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all the other solutions remain the same.
The crowding distance technique is best suited for two-objective problems. Many-

objective (3 objectives or more) spaces require modification of the crowding distance calcu-
lation. The difference resides in the conversion of many-objective space to a two-objective
space just for the crowding distance calculation. Equal-average Nearest Neighbour Search
(ENNS) method is described in [13]. This method projects 𝑀 -dimensional objective space
to a line that traverses it. If the objective space is normalized, then the best projection
vector for minimization of all the objectives goes through point {0, 0, . . . , 0, 1} and point
{1, 1, . . . , 1, 0}, as shown in Figure 2.4.

2.3 Performance Metrics

The result of multi-objective optimization is a set of solutions, which makes it hard to
decide whether one set of solutions is better than the other [5]. In order to simplify the
decision, a performance metric represents an entire Pareto-front with a single number. The
value of a metric depends on the quality of the solution. However, there are several metrics
known in the open literature. Each metric classifies the Pareto-front from a different
point of view. For example, a solution with the best value of generational distance (see
Subsection 2.3.1) can have poor diversity. This suggests the basic sorting of performance
metrics – either they describe the closeness of non-dominated solutions to the true Pareto-
front, the spread of the solutions over the Pareto-front, or both.

2.3.1 Generational Distance

The generational distance (GD [14]) finds the average Euclidean distance of a member of
set 𝑄 (found Pareto-front) from the closest member of set 𝑃 * (true Pareto-front) according
to:

GD =
∑︀|𝑄|

𝑖=1 𝑑𝑖

|𝑄| , (2.5)

where the 𝑑𝑖 is the Euclidean distance between solution 𝑖 ∈ 𝑄 and the nearest member of
𝑃 *.

𝑑𝑖 = min|𝑃 *|
𝑘=1

⎯⎸⎸⎷ 𝑀∑︁
𝑚=1

(︁
𝑓

(𝑖)
𝑚 − 𝑓

*(𝑘)
𝑚

)︁2
, (2.6)

where 𝑓
*(𝑘)
𝑚 is the 𝑚-th objective function value of the 𝑘-th member of 𝑃 * and 𝑓

(𝑖)
𝑚 is the

𝑚-th objective function value of the 𝑖-th member of 𝑄. The metric expresses the closeness
of non-dominated solutions to the true Pareto-front. Therefore, true Pareto-front must be
known to calculate generational distance.
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2.3.2 Spread

The spread metric (Δ [8]) measures the quality of distribution of non-dominated solutions,
but it also takes into account the distance from true Pareto-front extremes. The metric is
described by:

Δ =
𝑑𝑒 + ∑︀|𝑄|

𝑖=1

⃒⃒⃒
𝑑𝑖 − 𝑑

⃒⃒⃒
𝑑𝑒 + |𝑄| 𝑑

, (2.7)

where 𝑑𝑖 is the average of two Euclidean distances from two neighboring solutions from
the non-dominated set of 𝑖-th solution and 𝑑 is a mean value of 𝑑𝑖 values. The parameter
𝑑𝑒 is the sum of Euclidean distances between corresponding extremes of sets 𝑄 and 𝑃 *.

Value of spread can be zero only if extremes of the found non-dominated set are
identical to the extremes of true Pareto-front and simultaneously all the distances between
neighboring solutions are equal to their mean value (solutions are uniformly distributed).

2.3.3 Hypervolume

The hypervolume metric (HV [15]) calculates the volume in the objective space covered
by the members of set 𝑄. Hypervolume is a sum of volumes of hypercubes 𝑣𝑖. Each
hypercube 𝑣𝑖 is constructed with a reference point 𝑊 and solution x𝑖 ∈ 𝑄 as diagonal
corners of the hypercube:

𝐻𝑉 = volume
(︁
∪|𝑄|

𝑖=1𝑣𝑖

)︁
. (2.8)

The reference point 𝑊 has a significant influence on the HV scale. The reference point
for the hypervolume calculation is usually defined as the nadir point of objective space
(the upper bound of each objective in the entire true Pareto-front [5, Chapter 2]). The
scale of hypervolume value depends on the problem. But on the other hand, it expresses
both closeness of the non-dominated set from the true Pareto-front and the distribution
of solutions. The bigger the value of hypervolume, the better solution.

The different range of hypervolume values for each problem may influence the clarity of
results, mostly in cases where multiple optimization problems are part of a single compar-
ative study. In such cases, the hypervolume value can be normalized by the hypervolume
of true Pareto-front such as:

HVR = HV (𝑄)
HV (𝑃 *) . (2.9)

However, hypervolume ratio (HVR) becomes insensitive to small changes of HV value if
large values of HV are considered. Therefore, distance hypervolume metric is used in this
work, which seems to reflect small changes more clearly. The lower the value of distance
hypervolume is, the better the Pareto-front. Distance hypervolume is defined as:

dHV = HV (𝑃 *) − HV (𝑄) . (2.10)
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2.3.4 Number of Variables Deviation

The number of variables deviation (nVD) is an in-house metric. It expresses the average
difference between the number of decision variables of a solution 𝐷 (x) and the optimal
number of decision variables for the corresponding solution 𝐷(opt) (x):

nVD =
∑︀|𝑃 |

𝑖

⃒⃒⃒
𝐷 (x𝑖) − 𝐷(opt) (x𝑖)

⃒⃒⃒
|𝑃 | . (2.11)

2.4 Non-parametric Statistical Tests

Performance metrics were described in the previous section. A performance metric can
express the quality of the result of the single run of optimization. However, when there
are multiple optimization algorithms to be compared, and the stochastic processes are
repeated many times, it becomes difficult to estimate the superior algorithm. A lot can
be derived from the mean or median values of a given metric [16]. Nonetheless, it cannot
be said that the difference between the mean (median) values has a statistical significance
without the use of statistical tests.

It can not be determined definitively whether one optimizer is better than the other
because only a finite number of samples can be known. Instead, a probability (called 𝑝-
value) is calculated by the statistical test. Based on a chosen level of significance (𝑎𝑙𝑝ℎ𝑎),
a hypothesis that one optimizer is better than the other can be assumed if the 𝑝-value is
lower than the 𝑎𝑙𝑝ℎ𝑎.

There are many types of statistical tests to be found in literature. For the purposes of
this thesis, only two commonly used non-parametric statistical tests will be explained:

• Wilcoxon’s test,
• Friedman test,

2.4.1 Wilcoxon’s Signed Ranks Test

Wilcoxon’s test is a pairwise comparison statistical test. Such tests are designed to com-
pare the performance of two algorithms when applied to a common set of problems [17].

This test is used for answering the following question: do two samples represent two
different populations? Therefore, it detects significant differences between two sample
means.

Let the 𝑑𝑖 be the difference between the performance scores (i.e. metric values) for the
𝑖-th degree of freedom (i.e. 𝑖-th testing problem or 𝑖-th repetition of the algorithm run).
The differences are then ranked according to their absolute values. Therefore, the lowest
absolute difference has a rank of one, the second to lowest difference has a rank of two,
and so on. The exceptions occur when there are two or more differences tied. In such
cases, the identical mean rank value is assigned to all of them.
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Now, let 𝑅+ be the sum of ranks where the first algorithm outperformed the second,
and 𝑅− the sum of ranks for the opposite:

𝑅+ =
∑︁
𝑑𝑖>0

rank (𝑑𝑖) + 1
2

∑︁
𝑑𝑖=0

rank (𝑑𝑖) , (2.12)

𝑅− =
∑︁
𝑑𝑖<0

rank (𝑑𝑖) + 1
2

∑︁
𝑑𝑖=0

rank (𝑑𝑖) . (2.13)

Note that indifferent scores are split evenly among the sums. If there is an odd number
of ties, one is ignored.

Finally, if the smaller of the sums, 𝑇 = min
(︀{︀

𝑅+, 𝑅−}︀)︀
, is lower than or equal to the

critical value of the distribution of Wilcoxon for 𝑛 degrees of freedom (e.g. number of runs
of algorithms), the samples represent statistically different populations.

The Wilcoxon’s test can not be calculated for 𝑛 < 5, and the table of critical values
for Wilcoxon’s test [18] counts with a maximum of 𝑛 = 50. Therefore, if the number of
degrees of freedom 𝑛 > 50, the calculation using 𝑧-score should be used as follows:

𝑧 =
𝑇 − 𝑛(𝑛+1)

4√︁
𝑛(𝑛+1)(2𝑛+1)

24

. (2.14)

If the 𝑧 > −1.96, then the samples represent statistically different populations. Normal
cumulative distribution function can be used to obtain a 𝑝-value from the 𝑧-value.

2.4.2 Friedman’s Test

Friedman’s test [19] is a multiple comparison test that aims to detect significant differences
between the behavior of two or more algorithms.

Similarly as in Wilcoxon’s test, the performance scores are converted into ranks. How-
ever, ranks are assigned for each degree of freedom 𝑖 (e.g. run) separately. If there are
𝑘 = 3 algorithms, than ranks for the first degree of freedom are 𝑟1

1, 𝑟2
1, and 𝑟3

1. Afterward,
an average of the ranks over all 𝑖 ∈ [1, 𝑛] is obtained for each algorithm 𝑅𝑗 = 1

𝑛

∑︀
𝑖 𝑟𝑗

𝑖 .
The Friedman statistic 𝐹𝑓 can be then computed as:

𝐹𝑓 = 12𝑛

𝑘 (𝑘 + 1)

⎡⎣∑︁
𝑗

𝑅2
𝑗 − 𝑘 (𝑘 + 1)2

4

⎤⎦ , (2.15)

which is distributed according to the 𝜒2 distribution with 𝑘 −1 degrees of freedom. There-
fore, obtaining the 𝑝-value is possible by cumulative distribution function for 𝜒2 distribu-
tion. If the 𝑝-value is lower than the chosen level of significance, the samples represent
statistically different populations.

If there are significant differences in the population, unadjusted 𝑝-values can be ob-
tained by the following formula:

𝑧 = (𝑅𝑖 − 𝑅𝑗) /

√︃
𝑘 (𝑘 + 1)

6𝑛
, (2.16)
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where 𝑅𝑖 and 𝑅𝑗 are the average rankings by the Friedman test of compared algorithms.
In practice, there is often a control algorithm among the set to which all the 𝑝-values are
related.

Afterward, the unadjusted 𝑝-values can be adjusted by various post-hoc procedures.
The Bonferroni-Dunn procedure is the simplest one, has a little power, but offers a simple
visualization of the results. The most often used procedures are Hochberg’s or Holm’s.

Holm’s procedure adjusts the 𝑝-value in a step-down manner. It means that the unad-
justed 𝑝-values are sorted from the smallest to the largest (𝑝1, 𝑝2, . . . , 𝑝𝑘−1). To obtain the
𝑖-th adjusted 𝑝-value we use 𝑝𝑖,𝑎𝑑𝑗 = min ({𝑣, 1}), where 𝑣 = max ((𝑘 − 𝑗) 𝑝𝑗) and 𝑗 ∈ [1, 𝑖].
Hochberg’s procedure is calculated similarly. However, it is done so in a step-up manner.
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3 SURVEY OF THE PREVIOUS WORK

The thought of the optimization problems with a variable number of dimensions is almost
as old as the optimization algorithms themselves [20]. However, for many years, researchers
aimed for the simplicity of the optimization process and worked with fixed-length decision
vectors. In 1989, the author of the original Genetic Algorithms stated in [21] that "Nature
has formed its genotypes by progressing from simple to more complex life forms" and
proposed the Messy Genetic Algorithm (mGA) - a first algorithm to be found working
with a variable number of dimensions.

3.1 As the Time Went By

Authors of the mGA [21] call an optimization algorithm with fixed coding the neat opti-
mization algorithm. Their publication explains that there are real-world problems whose
optimal solutions have deceptive genomes, which makes it hard for the neat genetic algo-
rithm to find the optimal solution. An example of such deceptive decision space may be a
local optimum with string {1, 0, 0, 0, 0, 1} and a global optimum with string {0, 1, 1, 1, 1, 0}.
It is improbable that the algorithm by coincidence falls upon both solutions. Reorga-
nizing the chromosome such that the local solution is {0, 0, 1, 1, 1, 1} and the global is
{1, 1, 0, 0, 0, 0} is much easier to explore, considering the common crossover operation.
Authors used the variable-length genome for stochastic reordering of the genome to pre-
vent the search from falling into sub-optimal solutions. In other words, the algorithm
works with a fixed number of decision variables but uses variable-length chromosomes.
The length of the genome is changed by the cut-and-splice crossover operator. After such
an operator, some decision variable might occur multiple times in the chromosome or be
missing entirely. The redundant variables of the chromosome are discarded (either the
first or the last occurrence is preserved). The missing variables are retrieved from the
universal template.

Another frequently cited algorithm is the Speciation Adaptation Genetic Algorithm
(SAGA) [22]. When the fixed-length crossover operator is used, no genes from the genome
can be eliminated. However, in a variable-length crossover, such a risk exists, and essen-
tial parts of the genome might be missing. Therefore, the solution becomes unfeasible.
Nonetheless, SAGA algorithms deal with it by implementing the Longest Common Sub-
sequence metric (LCSS). In principle, the crossover position in the first parent solution
is chosen randomly. Afterward, for every possible crossover position in the second chro-
mosome, the LCSS metric is calculated, and the position with the highest score is used.
Therefore, it explicitly attempts to preserve a complete genetic sequence.

A Structured Genetic Algorithm was proposed in [23]. This algorithm uses the sec-
ond string along with the genome string. The second string determines which genes are
activated or deactivated, therefore the number of components in the fitness function eval-
uation can vary. Nonetheless, the genome string length remains fixed in crossover and
mutation operator. Such an approach can be called the hybrid VND technique and is
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frequently used in the open literature to solve VND problems (either with GA algorithms
or other EAs). The drawback of the fixed-length chromosome is that the algorithm works
with the maximal dimensionality of the decision space all the time. Also, the algorithm is
called structured because it uses a multi-layered chromosome, therefore disabling the gene
in the higher layer disables all the subordinate genes.

A significant class of optimization problems insoluble with neat optimization algo-
rithms is evolutionary programming. The modified genetic algorithm is used to generate
a program in an arbitrary programming language in [24]. The number of instructions
of the program can arbitrarily grow. Therefore, the problem has a variable number of
dimensions. Koza used a genetic algorithm for generating the program for autonomous
robots following a wall.

Another class of problems frequently tackled in the open literature is a grouping prob-
lem. The aim of the grouping problem is to group members of a set into a small number
of families in order to optimize a fitness function. Clustering problems can be seen as a
subclass of grouping problems. A Grouping Genetic Algorithm was proposed in [25] and
exploited on many grouping problem applications.

Authors of Virtual Virus (VIV) [26] tried to mimic the biological genetics more closely.
Genes in the genome should be independent of position, genomes might change its length,
and the genome can contain non-coding regions along with duplicative and competing
genes. Genomes in VIV adopt a four-letter alphabet, 𝐺 = {A,T,C,G}, which corresponds
better with biological systems. In crossover operator, they dealt with preserving the
essential parts of the genome similarly to [22].

The crossover operator preserving the essential parts of the genome was further im-
proved in [27]. The authors compared their Synapsing Variable-Length Crossover (SVLC)
with crossover used in mGA, SAGA, and VIV. Unlike its predecessors, it searches for
common subsequences in both parent chromosomes before determining the crossover posi-
tions. It uses the same metric LCSS, finds all the LCSSs in both chromosomes, and allows
offsprings to inherit the entirety of common subsequences. Therefore, the SVLC exchanges
only the differences between parent genomes. Although the SVLC is more computation-
ally expensive than SAGA crossover (on the genomes of identical length), it imitates the
biological crossover far better. Moreover, the authors claim that the length of produced
solutions is generally smaller compared to the SAGA. Therefore, the computational cost
is comparable if not lower.

Naturally, single-objective variable-length optimization algorithms were discovered at
first, but multi-objective variants of VND algorithms emerged soon [28, 29, 30]. Although
there are many modifications of Genetic Algorithms with the variable-length genome to be
found in the open literature, most of them differ in genome representation and crossover
and mutation operators (although the operators might be called differently): [23, 31, 32,
33, 34, 35, 36, 37, 38].

Until now, only genetic algorithms were covered. However, researchers soon tried to
modify other algorithms as well. A cornerstone for Particle Swarm Optimization (PSO)
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for a variable number of dimensions was laid by the author of the original PSO algorithm
in [39]. The original real-coded PSO algorithm was transformed into the binary-coded
algorithm. Although the authors did not consider the use of binary PSO for problems
with a variable number of dimensions, other authors adopted it later for such applications.
The trick is that there are header bits for each decision variable in the decision vector,
which enables or disables the corresponding decision variable for the fitness evaluation.
This corresponds to the activation string used in [23, 40]. It is a common ploy used not
only in PSO-based algorithms (see [34, 41, 42, 43]).

A pure VND algorithm was proposed in [44] – Dimension Adaptive Particle Swarm
Optimization. The problem in Particle Swarm Optimization is the velocity update equa-
tion:

v𝑔 = 𝑊 · v𝑔−1 + 𝑐1 · 𝑟1 · (xpbest − x𝑔−1) + 𝑐2 · 𝑟2 · (xgbest − x𝑔−1) , (3.1)

where the current particle x𝑔−1 mingles with its attractors (personal best position xpbest

and global best position xgbest. Note that 𝑤 is inertia weight, 𝑐1 and 𝑐2 are cognitive and
social learning factors, respectively, 𝑟1 and 𝑟2 are random values, and 𝑔 is a time step. In
a pure VND algorithm, any particle may have a different number of decision variables.
Therefore, vectors with a different number of components are to be subtracted in (3.1).
This mapping procedure handles the complicated subtraction as follows:

• If the number of components of particle and its attractors is equal, a generic velocity
update equation is used.

• If the number of components of the particle is lower than the number of components
of the attractor, only corresponding components of the attractor are used.

• If the number of components of the particle is higher than the number of components
of the attractor, these components are updated only by the inertia weight of the
particle (and not its attractors).

Note that the dimensionality of each particle can vary by one in each iteration within
[𝐷min, 𝐷max] with a certain probability.

Multidimensional Particle Swarm Optimization (MD-PSO) was proposed in [45]. Ac-
cording to [46], the basic PSO is unable to work with high-dimensional problems. Also,
according to [47], it is prone to be trapped in a local optimum due to the attraction
of particles to the global best solution. MD-PSO algorithm uses Fractional Global Best
Formation technique, which utilizes an artificial global best (aGB) particle by collecting
the best components among the population and fractionally creating aGB. It is claimed
that artificial global best has a better potential to lead particles to the global optimum.
Finally, a special velocity update equation allows a particle to navigate through dimen-
sions. Accordingly, an algorithm keeps track of all the visited dimensionalities of global
and personal bests. Therefore, when the Equation (3.1) is used afterward, the particle is
mated with attractors of equivalent dimensionality.
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The PSO-VND algorithm was proposed in [48]. The PSO-VND algorithm was used as
the foundation for the proposed methodology for multi-objective optimization algorithms
and will be thoroughly covered in Section 3.2.

Modifications of Differential Evolution for optimization with a variable number of di-
mensions can also be found in the literature. For example, [49] proposed a Grammatical
Differential Evolution for evolutionary programming, Variable-size Multi-objective Differ-
ential Evolution proposed in [50] utilizes the secondary vector to handle the number of
active decision variables. Note that this is the same impure-VND approach as described
earlier. Another Differential Evolution-based algorithm was proposed in [51].

Genetic Algorithm, Particle Swarm Optimization, and Differential Evolution are not
the only foundations of algorithms for a variable number of dimensions. There are other
methods to be found in the literature: [52] proposed the Grouping Harmony Search and
[53] extended the Grouping Harmony Search for multi-objective problems, [54] presented
the Grouping Coral Reef Optimization algorithm, or [55] adapted the Simulated Annealing
for a specific VND multi-objective problem.

3.2 Particle Swarm Optimization for Variable Number of
Dimensions

The VND-PSO algorithm [48] is based on a conventional PSO method [56]. Particle Swarm
Optimization is an evolutionary algorithm that simulates the movement of a swarm of bees
searching for food.

The general flowchart of the PSO-VND method is shown in Figure 3.1.
The position of each agent is changed according to its own experience and that of its

neighbors. The position x𝑔 in subsequent iteration is changed by adding velocity v𝑔 to a
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Figure 3.1: Flowchart of the PSO-VND method [48].
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previous position x𝑔−1:

x𝑔 = x𝑔−1 + v𝑔, (3.2)

where the velocity vector v𝑔 is defined by equation:

v𝑔 = 𝑤 · v𝑔−1 + 𝑐1 · 𝑟1 · (xpbest − x𝑔−1) + 𝑐2 · 𝑟2 · (xgbest − x𝑔−1) . (3.3)

Note that this equation is the same as used in the previous section. Therefore, the meaning
of individual components in the equation can be found there.

3.2.1 Position Update

In the conventional PSO method, all x𝑔−1, xpbest and xgbest position vectors from equations
(3.2) and (3.3) are of the same size. However, the velocity update equation in PSO-VND
mixes the decision vectors with a different number of components into a new velocity
vector. Three probabilities are introduced for handling the variable number of dimensions:

• 𝑝pbest probability of agent’s position to take the dimension of the personal best
𝐷pbest,

• 𝑝gbest probability of agent’s position to take the dimension of the global best 𝐷gbest,
• 𝑝𝑥 probability of agent’s position to keep its dimensionality 𝐷x.

Probabilities 𝑝pbest, 𝑝gbest, and 𝑝𝑥 decides which of the three dimensions (𝐷pbest, 𝐷gbest,
and 𝐷x) will an actual particle follow. Note, that 𝑝gbest + 𝑝pbest + 𝑝𝑥 = 1 and the dimen-
sionality to follow (𝐷new) is chosen based on the randomly generated number in the unit
interval divided into three subparts according to the probabilities 𝑝gbest, 𝑝pbest, and 𝑝𝑥.

When the 𝐷new is resolved, three artificial solutions are derived from a current particle,
the personal best particle, and the global best particle. However, they all have the same
size 𝐷new. Note that missing components are replenished randomly according to:

𝑥𝑗 = 𝑥
(min)
𝑗 + rnd

(︁
𝑥

(max)
𝑗 − 𝑥

(min)
𝑗

)︁
, (3.4)

where rnd (·) is a randomly generated number from interval [0, 1], and 𝑥
(max)
𝑗 and 𝑥

(min)
𝑗

are upper and lower bound of 𝑛-th decision variable, respectively. Now, the generic equa-
tion (3.3) can be used because all the artificial solutions has the same number of compo-
nents.

3.2.2 Dimension Check

The dimension check feature is introduced in PSO-VND to enhance the dimensionality
exploration properties of the algorithm. It is based on the idea that optimal solutions (e.g.
local optimum and global optimum) can have a different number of decision variables but
can share several common components. Imagine the clustering problem where the three
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clusters are properly determined, but the solution should have four clusters. One of the
clusters needs to be divided in order to achieve the global optimum.

There are two types of dimension check: best and random. If the best dimension
check is enabled, global best solutions are taken as a template. Afterward, other solutions
from the current iteration are examined whether they have more decision variables than
the template already has. If so, the template is repeatedly replenished until the maximal
number of components is reached. In case that no solution has the number of decision
variables equal to the maximal possible dimension of a problem, the remaining components
are assigned randomly. If the random dimension check is enabled, only the global best
solutions are taken as a template, and the remaining dimensions are filled in randomly.
Therefore, the computational burden of searching through other solutions is saved.

When the template solution is known, the fitness function is evaluated for every possible
dimensionality of the problem from the components of the template solution. If any of the
evaluated partial solutions outperform the current global best solution, it is employed as a
new global best solution. Also, the corresponding solution in population and its personal
best is replaced.

Although the dimension check can significantly increase the overall number of fitness
function evaluations, it positively affects the performance of the optimization method.

3.3 Motivation

As was mentioned at the beginning of this chapter, most optimization algorithms proposed
in previous decades use fixed decision space. There are many evolutionary algorithms and
their modifications, but only a few of them can handle problems with a variable number
of dimensions. Unfortunately, many applications require a VND approach. Moreover, as
Goldberg stated in [21], even life on earth evolved through dealing with problems with a
variable number of dimensions.

Speaking of VND applications, there are numerous publications dealing with VND
problems. Frequently tackled are evolutionary programming problems or grouping prob-
lems. The problem presented in [25] is the bin packing problem where an arbitrary number
of objects are to be packed into a minimal possible number of bins. Another problem pre-
sented there is the line balancing problem where the distribution of tasks over workstations
is being optimized so that no workstation takes longer than the cycle time to complete all
the tasks. Any clustering problem where the number of clusters is not known a priori is
a VND optimization problem. In [57], a container pre-marshaling problem is being solved.

Focusing on electrical engineering, there is the term Evolutionary Electronics for evo-
lutionary optimization of problems related to electronics [34]. The paper tackles several
problems:

• Digital circuits where sum of product terms are sought. However, it is not known
a priori how many product terms for a given digital circuit is needed.
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• Analog circuits where either passive filters (algorithm finds the number, value, and
position of resistors, capacitor, and inductors) or transistor-based amplifiers (algo-
rithm finds the value, type of component, and connection points) are designed.

In [MM1], the PSO-VND algorithm is used for the PCB decoupling problem. Wireless
transmitter placement is a common optimization problem requiring variable decision space
in order to find the optimal number of transmitters as well [MM2], [58, 54, 30, 41].

Applications listed here are mostly optimized by single-objective optimization algo-
rithms, but a multi-objective definition of an optimization problem is more natural, be-
cause the nature itself is full of contrasts. Leaving out any criterion to fit the problem for
a single-objective optimization algorithm may be tricky, if not odd, entirely.

However, only a few multi-objective algorithms were adapted to work with a variable
number of dimensions so far [28, 59, 60, 58, 30, 55, 53]. It is also important to note that
some papers claim a multi-objective VND algorithm is being proposed, but in truth they
are either:

• quasi multi-objective – aggregates several objectives into one [59],
• impure-VND – performs update position operator with fixed-length decision vectors

[60, 58, 53].

Aggregating multiple objectives into a single one is a tricky issue. One has to have
some additional knowledge about the optimized problem in order to satisfyingly set the
aggregating method and therefore obtain a good trade-off solution. However, the fact
that the problem properties are unknown is often the original reason the optimization is
performed.

The method is called impure-VND in this thesis if a VND problem is being optimized,
but a fixed decision space is eventually used in the update position operator. Although such
an algorithm may be able to find optimal dimensionality, it necessarily performs position
update with the whole position vectors. Therefore, the performance of an algorithm is
wasted on exploring unfeasible regions of decision space (regions unused in fitness function
evaluation).

Finally, most of the algorithms listed in this chapter are modifications of genetic algo-
rithms. Therefore, the decision space is discrete (binary-coded). However, our proposed
methodology for VND algorithms is suitable for different optimization algorithms, includ-
ing the real-coded ones.

3.4 Dissertation Objectives

The following list summarizes the most important objectives of this thesis:

• develop an optimization framework suitable for algorithms with a variable number
of dimensions,

• create a library of benchmark problems with a variable number of dimensions,
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• propose new algorithms for optimization with a variable number of dimensions,
• verify the performance of the proposed methods on a set of benchmark problems,
• exploit new algorithms on several real-world applications.

Implementing novel optimization techniques in any optimization framework is a ben-
eficial step in the design process. The optimization framework not only simplifies the
designing of the algorithm but its setting and verifying as well. However, maintaining
problems with a variable number of dimensions casts a special requirement on the frame-
work itself. Due to the requirement that any agent in a population can have a different
number of components, no existing optimization framework was suitable for our cause.
Therefore, a new optimization framework in MATLAB was developed, which makes it
easier to implement an algorithm, run a simulation, view its results, or compare its per-
formance to other algorithms.

The library of benchmark problems is a necessary part of the verification of the al-
gorithm’s convergence properties. A proper set of benchmarking problems has several
individual problems with all kinds of difficulties:

• various number of decision variables,
• various number of objective functions,
• different shapes of Pareto-fronts,
• uni-modal vs. multi-modal problems,
• separable vs non-separable problems.

Advantageously, if the true Pareto-front of a benchmark problem is known, it is possible
to compare the found Pareto-fronts to the true Pareto-front.

Deriving new stochastic optimization methods is a crucial part of this thesis. New
methods will be exploitable on a special class of optimization problems – problems with
a variable number of dimensions. Such an optimization algorithm not only determines
proper values of the decision vector but the number of decision variables as well.

Verifying the performance of proposed methods is a substantial step in the design
process. Each novel algorithm will be compared to the algorithm with a fixed number
of dimensions and a hybrid-VND method in a scenario that tries not to favor any of the
methods.

Finally, novel algorithms will be exploited on several real-world applications related to
the field of electrical engineering:

• Anisotropic band-stop filter design,
• Antenna array design,
• Transmitter placement problem,
• Digital circuit design,
• Automated image thresholding,
• Clustering problem.
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4 FOPS

With the increasing complexity of the optimization problems, new optimization procedures
were developed over the past decades [61, 11]. In recent years, great effort has been made
in the development of novel optimization methods, especially multi-objective evolutionary
algorithms (MOEAs). Note that parts of this chapter are reprinted from [62, 63, 64].

The motivation of researches for the further development of optimization techniques is
that there simply does not exist a universal method suitable for all kinds of optimization
problems. Wolpert proposed the “no free lunch” theorem for the optimization [65]. It says
that for any algorithm, any elevated performance over one class of problems is exactly paid
for over another class in performance. Therefore, when an unknown optimization problem
is given, it is common to use various optimization methods and see which one serves the
best to our needs. Such practice encourages the development of optimization tools.

There are several MOEA frameworks proposed in [66, 67, 68, 69, 70]. Most of the op-
timization frameworks have none at all or complex GUI. Therefore, its user-friendliness,
especially for beginners, is low. Also, only a few of the frameworks provide the user with
the ability to implement his own optimization method or even configure its controlling
parameters. The paper [70] further reviewed and compared the experimental environ-
ments. In paper [MM2], we present a new optimization framework – Fast Optimization
ProcedureS (FOPS).

Optimization algorithms that can handle the variable number of decision variables
are being developed these days. To find an optimization framework where procedures
with a variable number of dimensions are covered leads to the ones employing surrogate
modeling techniques. An example of such a framework is SurrogateModeling Lab [71] or
Altair HyperStudy [72]. Surrogate modeling reduces the number of degrees of freedom.
In other words, dimensions that have little or no effect on the fitness values are discarded
from the search. However, this can not be considered as a pure-VND approach because an
inaccurate estimate of the surrogate model discarding certain dimensions may cripple the
following search. Moreover, a pure-VND multi-objective algorithm can locate a Pareto-
front where each of the solutions can have a different number of components. The FOPS,
on the contrary, is able to work with problems where each agent has a different number
of decision variables.

Like any framework, FOPS offers many optimization algorithms to use, but only one
of these algorithms can be used on a single problem at one time. Contrarily, the FOPS
framework enables the user to join multiple optimization algorithms to create a chain.
Algorithms in the chain are sequentially launched on a single problem. The following
algorithm starts where the preceding algorithm ends. Therefore, the advantages of different
optimization methods can be exploited within a solution to a single problem. For example,
the connection of a VND method with a non-VND optimization method, where the first
one finds the optimal dimensionality of the problem (e.g., the number of transmitters
covering the area) and the second one explores the estimated decision space (e.g., the
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exact transmitters’ positioning).
Another rare feature, called fullControl, allows the user to access a simulation object

inside the fitness function evaluation. By the term “simulation object” is meant the set of
variables where all the position vectors, fitness values, and all the settings of an algorithm
are held. Therefore, the user has full control over the optimization process and changes its
effective performance on the fly. This functionality allows him to e.g. change dynamically
the setting of an algorithm during an optimization run, and it is even possible to perform
another, nested optimization (see Subsection 9.2).

The FOPS is a standalone MATLAB toolbox. Therefore, it is available for various
operating systems. It includes methods for single- and multi-objective optimization. Cur-
rently, there are seven single-objective (plus one single-objective VND) and four multi-
objective (plus two multi-objective VND) optimization methods, almost 110 benchmark
problems of various types, and many performance metrics such as generational distance,
hypervolume, spread, etc. The FOPS can be controlled from the command line or by
Graphic User Interface (GUI).

Visualization of the results is an important part of the optimization process since it is
capable of disclosing a relationship between different quantities. An uncommon feature is
that the user can choose which dimension of an objective space or a decision space he wants
to see. Both spaces can be combined. Moreover, all the benchmark problems included
in the FOPS allows the user to plot its true Pareto-front (objective space) and/or true
Pareto set (decision space). Therefore, the obtained results can be intuitively compared
with the true optimal results. Note that the adverb true is used throughout the paper to
distinguish between the solutions found by the optimization run and the optimal solutions
to be found for a given problem, e.g. Pareto-front vs. true Pareto-front.

The user can extend the FOPS by his own optimization methods, set up his own
problems, and also implement new performance metrics. All the optimization methods
in FOPS can handle the discrete decision space because a simple but effective discretiza-
tion method is available. Verification of the discretization method can be found in Sec-
tion 4.3. The FOPS toolbox also includes a very simple surrogate optimization method
called the Tolerance-based Surrogate Method. It is more thoroughly covered in Section 4.4.
Moreover, additional surrogate optimization methods can be added by the user without
difficulties.

4.1 Simulations in FOPS

The FOPS toolbox currently includes 16 optimization algorithms. They are listed in
Table 4.1.

The FOPS framework includes an extensive benchmark problems library. Each prob-
lem is defined as a separate MATLAB file. There are 17 single-objective problems,
16 single-objective VND problems, 44 multi-objective problems, and 30 multi-objective
VND benchmark problems. They are briefly summarized in Table 4.2.
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Table 4.1: Optimization methods in FOPS.
Abbreviation Algorithm name Reference
SONEW Newton method [6]
SONEME Nelder-Mead method [73]
SOGA Genetic Algorithm [74]
SOPSO Particle Swarm Optimization [3]
SODE Differential Evolution [4]
SOSOMA Self-Organizing Migration Algorithm [75]
SOCMAES Covariance Matrix Adaptation Evolution Strategy [76]
VND-PSO Particle Swarm Optimization for VND [48]
NSGA-II Elitist Non-dominated Sorting Genetic Algorithm [8]
MOPSO Multi-objective Particle Swarm Optimization [9]
GDE3 Generalized Differential Evolution [10]
MOSOMA Multi-objective Self-Organizing Migration Algorithm [77]
VLGDE3 Variable-length Generalized Differention Evolution [50]
VLMOPSO Variable-length MO Particle Swarm Optimization [40]
VND-GDE3 Generalized Differential Evolution for VND [62]
VND-MOPSO Multi-objective Particle Swarm Optimization for VND

Table 4.2: Benchmark problems in FOPS.
Abbreviation Problem name Reference
SOROS Rosenbrock’s function [78]
SORAS Rastrigin’s function [78]
SOACK Ackley’s function [78]
SOEAS Easom’s function [78]
and others from [78, 79]
VNDKRAS VND modified Rastrigin’s function [80]
VNDKROS VND modified Rosenbrock’s function [80]
VNDMACK VND modified Ackley’s function [48]
VNDMALP VND modified Alpine function [48]
and others from [80, 48]
MODTLZ Deb, Thiele, Laumanns, and Zitzler [81]
MOLZ Li, Zhang [82]
MOUF CEC 2009 [83]
MOWFG Walking Fish Group [84]
MOZDT Zitzler, Deb, and Thiele [85]
and others from [5]
VNDMODTLZ modified Deb, Thiele, Laumanns, and Zitzler [MM4]
VNDMOZDT modified Zitzler, Deb, and Thiele [MM4]
VNDMOLZ modified Li, Zhang [MM4]
VNDMOUF modified CEC 2009 [MM4]
VNDMOLI multi-objective VND problems [86]

Apart from the benchmark problems, which are mainly useful for the comparison of
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optimization methods, the user can define his own optimization problem. The optimization
problem is described by a MATLAB function which returns a structure. The structure
contains several fields describing the optimization problem. There are many types of fields
(see the FOPS documentation [MM4]), but only two fields are mandatory — 'fitness'
and 'limits'.

4.1.1 Simulation Types

There are three different types of simulation in FOPS — comparative study, chain, and
task. A comparative study can be seen as a set of several chains solving multiple problems
repetitively. A chain is a set of tasks connected together to optimize a single problem. A
task is a single algorithm optimizing a single problem.

The user can create multiple simulations of various types in the FOPS, modify their
settings if necessary, and then launch the optimization process. When the optimization
process is finished, the user can search through the results with a results suite (see Sec-
tion 4.2).

There are several methods for maintaining the simulations in the FOPS. They are
summarized in Table 4.3. The table also shows input arguments of individual methods,
where the input arguments typed in bold font are mandatory, while the arguments in
normal font are optional. This roughly indicates the fundamental concept of the FOPS:
“type in only the necessary things and let the FOPS fill in the rest”. There are numerous
possibilities within the FOPS, but if the user does not want to or does not know how to
type in advanced commands, the FOPS will still provide results.

Table 4.3: Simulation maintenance methods in FOPS.
addTask(problem, algorithm, settings, name, userData)
changeTaskSettings(id, settings)
renameTask(id, newName)
runTask(id)
deleteTask(id)
addChain(problem, algorithms, settings, name, userData)
changeChainSettings(id, settings)
renameChain(id, newName)
runChain(id)
deleteChain(id)
addCompStudy(problems, chains, nRuns, metrics, settings, name, userData)
changeCompStudySettings(id, settings)
renameCompStudy(id, newName)
runCompStudy(id)
deleteCompStudy(id)
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4.1.2 Optimization Execution

The creation of a task that exploits the NSGA-II algorithm to optimize the 'MOPOL'
problem (Poloni’s study [5]) is shown in Listing 4.1. The listing also shows how the task
is run, and its results can be displayed by method displayResults. The visualization of
results is described in Section 4.2. Note that the 'MO' in the problem’s name is used to
distinguish between multi-objective and single-objective problems. The string 'MOPOL' is
the exact name of a MATLAB file that defines the optimization problem.

Listing 4.1: Minimal working example of optimization task in FOPS.

1 fops = FOPS(); % initialization of FOPS

2 fops.addTask('MOPOL', 'NSGA-II')

3 fops.runTask()

4 fops.displayResults(1, 1)

More examples of use can be seen in the documentation of FOPS [MM4].

4.2 Visualisation of Results

The content of the results suite is different for the results of tasks and chains, and the
results of the comparative study. Therefore, this section is divided into two subsections
— Results of Tasks and Chains and Results of Comparative Studies.

Figure 4.1: Results suite of FOPS on the left side, and the animation of the fitness values
of MOZDT1 problem on the right.
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4.2.1 Results of Tasks and Chains

Figure 4.1 shows the results suite when results of task or chain are visualized. Tables in the
lower half of the figure contain positions and fitness values of the non-dominated set. The
upper half of the figure shows a control panel. There is an animation of the fitness values
of a custom optimization task presented on the right side of the figure. Green points depict
the true Pareto-front, red points build the non-dominated set, and blue points depict the
fitness values from consecutive iterations.

The control panel is dominated by a selection of dimensions to the plot. It can be seen
that the dimensions of fitness values ('f_1' or 'f_2') can be chosen as well as the dimen-
sions of position vectors ('x_1', 'x_2', etc.). The Choose What To Plot popup menu
allows the user to choose among the results (i.e. found Pareto-set), history (i.e. solutions
over iteration), or metric convergence plot (e.g. generational distance over iterations).

It is also possible to search through individual iterations using the slider below the
results plot and adjacent push-buttons. The results visualization tool has many capabilities
that can be further examined in the FOPS documentation [MM4].

4.2.2 Results of Comparative Study

A comparative study with three unique chains and two different problems — 'MOZDT1'
and 'MOFON' is shown in Figure 4.2. All combinations of chains and problems create six

Figure 4.2: Results of the comparative study in FOPS GUI.
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columns in the table in the lower part of the figure. The table shows the computational
time of the optimization process for each repetition of each chain. The first four rows in
the table are dedicated to the mean value, the standard deviation, the minimal value, and
the maximal value. The type of metric is chosen by the popup menu in the top-left part
of the results figure. The top-right part is dedicated to a hint panel — each time some
cell in the lower table is selected, properties of the corresponding chain are displayed in
the hint panel for a better orientation in the comparative study results.

4.2.3 Statistics

The Figure 4.2 also shows a push-button (bellow the bottom left corner of the hint panel),
which launches the statistics figure (see Figure 4.3).

This feature allows the user to calculate easily the statistics described in Section 2.4.
Currently, it covers Friedman’s, Wilcoxon’s, and Multiple Sign non-parametrical tests.
The type of non-parametrical test is chosen in the first popup menu. The second popup
menu chooses the level of significance 𝛼, and the third popup menu selects the control
algorithm used in Friedman’s test and Multiple Sign test.

Calculated 𝑝-values are shown in the bottom left table. There are four options:

• If the 𝑝-value is below the level of significance 𝛼 (the control algorithm is better then
the algorithm under test), the corresponding cell has a green background color.

• If the 𝑝-value is above 𝛼 (the control algorithm performed worse than the algorithm
under test), the cell background color is orange.

• If the 𝑝-value is above 𝛼, but the control algorithm may be statistically better with
the use of a different 𝛼 value, the background color of the cell is yellow.

• If the result is statistically insignificant (e.g. Friedman’s statistic 𝑝-value is above 𝛼)
or invalid, the background color of the cell is red.

4.3 Discretization Method

Parameters of the optimized system - decision variables - in a common optimization pro-
cess can be any value from an interval limited by prespecified extremes. However, some
parameters of the system can be restricted, somehow. In the real world, there are always
some manufacturing precision limits, only a limited number of components available in
stock, etc. Therefore, a given parameter is discrete, and it is not possible to change it
continuously. For example, only several dielectric substrates meet design requirements, or
capacitors are available in manufacturing series. Therefore, the permittivity and capaci-
tance used as a decision variable should be discrete.

The naïve approach is to let the optimization run as if all decision variables were
continuous and pick final values closest to a set of feasible, discrete values afterward.
However, an optimization algorithm computes with all the possible values. Therefore,

33



puts an effort to find the best solution with unsuitable values that the user will discard
anyway.

A smart approach is to use an optimization method that can work with discrete decision
variables that, in other words, do not waste computational resources in operating with
unfeasible solutions.

Most of the optimization algorithms work with continuous decision variables, but a
well known genetic algorithm [2] (and most of its modifications) works with discontinuous
decision variables. Therefore, it uses discrete decision variables by its nature. The use of
continuous decision variables in genetic algorithms is limited by the binary precision of
discrete variables.

This suggests that when there is a need to use discrete decision variables, only a limited
number of optimization algorithms can be exploited. However, the discretization method
allows every optimization algorithm to work with discrete decision variables.

The validity of the method is verified by the comparison of NSGA-II [8], MOPSO [9],
and GDE3 [10] algorithms’ performance on several well-known test problems with various
discrete decision variables settings. All exploited algorithms are multi-objective, but the
discretization method works with single-objective optimization methods as well.

Figure 4.3: Statistics figure on the comparative study from Figure 4.2.
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4.3.1 Discretization Method

Genetic algorithm - an algorithm that works with discrete decision variables by nature -
describes the position of an individual in generation by a set of binary values. The density
of discrete decision variable samples is given by binary precision, i.e. the number of binary
values that represent the given decision variable. The position of the agent is varied by
inverting randomly picked binary places of the position vector (crossover and mutation
operation).

On the other hand, algorithms with continuous decision variables usually vary the
position vector by summing it with another randomly picked position vector (cf. Equa-
tion (3.1), Algorithm 6.1). Therefore, real numbered positions are combined and create
a new real numbered position. The presented discretization method lets an algorithm to
generate the new agent’s position on its own and then forces the decision variable to take
one value from the discrete decision values set.

The simplest solution to find a corresponding discrete value for a given real value
would be to find the closest one in an absolute measure. But if discrete samples are non-
homogeneously spaced between decision variables limits, then some discrete value would
occur more often than the other.

The range of the decision variable is divided by the number of discrete samples 𝑁

(4.1). Then the floored difference between the real decision variable and the lower limit
divided by discrete samples step 𝛿 gives us the index of discrete sample corresponding to
a real value 𝐼.

𝛿 = 𝑥max − 𝑥min
𝑁

, (4.1)

where 𝑥max and 𝑥min are the limits of a decision variable and 𝑁 is the number of discrete
samples of the decision variable. The index of the corresponding discrete value is defined
by:

𝐼 =
⌊︂

𝑥 − 𝑥min
𝛿

⌋︂
, (4.2)

where ⌊·⌋ defines the floor function and 𝑥 is the real-numbered position.

4.3.2 Test Problems

The comparative study performed to verify the discretization method exploited 7 testing
problems: DLTZ4, DTLZ6, DTLZ7, ZDT1, ZDT2, ZDT6, and Poloni’s problem [81, 5].

ZDT and DTLZ families of testing problems were chosen for their convenient location of
the true optimal set. In ZDT problems, the solution is optimal if all decision variables are
zeros except the first variable, which utilizes true Pareto-front. DTLZ problems are similar,
except that the first and also the second decision variables utilize the true Pareto-front
and in the case of DTLZ4, remaining decision variables (except the first and the second)
have to be 0.5. Therefore, such values are attainable even with roughly discretized decision
space. On the other hand, Poloni’s test problem has a more complicated true optimal set
(can be seen in [5, Chapter 8]), and the discretization of decision space might prevent the
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optimization algorithm from locating it. All ZDT and DTLZ problems had 10 decision
variables during the tests. Poloni’s test problem has only two decision variables.

4.3.3 Results

The discretization method was verified with a comparative study. There were 3 optimiza-
tion algorithms – NSGA-II, MOPSO, and GDE3 – exploited on 7 testing problems. Also,
there were four different settings of discrete decision variables. The first setting was con-
tinuous decision variables. The remaining settings sampled each decision variable to 5001,
501, and 51 discrete samples, respectively.

Every simulation was 100 times repeated in order to obtain independent realizations
of stochastic processes. All three algorithms processed 40 agents over 100 iterations. The
setting of other controlling parameters can be found in Table 4.4.

Table 4.5 contains average values of generational distances (see Subsection 2.3.1) ob-
tained in a comparative study multiplied by 1000.

Each problem was optimized with four different discretization settings. It is obvi-
ous, that the lower the density of samples is, the easier is to find the true Pareto-front.
Therefore, the lower the generational distance value should be. The fact that generational

Table 4.4: Controlling parameters of algorithms
NSGA-II MOPSO

Probability of crossover 𝑃𝐶 = 0.9 Inertia weight 𝑊 ∈ [0.8, 0.5]
Probability of mutation 𝑃𝑀 = 0.7 Cognitive learning factor 𝑐1 = 1.5
Binary precision* BP = 20 Social learning factor 𝑐2 = 1.5

GDE3 Boundary type reflecting
Probability of crossover 𝑃𝐶 = 0.2
Scaling factor 𝐹 = 0.2
* for each decision variable if continuous space is used.

Table 4.5: Thousandfold the generational distance with various discretization scenarios.
Algorithm 𝑁 ZDT1 ZDT2 ZDT6 DTLZ4 DTLZ6 DTLZ7 MOPOL

220 21.45 29.49 1919.04 56.58 4227.23 70.43 54.88
5001 14.98 20.58 1619.15 96.92 2768.14 48.92 73.72
501 8.75 9.25 683.47 55.20 879.09 32.60 51.52

NSGA-II

51 0.23 0.05 0.05 12.59 3.93 12.58 57.92
∞ 17.13 10.15 5465.71 245.31 5226.11 70.86 12.47

5001 12.31 5.01 385.78 164.69 2073.57 35.27 19.35
501 8.93 4.06 100.77 106.91 1632.72 35.84 20.52

MOPSO

51 13.71 4.98 151.23 17.97 845.12 75.06 26.21
∞ 2.42 1.56 24.58 62.73 72.83 23.77 42.71

5001 2.30 2.29 72.55 62.86 177.89 22.58 52.48
501 0.35 1.32 0.13 63.79 116.69 21.34 51.27

GDE3

51 0.03 0.04 0.05 0.69 22.60 11.18 63.79
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distance values produced by MOPSO and GDE3 algorithms decrease with decreasing den-
sity of discrete samples verifies the functionality of the used discretization method. The
same pattern is visible in most cases in Table 4.5. However, there are several exceptions.

Most of the exceptions occur with the use of the MOPSO algorithm and only 50 samples
per decision variable. The reason is hidden in the behavior of the MOPSO algorithm rather
than in the discretization method itself. MOPSO uses an external archive of found non-
dominated solutions. The majority of continuous non-dominated solutions are dominated
due to discretization, therefore an external archive holds only a few entries. This paralyzes
the exploration capabilities of the algorithm because external archive members are used
as 𝑥gbest in (3.1).

Poloni’s problem also shows a few exceptions. However, in this case, it is caused by an
unsuitably located true Pareto-front (see in [5, Chapter 8]). Therefore, the discretization
of decision space prevents the algorithm from reaching the optimum.

4.3.4 Conclusion

If the binary precision of decision variables in the binary-coded NSGA-II algorithm de-
creases, the number of possible positions in decision space also decreases. Therefore, it is
easier for the algorithm to find the optimum.

The discretization method enables the optimization algorithm to work with continuous
decision variables as usual. However, the decision vector is discretized right after the
agent’s position update. The results obtained in the comparative study prove that such a
technique has a similar effect on the difficulty of an optimization problem. In other words,
the overall decision space shrinks.

4.4 Surrogate Optimization

The fitness functions can have various forms. If the fitness function is expressed as a closed-
form formula, it can be computed almost immediately. However, the fitness functions in
real-world optimization problems can take considerably more time to compute. A common
assumption is that the computation of the fitness values is the most time demanding
operation during the optimization process.

An example of such a complex optimization can be the synthesis of the cavity resonator
structure used in [87]. An optimization algorithm generates decision variables (e.g. design
dimensions), and the calculation of the fitness values involves a full-wave simulation of the
designed structure with dimensions determined by the optimization algorithm.

Since evolutionary algorithms generally require a large number of fitness function eval-
uations during the optimization process, and each evaluation can take a significant amount
of time, it is desirable to skip some unnecessary fitness function evaluations. The tolerance-
based surrogate method allows an optimization algorithm to skip some fitness function
evaluations. The question is, which evaluations can be skipped?
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If an electromagnetic structure design is considered, there are always some manufac-
turing precision limits. Therefore, it is useless to evaluate the fitness values for dimensions
(decision variables) that differ at e.g. the sixth decimal place. Moreover, the fitness
values of such similar dimensions would most likely be very similar too, and an overall
contribution to the optimization process would be minimal.

This is the essential idea of the tolerance-based surrogate method. At the beginning
of the optimization run, no fitness values are known, and all the fitness function has to
be evaluated. Each evaluated solution (i.e. decision variables and corresponding fitness
values) is stored in the archive. At some point in the optimization process, an algorithm
converges close to the optimum (i.e. the true Pareto-front in MOOP), and new solutions
with yet unknown fitness values begin to be similar (or equal) to some members of the
archive. Evaluation of the fitness functions of such a solution has a negligible contribution
to the optimization process. Therefore, the fitness functions are not evaluated. The fitness
values of the closest solution in the archive are taken from the archive instead.

The tolerance vector defines how close the new solution from a member of the archive
has to be. The tolerance vector has the same number of elements as the decision vector of
the problem. Each time the differences between all the decision variables of some member
of the archive and the new solution are lower than the vector of tolerances, the fitness
function evaluation is skipped.

Figure 4.4 further clarifies the tolerance-based surrogate method. It depicts a decision
space of a simple two-objective optimization problem and several solutions stored in the
archive. The grid denotes the limits of the decision variables, i.e. 𝑥1 ∈ [0.1, 1] and
𝑥2 ∈ [0, 1]. The fitness functions are defined as follows:

𝑓1 (x) = 𝑥1, (4.3)

𝑓2 (x) = 1 + 𝑥2
𝑥1

. (4.4)

The thick line (bottom edge of the grid) marks the true Pareto-front of the problem
in the decision space. There are 15 solutions stored in the archive (their positions are
marked with the thick "+" signs). The tolerance vector was {0.05, 0.1} and areas within
the tolerance are depicted with the hatched boxes around solutions. Five of the solutions
are indexed from 1 to 5.

The solution 1 is the true Pareto-optimal solution and its fitness values are {0.1, 10}.
The solution 2 has the fitness values {0.3, 3.67}. The solution 3 is not far from optimality
(see that the tolerance box covers a part of the true Pareto-front) and its fitness values
are {0.5, 2.15}. The solution 4 has the fitness values {0.7, 1.643} and the solution 5 has
the fitness values {1, 1} (also the true Pareto-optimal solution). All the indexed solutions
are non-dominated (in the objective space).

If a newly generated solution has the position e.g. {0.94, 0} (marked with the × signs
in Figure 4.4), it will fall in the tolerance area of the solution 5 ({1, 0}) and even if
its fitness values according to (4.3) and (4.4) should be {0.94, 1.064}, the fitness values
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Figure 4.4: Decision space of a two-objective problem with solutions stored in the
archive.

{1, 1} of the solution 5 will be assigned to it. The difference in fitness values caused by
tolerance-based surrogate method is relatively small in this case.

Another generated solution has the position e.g. {0.14, 0} (marked with the × sign in
Figure 4.4). Such solution will fall in the tolerance area of the solution 1 ({0.1, 0}) and
even if its fitness values according to (4.3) and (4.4) should be {0.1, 7.143}, the fitness
values {0.1, 10} of the solution 1 will be assigned to it. The difference between the true
fitness values and the surrogate fitness values is rather large here, although the absolute
distance between the archive member and the generated solution in the decision space is
identical as in the previous pair. This suggests that the setting of the tolerance vector can
be sometimes a difficult task.

The solution 3 in Figure 4.4 indicates the main drawback of the tolerance-based surro-
gate method. The border of the hatched box of this solution lies on the true Pareto-front,
but the solution itself is rather far away ({0.5, 0.075}). Therefore, if a new solution is
generated within the hatched box, e.g. {0.5, 0} (marked with the × sign), then the fit-
ness values of the known solution are assigned to it. But the fitness values of the true
Pareto-optimal solution with the position {0.5, 0} according to equations (4.3) and (4.4)
are {0.5, 2}, while the fitness values of the solution 3 from the archive are {0.5, 3.5}. Af-
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terward, the solution {0.5, 0} (which is, as we know, better then the archive member) will
be supressed in the optimization process due to its downgraded fitness values. Therefore,
that part of the true Pareto-front under the solution 3 in Figure 4.4 is inaccessible due to
the tolerance-based surrogate method if too large values are used in the tolerance vector.

There exists no methodology to estimate the proper tolerance vector. The tolerance
vector depends on an optimized problem and the user’s knowledge about the problem.
Therefore, the tolerance-based surrogate method can make the parts of the true Pareto-
front inaccessible, and therefore introduces uncertainty into the optimization process.
However, it is balanced by the reduction of the number of fitness evaluations, i.e. the
overall cost of optimization. In other words, the setting of the tolerance vector is a trade-
off between the time-saving properties and the inaccessible area that might occur around
the true global optimum. Note that an optimization algorithm can still reach any point
within the decision space. It can not reach only a close neighborhood of the archive
members.

The drawback can be suppressed with the use of a discrete decision space. When the
decision space is discrete, the tolerance vector can be set to almost zero values. Therefore,
the new solution can be either identical or differ by the whole step of the discrete decision
variable. If the new solution generated by the optimization algorithm already exists in the
archive, it is not calculated again. In this scenario, some regions of the decision space are
inaccessible for the optimization algorithm.

4.4.1 Performance Assessment

The Multi-objective Particle Swarm Optimization (MOPSO) algorithm has been em-
ployed to obtain presented results. The Elitist Non-dominated Sorting Genetic Algorithm
(NSGA-II) and the Third Generalized Differential Evolution algorithm (GDE3) were also
tried, but the produced results were practically similar to those from the MOPSO algo-
rithm.

Minor differences in the results were related to algorithms’ performance rather than
to the tolerance-based surrogate method itself. Therefore, the results of the NSGA-II and
GDE3 algorithms are not presented.

The validation of the tolerance-based surrogate method was performed on several
two-objective optimization benchmark problems. However, the tolerance-based surro-
gate method is independent of the number of objectives. A summary of benchmark
problems can be seen in Table 4.6 (MOFON stands for Fonseca and Fleming’s study,
MOKUR stands for Kursawe’s study, MOPOL stands for Poloni’s study, and MOZDT1
and MOZDT6 stands for Zitzler, Deb and Thiele’s studies). The benchmark problems are
further described in [5].

The performance of the tolerance-based surrogate method is tested from two points
of view. The first one is the computational time required to perform a particular sim-
ulation run. For a better insight into the time-saving property of the tolerance-based
surrogate method, Table 4.8 contains an average count of fitness values obtained by our
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Table 4.6: Summary of used benchmark problems.
Problem MOFON MOKUR MOPOL MOZDT1 MOZDT4
Number of decision variables 3 3 2 30 10
Limits of decision variables [−4, 4] [−5, 5] [−𝜋, 𝜋] [0, 1] [−5, 5]*

* Limits of the first decision variable are [0, 1].

surrogate method. The second point of view is the value of a generational distance (see
Subsection 2.3.1).

4.4.2 Results

Controlling parameters of the MOPSO algorithm were set as follows: the inertia weight
𝑤 was linearly decreased from 0.6 to 0.4 over all iterations, the cognitive learning factor
was 𝑐1 = 1.5, and the social learning factor was 𝑐2 = 1.

There were 100 agents in each simulation run over 100 iterations. Therefore, the
fitness function would be evaluated 10 000-times if the tolerance-based surrogate method
was disabled. All values presented in Tables 4.7–4.10 are an average of 100 repetitions.

An evaluation of the fitness function in case of the benchmark problems is almost
immediate. Therefore, the usage of the tolerance-based surrogate method would have
no benefit. Nevertheless, there were delays inserted to the fitness functions. The delays
were 0, 1, and 10 milliseconds. Due to the nested delays, all evaluations of the fitness
functions alone took 0, 10, and 100 seconds, respectively, for each simulation run if the
tolerance-based surrogate method was disabled.

The tolerance vector was defined as a fraction of the range of the problem’s decision
variables, i.e. 0, 0.001, 0.01, 0.05, and 0.1 times the range of the decision variable. The
first one means that the range of each decision variable is “divided” into an infinite number
of sections. In other words, the tolerance-based surrogate method is disabled. The last one
means that the range of each decision variable is “divided” into 10 sections. The quotation
marks refer to the fact that the tolerance-based surrogate method has nothing to do with
the discretization of the decision variables. The tolerance-based surrogate method only
takes positions of two randomly generated solutions and checks whether its difference is
lower than the tolerance or not.

Table 4.7 contains an average computational time of particular simulations. It is
obvious from the first three lines (where the tolerance-based surrogate method is disabled)
that the computational time of an optimization method alone is almost independent of
a problem. It is also evident how the nested delays affect the computational times. The
higher the tolerance is, the larger the time saving is. Contrarily, the computational time
when the tolerance-based surrogate method is enabled depends on the problem.

On several occasions, the computational time is larger when the tolerance-based sur-
rogate method is enabled, compared to the computational times with the tolerance vector
elements set to zero. The most obvious items are the ones where no delay and only small
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Table 4.7: An average computational time in seconds.
Delay [ms] Tolerance MOFON MOKUR MOPOL MOZDT1 MOZDT4

0 0 2.95 2.86 2.62 2.74 2.68
1 0 13.66 13.75 12.82 13.36 13.13
10 0 103.42 103.11 103.09 103.10 103.10
0 0.001 5.07 5.26 4.53 16.61 5.18
1 0.001 10.94 15.36 11.14 27.76 13.21
10 0.001 58.19 100.36 65.50 117.85 78.53
0 0.01 3.79 4.13 3.79 17.09 5.02
1 0.01 5.40 6.63 6.14 27.84 11.00
10 0.01 17.97 24.97 22.78 116.15 54.68
0 0.05 2.98 3.16 2.95 14.78 4.60
1 0.05 3.48 3.76 3.26 21.69 8.04
10 0.05 7.37 8.47 5.39 74.52 34.11
0 0.1 2.81 2.91 2.70 6.00 4.30
1 0.1 3.04 3.20 2.83 10.99 6.60
10 0.1 4.81 5.24 3.84 45.97 23.53

tolerance values were used. This behavior is caused by a number of comparison oper-
ations required by the tolerance-based surrogate method. If the tolerance is small and
no surrogate fitness values are found in the archive (MOKUR and MOZDT1 problems,
see Table 4.8), the number of the comparison operations quickly increases during the
optimization. It slows the entire process.

Especially, in the case of the MOZDT1 problem and the tolerance vector elements set
to 0.001, no surrogate solutions were found (see Table 4.8). This problem has 30 decision
variables. Therefore, the probability that a new solution is within the tolerance of some
solution stored in the archive is lower compared to other problems. The number of the
comparison operations quickly grows from 100 × 30 after the first iteration to 10000 × 30
after the last iteration. Therefore, the overall deceleration is almost 13 seconds.

Table 4.8 shows, how many fitness values were taken from the archive during each
simulation run. The content of Table 4.8 correlates with the content of Table 4.7. The
first three lines of the table were omitted because they contain zeros if the tolerance-based
surrogate method is disabled. With increasing tolerance values, the number of surrogate
solutions also increases because there is a higher probability of finding a close enough
solution in the archive.

The differences between values where the same tolerance is used are caused mainly by
the number of decision variables. If a problem has only three decision variables (MOFON),
it is easier to randomly generate a solution that is close to the member of the archive,
compared to the problem with 30 decision variables (MOZDT1).

Secondly, the differences are given by the speed of convergence to an optimum. If
agents rapidly approach global optimum, then new solutions are almost similar to the
previous ones. Therefore, surrogate solutions can be found in the archive (MOFON).
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Table 4.8: An average number of surrogate solutions.
Delay [ms] Tolerance MOFON MOKUR MOPOL MOZDT1 MOZDT4

0 0.001 4777 597 4024 0 2870
1 0.001 4812 596 4045 0 2755
10 0.001 4775 587 3992 0 2751
0 0.01 8620 7991 8177 230 4788
1 0.01 8626 7976 8171 228 4801
10 0.01 8624 7980 8170 199 5117
0 0.05 9576 9488 9778 4014 7080
1 0.05 9575 9497 9777 3970 7160
10 0.05 9574 9493 9775 4101 7135
0 0.1 9805 9774 9889 6159 8192
1 0.1 9806 9775 9889 6148 8201
10 0.1 9806 9779 9889 6128 8152

Table 4.9: An average generational distance - real-coded decision space.
Delay [ms] Tolerance MOFON MOKUR MOPOL MOZDT1 MOZDT4

0 0 <0.001 0.032 0.011 0.247 20.822
1 0 <0.001 0.032 0.012 0.232 20.649
10 0 <0.001 0.032 0.013 0.221 19.965
0 0.001 <0.001 0.033 0.012 0.234 23.354
1 0.001 <0.001 0.031 0.012 0.245 22.911
10 0.001 <0.001 0.034 0.010 0.225 23.507
0 0.01 0.005 0.110 0.037 0.226 46.445
1 0.01 0.005 0.109 0.036 0.238 49.949
10 0.01 0.005 0.111 0.039 0.232 47.377
0 0.05 0.051 0.893 0.322 0.261 61.551
1 0.05 0.052 0.869 0.306 0.262 60.981
10 0.05 0.052 0.888 0.313 0.259 60.895
0 0.1 0.129 2.153 0.903 0.337 70.144
1 0.1 0.130 2.068 0.929 0.334 68.461
10 0.1 0.123 2.064 0.965 0.335 68.306

Contrarily, if agents approach the optimum slowly, the positions are continuously drawn
to optimum (MOKUR), and the surrogate solutions cannot be found in the archive.

When the tolerances are increased, the generational distance also increases due to
the drawback of the tolerance-based surrogate method. Differences between values of the
generational distance with the same tolerance are caused by the difficulty of the problem.
The MOFON problem is a relatively simple one. On the other hand, the MOZDT4 problem
with only 10 decision variables (in comparison with the MOZDT1 problem) has many
local optima, where an algorithm can be caught. Therefore, the values of the generational
distance are large.

Table 4.10 contains generational distance values of simulations when a discrete decision
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Table 4.10: An average generational distance - discrete decision space.
Delay [ms] Tolerance MOFON MOKUR MOPOL MOZDT1 MOZDT4

0 0 <0.001 0.032 0.011 0.235 21.542
1 0 <0.001 0.033 0.010 0.231 19.827
10 0 <0.001 0.032 0.014 0.242 17.982
0 0.001 <0.001 0.030 0.011 0.110 11.954
1 0.001 <0.001 0.030 0.011 0.111 14.233
10 0.001 <0.001 0.030 0.011 0.129 12.823
0 0.01 0.001 0.057 0.027 0.055 11.033
1 0.01 0.001 0.058 0.027 0.043 11.574
10 0.01 0.001 0.057 0.027 0.041 12.019
0 0.05 0.026 0.219 0.277 0.041 0.145
1 0.05 0.026 0.219 0.311 0.045 0.146
10 0.05 0.026 0.219 0.311 0.038 0.146
0 0.1 0.102 0.017 0.288 0.074 0.164
1 0.1 0.102 0.017 0.288 0.046 0.167
10 0.1 0.102 0.017 0.288 0.063 0.160

space is used. Note that the second column in Table 4.10 is now called Fraction. In this
case, the tolerances were set to very low values (1e−6). However, the discretization of
the decision variables corresponds with the tolerances from the simulation with a real-
coded decision space. Therefore, the fraction of 0.1 denotes that each decision variable
was sampled to 11 points. When the discrete decision space is used, the surrogate is found
only if a new solution is identical to a member of the archive. Otherwise, the fitness
functions have to be evaluated.

Some problems (MOPOL and MOFON) in Table 4.10 show that if the fraction value
is increased, meaning that the decision variable is sampled more sparsely, the generational
distance downgrades. This is caused by the fact that the true Pareto-optimal solutions do
not correspond with the sampling of the decision variables.

The true Pareto-optimal set of MOZDT problems corresponds to 𝑥1 ∈ [0, 1], while
all the other decision variables are zero. Therefore, the discrete samples of the decision
variables can match the true Pareto-optimal set.

Analogous tables to Table 4.7 and Table 4.8 with the discrete decision space are not
presented because their content is similar to those with the real-coded decision space.

4.4.3 Conclusion

The advantage of the tolerance-based surrogate method is that certain fitness function
evaluations can be skipped. Therefore, an overall computational time of an optimization
process can be reduced. The drawback of skipping the fitness function evaluation can lead
to a loss of precision. However, the precision loss may be reduced if a discrete decision
space is used with an appropriate tolerance vector. It was also discussed that the tolerance-
based surrogate method can even slow down the optimization process if it is improperly
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used.
The real-world optimization task, where the advantages of the surrogate method are

used, is the anisotropic band-stop filter design (see Section 9.1). Each fitness function
evaluation of this problem takes around 10 minutes. Overall optimization time is reduced
from around 2 months to approximately 2 weeks thanks to the tolerance-based surrogate
method.

Since an evaluation of fitness functions can be very time consuming, the proposed
tolerance-based surrogate method can accelerate the whole optimization process even if
only a few surrogate solutions are found.

The tolerance-based surrogate method can also be exploited in cases of recurrent op-
timization tasks, either after altering algorithm settings or the crash of a simulation. The
archive of known solutions can be loaded before the beginning of the optimization process,
and surrogate solutions can be used from early stages of the optimization process.

4.5 Conclusion

The main advantage of an in-house optimization toolbox for MATLAB is that the im-
plementation of a new optimization algorithm is simple and straightforward. Within mo-
ments, the user implements the unique properties of a given algorithm. The procedures
that are common for many optimization algorithms (e.g. initialization of population, non-
dominated sorting, etc.) are already defined and can be utilized without effort. Afterward,
the verification of a new algorithm is easily performed by predefined optimizing routines
on a set of benchmark problems that are already defined too.

The framework includes a library with many optimization problems used mainly for
the verification of the optimization methods. However, the main focus was set on the
versatility of the framework. Therefore, it can be employed to various real-world challenges
with requirements of all kinds. It is extensible – algorithm-wise, problem-wise, metric-wise,
and even surrogate method-wise.

The FOPS framework, for the first time, implements optimization procedures that can
solve problems with a variable number of dimensions. Supporting the problems with a
Variable Number of Dimensions enables to solve challenging EM optimization problems
with lower computational cost compared to the common optimization approach with a
fixed number of dimensions.

Many real-life optimization problems have discrete decision space, but only a few evolu-
tionary algorithms can naturally work with discrete decision space. FOPS toolbox contains
discretization method, which is universal for every optimization algorithm. Comparison
of implemented method with a naturally discrete optimization algorithm – NSGA-II – is
presented in [63].

Evolutionary Algorithms process numerous agents through decision space over many
iterations. Therefore, a great number of fitness function evaluations are usually needed. It
is a common assumption that fitness function evaluation is a time-consuming procedure.
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Therefore, it is advantageous to keep the number of fitness evaluations at a minimum.
FOPS optimizer includes a simple surrogate method that enables the optimizer to skip
some fitness function evaluations. Method was presented in [64].

The versatility of the framework is demonstrated in Chapter 9. Various features of the
FOPS framework are exploited there. It was utilized in many research papers [MM7, 63,
64, 62, MM8, MM9, MM1, MM10, MM11, MM12, MM13, MM14].
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5 MULTI-OBJECTIVE TESTING PROBLEMS WITH VARI-
ABLE NUMBER OF DIMENSIONS

When comparing the performance of multiple optimization algorithms, it is convenient to
use testing problems with known true Pareto-front. Therefore, the non-dominated sets
can be compared and qualified.

Single-objective VND benchmark problems were proposed in [88] or [45]. Before these
publications, most of the studies were validated by arbitrary and often simplified real-world
problems. Speaking of a multi-objective problems with a variable number of dimensions,
no such library of benchmark problems can be found in the open literature (to the authors’
knowledge).

This subsection proposes the methodology for creating multi-objective VND bench-
mark problems based on the idea of [86]. Authors of that paper say that different parts of
the Pareto-front may have different sizes in real-world optimization problems. Afterward,
they constructed a few problems with linearly-shaped Pareto-fronts where the number
of decision variables of the optimal solution is determined by the angle between the line
connecting the solution with the coordinate’s origin and the 𝑓2 axis (2-dimensional Pareto-
fronts) or individual coordinate planes (3-dimensional Pareto-fronts).
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(a) Two-dimensional objective space.
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(b) Three-dimensional objective space.

Figure 5.1: Construction of Pareto-fronts of general two- and three-objective VND prob-
lems.

The dimensionality of an arbitrary solution on the Pareto-front is determined by the
following process:

𝐷(opt) (x) = 𝐷
(opt)
𝑗 , (5.1)

where the dimensionality is selected from the list 𝐷(opt) =
{︁

𝐷
(opt)
min , . . . , 𝐷

(opt)
max

}︁
with 𝑁𝐷
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members and the index is defined by:

𝑗 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 +

⌊︁(︁
1 − 𝜃(x)

𝜃𝑀

)︁
(𝑁𝐷 − 1)

⌋︁
, for 𝜃 (x) <= 𝜃𝑀

1 +
⌊︁ (︁

𝜃(x)
𝜃𝑀

)︁
(𝑁𝐷 − 1)

⌋︁
, for 𝜃 (x) > 𝜃𝑀 ,

(5.2)

where 𝜃𝑀 is the maximal angle shown in Figure 5.1 and is set to 45∘ in our study. Pareto-
fronts are divided into two regions, where the dimensionality of the solution gradually
decreases in the first region and gradually increases in the second region. The angle 𝜃 (x)
for two-dimensional Pareto-fronts is defined as:

𝜃 (x) = arccos

⎛⎝ 𝑓2√︁
𝑓2

1 + 𝑓2
2

⎞⎠ (5.3)

and for three-dimensional Pareto-fronts:

𝜃(x) = arccos

⎡⎣ max
𝑖={1,2,3}

⎛⎝ 𝑓𝑖√︁
𝑓2

1 + 𝑓2
2 + 𝑓2

3

⎞⎠⎤⎦ . (5.4)

Note that 𝑓1, 𝑓2, and 𝑓3 denote fitness values of the first, second, and third objective for
vector x, respectively.

5.1 Sample Problem – VND-MOZDT1

Here we show an example of a modified benchmark problem from the [85] test suite. The
problem is scalable in the decision space, and the number of decision variables can vary
within 𝐷 ∈ [3, 30]. True Pareto-front dimensionalities are 𝐷(opt) = {4, 5, 6, 7}. All decision
variables reside within interval [0, 1].

Fitness functions are similar to the original version, although the second fitness func-
tions contain the dimensionality penalization constituent Ψ = Ψ𝑟Ψ0:

𝑓1 (x) = 𝑥1, (5.5)

𝑓2 (x, 𝐷) = ℎ (x, 𝐷)
[︃
1 −

√︃
𝑥1

ℎ (x)

]︃
+ 0.1Ψ0, (5.6)

ℎ (x) = 1 + 9
∑︀𝐷

𝑗=2 𝑥𝑗

𝐷 − 1 , (5.7)

where 𝐷 is the number of decision variables of the agent and Ψ0 =
[︁
𝐷 − 𝐷(opt) (x)

]︁2
.

Value 𝐷(opt) (x) is the optimal number of decision variables of the agent from (5.1). Note
that the penalization constant for VND-MOZDT1 is Ψ𝑟 = 0.1.

5.2 Sample Problem – VND-DTLZ2

Here we show an example of a modified benchmark problem from the [81] test suite. The
problem is scalable in the decision space, and the number of decision variables can vary
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within 𝐷 ∈ [3, 12]. True Pareto-front dimensionalities are 𝐷(opt) = {3, 4, 5}. All decision
variables reside within interval [0, 1].

Fitness functions are similar to the original version, although all the fitness functions
contain the dimensionality penalization constituent Ψ = Ψ𝑟Ψ0:

𝑓1 (x, 𝐷) = [1 + ℎ (z, 𝐷)] cos (𝑥1𝜋/2) cos (𝑥2𝜋/2) + 0.05Ψ0, (5.8)
𝑓2 (x, 𝐷) = [1 + ℎ (z, 𝐷)] cos (𝑥1𝜋/2) sin (𝑥2𝜋/2) + 0.05Ψ0, (5.9)
𝑓3 (x, 𝐷) = [1 + ℎ (z, 𝐷)] sin (𝑥1𝜋/2) + 0.05Ψ0, (5.10)

ℎ (z, 𝐷) =
𝐷∑︁

𝑗=𝑀

(𝑥𝑗 − 0.5)2 , (5.11)

where 𝑀 is the number of objectives and Ψ0 =
[︁
𝐷 (x) − 𝐷(opt) (x)

]︁2
. Value 𝐷(opt) (x) is

optimal dimension of a solution from equation (5.1). Note that the penalization constant
for VND-MODTLZ2 is Ψ𝑟 = 0.5.
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Figure 5.2: An example of Pareto-fronts of modified ZDT1 and DTLZ2 problems. De-
cision vectors of correct values but fixed lengths are marked by "∙" signs, and decision
vectors of correct values and correct lengths are marked by "×" signs.

Figure 5.2 shows two- and three-dimensional Pareto-fronts. Solutions with correct
decision vector values and also the correct number of decision variables are represented by
"×" signs. Solutions with correct decision vector values, but the number of components
of all decision vectors is fixed (𝐷 = 7 for VND-MOZDT1 problem and 𝐷 = 5 for VND-
MODTLZ2 problem) are marked by "∙" signs.

The complete definition of VND benchmark problems used in the thesis is beyond its
extent. It can be found in [MM4, Section 15.4]. Table 5.1 lists the relevant properties of
the benchmark problems used in the remainder of the thesis.
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Table 5.1: List of modified VND problems. Note that Ψ0 =
[︁
𝐷 − 𝐷(opt) (x)

]︁2
.

Problem 𝑀 𝐷 𝐷(opt) Penalization HVreference HV𝑃 *

VND-MODTLZ1 3 {3, 4, . . . , 7} {3, 4, 5} 0.50Ψ0 [11, 11, 11] 1330.97864
VND-MODTLZ2 3 {3, 4, . . . , 12} {3, 4, 5} 0.05Ψ0 [11, 11, 11] 1330.47640
VND-MODTLZ3 3 {3, 4, . . . , 12} {3, 4, 5} 0.80Ψ0 [11, 11, 11] 1330.47640
VND-MODTLZ4 3 {3, 4, . . . , 12} {3, 4, 5} 0.05Ψ0 [11, 11, 11] 1330.47640
VND-MODTLZ5 3 {3, 4, . . . , 12} {3, 4, 5} 0.05Ψ0 [11, 11, 11] 1319.05684
VND-MODTLZ6 3 {3, 4, . . . , 12} {3, 4, 5} 0.08Ψ0 [11, 11, 11] 1319.05684
VND-MODTLZ7 3 {3, 4, . . . , 22} {4, 5, 6, 7} 0.30Ψ0 [11, 11, 11] 993.404326
VND-MOLZ1 2 {3, 4, . . . , 10} {3, 4, 5} 0.05Ψ0 [11, 11] 120.666667
VND-MOLZ2 2 {3, 4, . . . , 30} {4, 5, 6, 7} 0.06Ψ0 [11, 11] 120.666667
VND-MOLZ3 2 {3, 4, . . . , 30} {4, 5, 6, 7} 0.06Ψ0 [11, 11] 120.666667
VND-MOLZ4 2 {3, 4, . . . , 30} {4, 5, 6, 7} 0.05Ψ0 [11, 11] 120.666667
VND-MOLZ5 2 {3, 4, . . . , 30} {4, 5, 6, 7} 0.05Ψ0 [11, 11] 120.666667
VND-MOLZ6 3 {5, 6, . . . , 10} {5, 6, 7} 0.12Ψ0 [11, 11, 11] 1330.47640
VND-MOLZ7 2 {3, 4, . . . , 10} {3, 4, 5} 0.10Ψ0 [11, 11] 120.666667
VND-MOLZ8 2 {3, 4, . . . , 10} {3, 4, 5} 0.35Ψ0 [11, 11] 120.666667
VND-MOLZ9 2 {3, 4, . . . , 30} {4, 5, 6, 7} 0.06Ψ0 [11, 11] 120.666667
VND-MOUF4 2 {3, 4, . . . , 30} {4, 5, 6, 7} 0.05Ψ0 [11, 11] 120.333333
VND-MOUF5 2 {3, 4, . . . , 30} {4, 5, 6, 7} 0.15Ψ0 [11, 11] 120.475000
VND-MOUF6 2 {3, 4, . . . , 30} {4, 5, 6, 7} 0.50Ψ0 [11, 11] 120.437487
VND-MOUF7 2 {3, 4, . . . , 30} {4, 5, 6, 7} 0.15Ψ0 [11, 11] 120.499761
VND-MOUF9 3 {5, 6, . . . , 30} {5, 6, 7, 8} 0.25Ψ0 [11, 11, 11] 1330.69911
VND-MOUF10 3 {5, 6, . . . , 30} {5, 6, 7, 8} 0.50Ψ0 [11, 11, 11] 1330.47640
VND-MOZDT1 2 {3, 4, . . . , 30} {4, 5, 6, 7} 0.10Ψ0 [11, 11] 120.666667
VND-MOZDT2 2 {3, 4, . . . , 30} {4, 5, 6, 7} 0.10Ψ0 [11, 11] 120.333333
VND-MOZDT3 2 {3, 4, . . . , 30} {4, 5, 6, 7} 0.10Ψ0 [11, 11] 128.778116
VND-MOZDT4 2 {3, 4, . . . , 10} {3, 4, 5} 0.20Ψ0 [11, 11] 120.666667
VND-MOZDT6 2 {3, 4, . . . , 10} {3, 4, 5} 0.10Ψ0 [11, 11] 119.828351
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6 VND-GDE3

The idea of handling the variable decision space presented in Section 3.2 is applied to
the multi-objective GDE3. At first, the GDE3 algorithm will be described. Afterward, a
VND-GDE3 and VLGDE3 algorithms are presented where the VND-GDE3 is considered
to be a pure-VND algorithm while the VLGDE3 is not.

6.1 GDE3

Generalized Differential Evolution (GDE3) is based on a Differential Evolution algorithm
proposed in 1997 [4]. It is a population-based real-numbered optimization algorithm with
selection and crossover operators. A random initial population is created at the beginning.
Agents’ positions are then altered to find better solutions in every iteration until a stopping
criterion (usually predefined number of iterations) is met.

The crossover procedure is performed by constructing a trial vector (u𝑖,𝑔) for each deci-
sion vector (x𝑖,𝑔) of the population. Here, 𝑖 is the index of an agent in the population, and
𝑔 is an iteration (generation) index. The trial vector is derived with following pseudocode:

Algorithm 6.1: Pseudocode of crossover operator in GDE3.
𝑟1, 𝑟2, 𝑟3 ∈ {1, 2, . . . 𝑁};
𝑟1, 𝑟2, 𝑟3 ̸= 𝑖;
𝑗rand ∈ 1, 2, . . . 𝐷;
for (𝑗 = 1 : 𝐷) do

if (rnd (1) < 𝑃𝐶 ∨ 𝑗 = 𝑗rand) then
𝑢𝑗,𝑖,𝑔 = 𝑥𝑗,𝑟3,𝑔 + 𝐹 · (𝑥𝑗,𝑟1,𝑔 − 𝑥𝑗,𝑟2,𝑔);

else
𝑢𝑗,𝑖 = 𝑥𝑗,𝑖;

end
end

where 𝑁 denotes the number of agents in population, 𝑗 denotes the 𝑗-th decision variable,
𝐷 is the number of decision variables, 𝐹 is the scaling factor, 𝑟1,𝑟2, and 𝑟3 are randomly
selected agents’ indices (mutually different and different from 𝑖). Not all the trial vectors
replace all the old vectors. The ratio of replaced vectors is controlled by the crossover
probability (𝑃𝐶).

In multi-objective optimization, where the objectives are conflicting, a set of trade-
off solutions constitute the Pareto-front. GDE3 selects trade-off solutions based on the
dominance principle [5, Chapter 2] as follows:

• If the old vector dominates the trial vector, the old vector remains as it is for the
next iteration.
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Figure 6.1: A flowchart of the VND-GDE3 algorithm.

• If the trial vector dominates the old vector, the trial vector replaces the old vector
for the next iteration.

• If the old vector and the trial vector are non-dominated, both vectors are selected,
and the population is temporarily extended.

However, the size of the population has to be limited due to increasing computational
demands. When the trial and old solutions are non-dominated, both solutions remain in
the population. If there are more non-dominated solutions than the number of agents,
the extended population is trimmed using the crowding distance metric. This approach
enhances the diversity of the solution.

6.2 VND-GDE3

Algorithm VND-GDE3 [62] is very similar to its predecessor – GDE3. Nonetheless, its
agents can have a different number of decision variables in any iteration. The only differ-
ences are related to the crossover of the decision vectors of different sizes. Moreover, if a
problem has a fixed number of decision variables, the VND-GDE3 acts identically as the
GDE3 algorithm. Although, it might be slightly more computationally demanding. Vari-
ability of solution’s dimensionality introduces a new user-defined parameter probability of
dimension transition (𝑃DT).

The crossover operator in Algorithm 6.1 mixes the decision variables of three different
agents into a single trial decision variable with a probability of crossover 𝑃𝐶 . Otherwise,
the decision variable remains as it is.

The number of decision variables may differ between the three vectors. Therefore, the
dimensionality of a trial vector 𝐷new has to be determined beforehand. Dimensionality
𝐷new is one of the following:

• dimensionality of the current agent 𝐷𝑖,
• dimensionality of the first randomly picked agent 𝐷𝑟1 ,
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• dimensionality of the second randomly picked agent 𝐷𝑟2 ,
• dimensionality of the third randomly picked agent 𝐷𝑟3 .

The dimensionality of the trial solution 𝐷new is equal to 𝐷𝑖 with the probability 𝑃DT.
Otherwise, it is one of the dimensionalities 𝐷𝑟1 , 𝐷𝑟2 , or 𝐷𝑟3 (picked with equal probability).

Afterward, four artificial agents are derived from the current agent and random agents
(𝑟1, 𝑟2, and 𝑟3), but they all have the same size 𝐷new. Note that missing decision variables
are filled randomly and that only an undivided part of the decision space vector can be
deleted from the ending part of it (please refer to [48], Figure 1).

6.3 VLGDE3

Variable-length Generalized Differential Evolution (VLGDE3) was inspired by [40] and
[50]. The algorithm is based on the GDE3 algorithm.

The decision vectors of all agents are extended by |𝐷| decision variables. These addi-
tional decision variables (called padding variables) define which original variables (called
sample variables) are active or inactive in the fitness function evaluation. This, in princi-
ple, is identical to the approach where a secondary vector accompanies the decision vector,
as described in Section 3.3.

The number of padding decision variables is not equal to the maximal dimensionality of
the problem. There are specific applications where several decision variables are combined
into clusters. For example, in the transmitter placement problem [MM2], each transmitter
may be described by 𝑥-position, 𝑦-position, and its power. Therefore, one cluster consists
of three decision variables, but only one padding variable is needed.

Positions of agents (including the padding variables) are set randomly during the ini-
tialization. Padding decision variables are bounded between zero and one. As mentioned
before, padding variables determine which sample decision variables participate in fitness
function evaluation. Therefore, if only one padding cell contains a value greater than
the threshold (𝑇pad = 0.5), then only the first cluster is involved in the fitness function
evaluation.

Positions of agents are updated using standard DE equations because all particles have
the same number of decision variables. However, padding variables extend the decision
vector. Therefore, the overall decision space becomes larger, which makes the problem
more difficult to overcome.
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7 VND-MOPSO

In this chapter, the multi-objective version of VNDPSO (see Section 3.2) is shown. The
generic MOPSO algorithm is described first. Afterward, a VND-MOPSO and VLMOPSO
algorithms are presented where the VND-MOPSO is considered to be a pure-VND algo-
rithm while the VLMOPSO is not.

7.1 MOPSO

Particle Swarm Optimization is an evolutionary algorithm, which simulates the movement
of a swarm of bees searching for food. It was originally proposed for use in neural net-
works [3] and was later adopted as a global optimizer. Multi-objective Particle Swarm
Optimization is described in [9].

The position of each agent is changed according to its own experience and that of
its neighbors. The position x of agent in the subsequent iteration is changed by adding
velocity v to a current position:

x𝑔 = x𝑔−1 + v𝑔, (7.1)

where the velocity vector v𝑔 is defined by equation:

v𝑔 = 𝑊 · v𝑔−1 + 𝑐1 · 𝑟1 · (xpbest − x𝑔−1) + 𝑐2 · 𝑟2 · (xgbest − x𝑔−1) . (7.2)

The current particle x𝑔−1 mingles with its attractors (personal best position xpbest and
global best position xgbest). Note that 𝑊 is the inertia weight, 𝑐1 and 𝑐2 are the cognitive
and social learning factors, respectively, 𝑟1 and 𝑟2 are random values, and 𝑔 is the time
step.

The main difference compared to the single-objective version is the selection of global
best for individual agents. In a single-objective version, only one solution is said to be the
global best, but a multi-objective problem presents multiple trade-off solutions that are
said to be the good ones.

Non-dominated (trade-off) solutions are stored in an external archive. The external
archive holds all the non-dominated solutions found so far, and its members are used as
global bests in velocity update (7.2).

At the beginning of the algorithm, the random population is generated, and an external
archive is initialized with non-dominated members of the random population. Personal
bests for each agent are updated in each iteration. If the solution dominates the solution
from the previous iteration, the new solution is chosen as a new personal best. Otherwise,
the old solution remains as the personal best. If both solutions are non-dominated, the
personal best is updated. Global bests are selected among external archive members. The
global best is a member of an external archive selected with equal probability.

The overall number of agents in the external archive has to be limited. External
archive size is equal to the population size 𝑁 . If there are more than 𝑁 non-dominated
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candidates for the external archive, solutions have to be pruned with regard to the diversity
of the non-dominated set. The pruning method uses crowding distance as a metric for
the pruning [8]. Unfortunately, the crowding distance selection works satisfactorily only
with two-dimensional space, i.e. two-objective functions. To make it work also for many-
objective problems (3 or more), the concept of ENNS (see Subsection 2.2.3) has to be
adopted, which converts 𝑀 -dimensional space into 2-dimensional space.

7.2 VND-MOPSO

The algorithm VND-MOPSO is very similar to the PSO-VND algorithm (Section 3.2). It
uses the same position update equation (7.1), (7.2) as the MOPSO algorithm. However,
the position vectors x𝑔−1, xpbest, and xgbest can have different number of decision vari-
ables. The VND-MOPSO algorithm uses probabilities 𝑝pbest, 𝑝gbest, and 𝑝𝑥 to decide the
dimensionality of a new solution identically to the PSOVND algorithm.

The VND-MOPSO also uses the external archive and the pruning method based on
crowding distance or ENNS.

7.3 VLMOPSO

Variable-length Multi-objective Particle Swarm Optimization (VLMOPSO) was proposed
in [40]. It is based on the MOPSO algorithm proposed in [9]. It uses an external archive,
where non-dominated solutions found so far are stored. In order to keep a reasonable
amount of non-dominated solutions in the external archive, the pruning method based
on crowding distances is used. The global best solution for each particle in the swarm is
picked by random from the external archive.

The particle is encoded by |𝐷| padding decision variables and 𝐷max sample decision
variables. However, the number of padding variables is not equal to the maximal dimen-
sionality of the problem. There are specific applications, where several decision variables
are combined into clusters. For example, in the transmitter placement problem, each trans-
mitter may be described by 𝑥-position, 𝑦-position, and its power. Therefore, one cluster
consists of three decision variables, but only one padding decision variable is needed.

Positions of particles (including the padding decision variables) are initialized with
random values during initialization. Padding decision variables are bounded between zero
and one. Velocities of particles are set to zeros.

Padding variables in VLMOPSO determine which decision variables (sample variables)
participates in the fitness function evaluation. Therefore, if only one padding decision
variable contains a value greater than threshold (𝑇pad = 0.5), then only the first cluster is
involved in the fitness function evaluation.

Position and velocity vectors are updated using standard PSO equations because all
particles have the same number of decision variables. However, padding decision variables
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extend the decision vector. Therefore, the overall decision space becomes larger, which
makes the problem more difficult to overcome.
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8 PERFORMANCE ASSESSMENT

This section discusses the setting of controlling parameters of both VND-GDE3 and
VND-MOPSO algorithms. Afterward, both algorithms are compared against each other,
their impure-VND peers (VLGDE3 and VLMOPSO), and also Clustered-GDE3. The
Clustered-GDE3 represents a non-VND approach used in problems with a variable num-
ber of dimensions.

Table 8.1 shows the controlling parameters of GDE3-based and MOPSO-based algo-
rithms that are common for all simulations in this chapter. These controlling parameters
are well studied in the literature. Studies of the influence of parameter probability of
dimension transition 𝑃DT and probabilities to follow 𝑃TF are shown later in this chapter.
The number of agents 𝑁 and the number of iterations 𝐺 used in the simulations can be
found in Tables 8.2, 8.6, and 8.10.

8.1 Influence of Probability of Dimension Transition Pa-
rameter of VND-GDE3

A thorough comparative study with a set of 27 multi-objective VND benchmark problems
(shown in Table 5.1) is performed to find the 𝑃DT value as suitable as possible. Ten
representatives (see problems in Table 8.3) from the complete problem set are selected for
a more elaborate study.

The influence of the parameter 𝑃DT can be seen in Figure 8.1. Each row of the heatmap
combines 101 values of normalized distance hypervolume (dHV) for a given problem where
the parameter 𝑃DT is linearly increased from 0 to 1. Although the value 𝑃DT = 0.35 might
be imperfect for some problems, it was chosen as a good trade-off value for further analyses.

Table 8.1: Controlling parameters of algorithms
MOPSO GDE3

Inertia weight 𝑊 ∈ [0.8, 0.5] Probability of crossover 𝑃𝐶 = 0.2
Cognitive learning factor 𝑐1 = 1.5 Scaling factor 𝐹 = 0.2
Social learning factor 𝑐2 = 1.5
Boundary type reflecting

Table 8.2: List of parameter settings used for the study of influence of 𝑃DT.
Settings 𝑁 𝐺 𝑃DT Settings 𝑁 𝐺 𝑃DT

SET A.1 100 100 0.05 SET A.6 50 50 0.35
SET A.2 100 100 0.15 SET A.7 50 50 0.95
SET A.3 100 100 0.35 SET A.8 200 200 0.35
SET A.4 100 100 0.65 SET A.9 200 200 0.95
SET A.5 100 100 0.95
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ZDT1 [0.0192; 1.0534]

ZDT2 [0.0331; 2.5441]
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Figure 8.1: Heatmap of normalized dHV values of the complete benchmark problems
set. Parameter 𝑃DT grows linearly from 0 to 1, dHV values were normalized separately for
each problem. Therefore, the values are scaled from 0 to 1 for each problem. Values inside
square brackets following the problem name denote the minimal and maximal absolute
dHV value, respectively.
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Tables 8.3, 8.4, and 8.5 show values of distance hypervolume dHV, generational dis-
tance GD, and the number of variables deviation nVD for different settings from Table 8.2
for several benchmark problems. These benchmark problems were selected intentionally
for their variety in Pareto-front shapes. It can be seen that parameter 𝑃DT has a major
impact on the algorithm’s performance. For most of the problems, the best performance is
obtained with lower values of 𝑃DT. However, there are such exceptions as DTLZ2, DTLZ4,
or LZ8 problems. Also, by comparing Tables 8.3 and 8.5, a relation is to be seen between
the quality of the Pareto-front and the deviation from the optimal dimensionality. Set-
tings with a different number of iterations and a number of agents (SET A.6 – SET A.9)
are here to demonstrate that the influence of 𝑃DT is independent of the number of fitness
function evaluations.

A graphical expression of the influence of 𝑃DT is shown in Figure 8.2 with standard
boxplots. It is advantageous to use lower values of 𝑃DT for most of the problems. However,
the trend seems reversed in the case of DTLZ2, DTLZ4, and LZ8 problems.

Table 8.3: Average distance hypervolume (dHV) for a given set of settings.
SET ZDT2 ZDT4 ZDT6 DTLZ2 DTLZ4 LZ6 LZ8 UF4 UF6 UF10
A1 0.0544 0.0313 0.0391 2.0754 0.6688 4.7568 2.0030 0.2585 7.6110 19.650
A2 0.2199 0.0426 0.0555 1.6283 0.8428 4.7006 1.5463 0.2623 6.1610 15.591
A3 0.7961 0.0641 0.0663 1.6040 0.6517 4.6321 1.1308 0.2256 5.4450 18.324
A4 1.9198 0.0880 0.0910 1.3261 0.5497 4.2029 1.0218 0.2098 5.4970 17.942
A5 2.1500 0.0911 0.0963 1.1443 0.4029 4.2441 0.8643 0.2347 5.8970 20.971
A6 3.7755 0.2562 0.1186 2.7076 2.7194 6.0357 4.7140 0.5700 16.330 72.986
A7 5.4164 0.2350 0.1247 2.2250 4.3400 5.8901 4.1700 0.5242 17.018 79.452
A8 0.0732 0.0381 0.0571 1.8130 0.4728 4.9965 0.3850 0.1086 1.3715 10.387
A9 0.7407 0.0880 0.0944 1.1366 0.4602 3.9993 0.3271 0.1173 1.8960 9.8990

Table 8.4: Average generational distance (GD) for a given set of settings.
SET ZDT2 ZDT4 ZDT6 DTLZ2 DTLZ4 LZ6 LZ8 UF4 UF6 UF10
A1 0.0073 0.0032 0.0162 0.0109 0.0288 0.2102 1.0777 0.0785 1.9590 2.1590
A2 0.0168 0.0079 0.0229 0.0115 0.0275 0.2300 1.0023 0.0822 1.7580 2.4230
A3 0.0360 0.0179 0.0261 0.0127 0.0323 0.1968 0.8446 0.0825 1.5480 2.3280
A4 0.0420 0.0296 0.0349 0.0129 0.0307 0.2580 0.7784 0.0841 2.2650 2.5670
A5 0.0516 0.0317 0.0364 0.0153 0.0342 0.2664 0.6613 0.0938 2.0150 2.4730
A6 0.0319 0.0359 0.0341 0.0268 0.0412 0.3087 2.7783 0.1053 4.7590 2.6150
A7 0.0344 0.0383 0.0414 0.0297 0.0417 0.3466 2.8407 0.1156 5.7380 2.7800
A8 0.0174 0.0068 0.0261 0.0074 0.0224 0.1079 0.2020 0.0584 0.5262 3.0065
A9 0.0560 0.0306 0.0373 0.0075 0.0270 0.2082 0.1381 0.0679 0.9000 2.6110
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Table 8.5: Average deviation from optimal dimensionality (nVD) for a given settings.
SET ZDT2 ZDT4 ZDT6 DTLZ2 DTLZ4 LZ6 LZ8 UF4 UF6 UF10
A1 0.1544 0.0373 0.2621 0.0645 0.2453 0.0803 0.4259 0.7860 1.3316 0.0122
A2 0.3106 0.0919 0.3577 0.0709 0.2338 0.0848 0.4283 0.7851 1.2155 0.0116
A3 0.6092 0.2101 0.4081 0.0835 0.2820 0.0760 0.4134 0.7445 1.2991 0.0076
A4 0.6773 0.3492 0.5260 0.0765 0.2727 0.1007 0.4514 0.8090 1.2262 0.0162
A5 0.8127 0.3727 0.5542 0.0956 0.3077 0.1332 0.4615 0.9303 1.3877 0.0113
A6 0.5340 0.3168 0.5192 0.2564 0.3918 0.1057 0.3485 0.8070 1.2753 0.0838
A7 0.5252 0.3722 0.6156 0.2616 0.4044 0.1363 0.3951 0.9478 1.2599 0.0778
A8 0.3403 0 0.4020 0.0185 0.1478 0.0418 0.4405 0.6948 1.2116 0
A9 0.8897 0 0.5622 0.0152 0.2132 0.0691 0.4982 0.8446 1.3227 0

8.2 Influence of Probabilities to Follow Parameter of VND-
MOPSO

The parameter 𝑃TF of MOPSO consists of three values – 𝑝1, 𝑝2, and 𝑝3. The first value
defines the probability that the new position vector will be of the size of global best. The
second one corresponds to the probability that the size of the personal best will be picked.
The last one (𝑝3) corresponds to the probability that the number of decision variables of
the particle will be unchanged.

The authors of [48] studied the parameter in the single-objective PSOVND. They made
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Figure 8.2: Standard boxplots expressing the influence of 𝑃DT on the dHV value.
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Figure 8.3: Heatmap of normalized dHV values of the complete benchmark problems set.
Parameter 𝑝3 grows linearly from 0.6 to 1, dHV values were normalized separately for each
problem. Therefore, the dHV values are scaled from 0 to 1 for each problem. Values inside
square brackets following the problem name denote the minimal and maximal absolute
dHV value, respectively.
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several recommendations. The first one is that settings 𝑝1 too high leads all the particles
to follow the dimensionality of the global best particle. Therefore, the algorithm will be
prone to get stuck in sub-optimal dimensionalities. They recommended that 𝑝3 >= 0.6,
𝑝1 = 0.5𝑝2, and 𝑝1 + 𝑝2 = 1 − 𝑝3. These recommendations allow us to select only the 𝑝3

and derive the rest.
Parameter 𝑝3 is linearly increased from 0.6 to 1 in a comparative study with the set of 27

multi-objective VND benchmark problems (see Table 5.1). Afterward, ten representatives
are selected for a more elaborate study.

Figure 8.3 shows the influence of the parameter 𝑝3. Each row of the heatmap com-

Table 8.6: List of parameter settings used for the study of influence of 𝑃TF.
Settings 𝑁 𝐺 𝑝1 𝑝2 𝑝3 Settings 𝑁 𝐺 𝑝1 𝑝2 𝑝3

SET B.1 100 100 0.133 0.267 0.60 SET B.6 100 100 0 0 1
SET B.2 100 100 0.107 0.213 0.68 SET B.7 50 50 0.133 0.267 0.60
SET B.3 100 100 0.080 0.160 0.76 SET B.8 50 50 0.027 0.053 0.92
SET B.4 100 100 0.053 0.107 0.84 SET B.9 200 200 0.133 0.267 0.60
SET B.5 100 100 0.027 0.053 0.92 SET B.10 200 200 0.027 0.053 0.92

Table 8.7: Average distance hypervolume (dHV) for a given set of settings.
SET ZDT2 ZDT4 ZDT6 DTLZ2 DTLZ4 LZ6 LZ8 UF4 UF6 UF10
B1 0.3049 0.0695 0.0825 1.7226 0.6237 3.3561 0.6454 0.1629 2.0456 45.396
B2 0.3290 0.0681 0.0767 1.6510 0.6368 3.3571 0.6595 0.1562 2.1674 42.225
B3 0.2587 0.0640 0.0759 1.5242 0.5457 3.1452 0.6549 0.1560 1.5172 42.574
B4 0.1904 0.0529 0.0708 1.2337 0.6198 3.4151 0.6547 0.1617 1.4989 46.922
B5 0.1333 0.0371 0.0549 1.0292 0.4736 3.4236 0.6549 0.1670 1.1957 39.947
B6 0.9823 0.0179 0.0790 0.7255 0.2938 3.5908 0.6630 0.2853 9.1435 10.487
B7 0.5976 0.0867 0.1189 2.4526 0.5946 4.4886 0.6620 0.2814 4.6129 25.699
B8 0.6241 0.0676 0.1672 1.8984 0.4792 4.4753 0.6618 0.4160 6.2237 21.004
B9 0.2209 0.0435 0.0623 0.8007 0.5761 2.5865 0.6203 0.1240 1.2030 36.327
B10 0.0861 0.0198 0.0321 0.4246 0.4345 2.7117 0.6294 0.1218 0.7827 40.604

Table 8.8: Average generational distance (GD) for a given set of settings.
SET ZDT2 ZDT4 ZDT6 DTLZ2 DTLZ4 LZ6 LZ8 UF4 UF6 UF10
B1 0.0676 0.0219 0.0271 0.0528 0.0383 0.4902 0.0437 0.1091 0.7580 5.8482
B2 0.0639 0.0211 0.0237 0.0502 0.0386 0.5215 0.0518 0.1100 0.5462 6.1140
B3 0.0653 0.0189 0.0227 0.0479 0.0371 0.4821 0.0465 0.1091 0.4593 5.9665
B4 0.0556 0.0120 0.0209 0.0470 0.0366 0.4918 0.0594 0.1095 0.5343 6.1800
B5 0.0445 0.0066 0.0126 0.0428 0.0297 0.4764 0.0504 0.1136 0.5061 6.0576
B6 0.0383 0.0010 0.0048 0.0423 0.0333 0.4632 0.0255 0.1353 3.5909 3.1644
B7 0.0789 0.0310 0.0338 0.0623 0.0358 0.6606 0.0265 0.1329 2.6958 4.4839
B8 0.0678 0.0200 0.0195 0.0629 0.0286 0.6414 0.0133 0.1426 2.7098 4.2233
B9 0.0527 0.0091 0.0181 0.0273 0.0359 0.3141 0.0748 0.0897 0.2634 5.9516
B10 0.0231 0.0010 0.0065 0.0226 0.0270 0.3023 0.0736 0.0942 0.2613 6.0670
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bines 41 values of normalized distance hypervolume dHV for a given problem where the
parameter 𝑝3 is linearly increased from 0.6 to 1. The optimality of the parameter 𝑝3 is
strongly dependent on the problem. Value 𝑝3 = 0.92 was chosen as a good trade-off for
all the problems.

Tables 8.7, 8.8, and 8.9 show values of distance hypervolume dHV, generational dis-
tance GD, and the number of variables deviation nVD for different settings from Table 8.6
for chosen benchmark problems. The parameter 𝑃TF has a major impact on the algo-
rithm’s performance. Settings with a different number of iterations and the number of
agents (SET B.7 – SET B.10) are here to demonstrate that the influence of 𝑃TF is in-
dependent of the number of fitness function evaluations. Figure 8.4 shows a graphical
expression of the influence of the 𝑃TF parameter on the algorithm’s performance.

8.3 Comparison of Clustered, Pure-VND, and Impure-VND
Approaches

To perform a fair comparative study between the VND algorithm and a standard non-VND
GDE3 algorithm, a reasonable approach is to use several simple GDE3 runs (clusters),
each with a different number of decision variables. The number of agents of all the clus-
ters summed together is identical to the number of agents of VND-GDE3 and VLGDE3
algorithms. The number of iterations remains fixed for all clusters. The Pareto-fronts from
each separate run are combined, and the non-dominated solutions constitute the resulting
non-dominated set. We have modified algorithm GDE3 accordingly and it is called the
Clustered-GDE3 algorithm.

Five algorithms – VND-GDE3, VLGDE3, VND-MOPSO, VLMOPSO, and Clustered-
GDE3 – were exploited on a set of ten benchmark problems with four dimensionality
settings (see Table 8.10). Results can be seen in boxplots in Figures 8.5, 8.6, 8.7, 8.8, and
8.9 and Tables 8.11, 8.12, and 8.13. There are 20 boxes for each problem in the boxplots,
where each quintet corresponds to a single dimensionality scenario. It is clearly visible

Table 8.9: Average deviation from optimal dimensionality (nVD) for a given settings.
SET ZDT2 ZDT4 ZDT6 DTLZ2 DTLZ4 LZ6 LZ8 UF4 UF6 UF10
B1 1.1424 0.2548 0.4673 0.4493 0.3748 0.0765 0.1264 1.1176 1.3469 0.0172
B2 1.0521 0.2437 0.4279 0.4104 0.3796 0.0738 0.1528 1.0957 1.3612 0.0193
B3 1.0876 0.2177 0.4126 0.3728 0.3700 0.0667 0.1419 1.1660 1.2363 0.0210
B4 0.9451 0.1374 0.3814 0.3726 0.3626 0.0700 0.1850 1.1314 1.1802 0.0249
B5 0.7698 0.0709 0.2868 0.3028 0.2893 0.0438 0.1486 1.1179 1.1031 0.0193
B6 0.5723 0.0008 0.0985 0.2084 0.1691 0.0264 0.0433 1.0243 0.7618 0.0014
B7 1.3305 0.3538 0.5352 0.4272 0.3149 0.1137 0.0783 1.0475 1.0832 0.0095
B8 1.1732 0.2172 0.3546 0.3986 0.2252 0.0937 0.0300 1.0808 0.7985 0.0350
B9 0.8712 0.1058 0.3338 0.1672 0.3978 0.0634 0.2248 1.1752 1.1413 0.0200
B10 0.4342 0.0081 0.1385 0.1037 0.2846 0.0474 0.2030 1.1726 1.1039 0.0204
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Figure 8.4: Standard boxplots expressing the influence of 𝑃TF on the dHV value.

that metric values deteriorate as the dimensionality of the problem grows.
The decision space in the case of sets C.1 – C.5 is much smaller than the decision
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Figure 8.5: Comparison of VND-GDE3, VLGDE3, VND-MOPSO, VLMOPSO, and
Clustered-GDE3 on ZDT2 and ZDT4 problems.
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Figure 8.6: Comparison of VND-GDE3, VLGDE3, VND-MOPSO, VLMOPSO, and
Clustered-GDE3 on ZDT6 and DLTZ2 problems.

Table 8.10: List of parameter settings used for VND-GDE3 simulations.
SET 𝑁 𝐺 Algorithm |𝐷| 𝐷 𝐷(𝑜𝑝𝑡)

C1 400 200 VND-GDE3 10 {3,4,...,12} {3,4,5}
C2 400 200 VLGDE3 10 {3,4,...,12} {3,4,5}
C3 400 200 VND-MOPSO 10 {3,4,...,12} {3,4,5}
C4 400 200 VLMOPSO 10 {3,4,...,12} {3,4,5}
C5 40* 200 Clustered-GDE3 10 {3,4,...,12} {3,4,5}
C6 400 200 VND-GDE3 50 {3,4,...,52} {10,11,12}
C7 400 200 VLGDE3 50 {3,4,...,52} {10,11,12}
C8 400 200 VND-MOPSO 50 {3,4,...,52} {10,11,12}
C9 400 200 VLMOPSO 50 {3,4,...,52} {10,11,12}
C10 8* 200 Clustered-GDE3 50 {3,4,...,52} {10,11,12}
C11 400 200 VND-GDE3 80 {3,4,...,82} {15,16,17}
C12 400 200 VLGDE3 80 {3,4,...,82} {15,16,17}
C13 400 200 VND-MOPSO 80 {3,4,...,82} {15,16,17}
C14 400 200 VLMOPSO 80 {3,4,...,82} {15,16,17}
C15 5* 200 Clustered-GDE3 80 {3,4,...,82} {15,16,17}
C16 400 200 VND-GDE3 100 {3,4,...,102} {20,21,22}
C17 400 200 VLGDE3 100 {3,4,...,102} {20,21,22}
C18 400 200 VND-MOPSO 100 {3,4,...,102} {20,21,22}
C19 400 200 VLMOPSO 100 {3,4,...,102} {20,21,22}
C20 4* 200 Clustered-GDE3 100 {3,4,...,102} {20,21,22}
*Number of agents 𝑁 of each cluster.
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Figure 8.7: Comparison of VND-GDE3, VLGDE3, VND-MOPSO, VLMOPSO, and
Clustered-GDE3 on DTLZ4 and LZ6 problems.
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Figure 8.8: Comparison of VND-GDE3, VLGDE3, VND-MOPSO, VLMOPSO, and
Clustered-GDE3 on LZ8 and UF4 problems.

space in the case of sets C.16 – C.20. Therefore, the Clustered-GDE3 was able to find
decent Pareto-fronts because the algorithm deliberately searched every dimensionality of
the problem in the low dimensionality scenario. Forty agents for each cluster was enough
to explore the corresponding dimensionality sufficiently. Contrarily, the Clustered-GDE3
spent most of its efforts searching in non-optimal dimensions in the high dimensionality
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Figure 8.9: Comparison of VND-GDE3, VLGDE3, VND-MOPSO, VLMOPSO, and
Clustered-GDE3 on UF6 and UF10 problems.

Table 8.11: Average distance hypervolume (dHV) for a given set of settings.
SET ZDT2 ZDT4 ZDT6 DTLZ2 DTLZ4 LZ6 LZ8 UF4 UF6 UF10
C1 0.0207 0.0271 0.0310 1.7304 0.1236 4.9107 0.2828 0.0671 0.3867 8.8742
C2 0.0024 0.0128 0.0058 0.4432 0.0792 5.0128 0.8391 0.0929 1.4852 8.5796
C3 0.0148 0.0149 0.0259 0.1312 0.3269 2.2327 0.5748 0.0791 0.4333 20.021
C4 0.0014 0.0013 0.0021 0.4270 0.2643 4.2661 0.6257 0.0839 0.4371 19.485
C5 0.0302 0.0701 0.0090 1.7117 1.7053 3.3450 0.6461 0.0760 0.9408 8.9979
C6 0.1313 15.022 0.2731 3.2684 0.1977 5.9720 32.947 0.2162 45.531 25.819
C7 0.0894 0.7085 0.3519 0.4510 0.0748 6.3874 71.850 0.5374 87.468 70.869
C8 0.0657 0.5341 1.2675 0.3952 0.2875 5.4900 0.8101 0.3910 73.713 16.175
C9 0.1842 4.7453 1.3338 0.3543 0.2155 7.2379 8.8346 0.6951 74.178 10.765
C10 13.139 24.618 49.465 4.3554 10.258 24.974 24.252 0.6988 38.402 237.10
C11 0.2345 50.995 1.2437 3.1595 0.1588 6.2069 91.999 0.2826 101.51 26.826
C12 1.9930 8.2417 14.052 0.2922 0.1864 7.4858 115.75 0.7452 119.90 143.09
C13 0.1230 1.1673 1.2240 0.3933 0.2924 5.7777 0.8616 0.7309 120.21 15.743
C14 3.0382 26.657 4.2786 0.2195 0.3358 11.683 29.660 1.4092 104.10 71.925
C15 26.892 113.62 73.608 9.1589 16.830 61.452 83.214 1.6444 107.76 539.15
C16 0.0777 102.55 6.9278 2.9256 0.1372 6.5641 119.66 0.3813 119.79 30.886
C17 4.5649 29.304 27.997 0.3758 0.3771 8.9248 120.63 0.9875 120.44 209.01
C18 0.6967 3.2041 2.5666 0.4087 0.2979 5.9130 1.3658 1.0172 120.44 19.180
C19 6.2390 41.394 11.981 0.2743 0.4990 20.393 55.888 1.7956 113.97 155.77
C20 34.939 120.67 79.665 17.118 31.736 97.288 119.80 2.4183 120.32 692.18

scenario.
The same applies when comparing VL to VND algorithms. VLGDE3 and VLMOPSO
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Table 8.12: Average generational distance (GD) for a given set of settings.
SET ZDT2 ZDT4 ZDT6 DTLZ2 DTLZ4 LZ6 LZ8 UF4 UF6 UF10
C1 0.0110 0.0015 0.0170 0.0064 0.0142 0.0339 0.1284 0.0329 0.4160 2.4548
C2 0.0000 0.0001 0.0002 0.0052 0.0110 0.0277 0.6986 0.0545 1.2193 2.2937
C3 0.0038 0.0006 0.0033 0.0124 0.0257 0.2122 0.1148 0.0606 0.4939 5.0325
C4 0.0001 0.0001 0.0001 0.0137 0.0176 0.0742 0.1060 0.0593 0.7913 4.9736
C5 0.0005 0.0033 0.0001 0.0388 0.0423 0.4862 0.4084 0.0367 0.9339 1.2889
C6 0.0165 0.8824 0.0513 0.0067 0.0313 0.0176 8.1427 0.0902 11.133 0.8285
C7 0.0021 0.0012 0.0030 0.0065 0.0152 0.0506 10.526 0.1088 12.267 1.8487
C8 0.0191 0.0495 0.1240 0.0290 0.0370 0.0827 0.0128 0.1433 13.503 2.4911
C9 0.0055 0.3689 0.0125 0.0379 0.0391 0.1011 0.8474 0.1358 11.677 1.0286
C10 0.6477 1.8461 3.8178 0.1327 0.1117 0.1881 6.4253 0.1648 8.7900 1.9795
C11 0.0202 3.9856 0.0820 0.0066 0.0352 0.0167 20.513 0.1069 25.977 0.5614
C12 0.0361 0.0634 0.3935 0.0151 0.0520 0.0766 14.964 0.1243 17.364 2.2798
C13 0.0252 0.0815 0.0808 0.0371 0.0398 0.0547 0.0251 0.2366 31.285 1.3203
C14 0.0319 2.3137 0.0144 0.0789 0.0778 0.1763 8.0942 0.1676 14.223 1.2716
C15 1.6960 12.405 5.8774 0.4118 0.3487 0.3188 19.921 0.3756 29.014 3.6947
C16 0.0252 9.4347 0.1221 0.0067 0.0350 0.0195 34.023 0.1243 44.107 0.5244
C17 0.0919 1.7927 1.6603 0.0331 0.1199 0.0950 17.704 0.1390 19.833 2.5466
C18 0.0260 0.2164 0.0335 0.0407 0.0420 0.0578 0.0664 0.3538 56.324 0.9737
C19 0.0889 3.8378 0.5133 0.1337 0.1303 0.2403 10.867 0.1857 16.968 1.8685
C20 2.4015 31.700 6.4461 0.7774 0.7345 0.4403 40.204 0.5517 53.312 4.4521

Table 8.13: Results of Friedman’s test / Wilcoxon’s test (at significance level 𝛼 = 0.05):
+ denotes that the first setting is significantly better, – denotes that the second settings
is significantly better, = denotes that the difference is not significant.
Compare SET ZDT2 ZDT4 ZDT6 DTLZ2 DTLZ4 LZ6 LZ8 UF4 UF6 UF10
C.1 vs. C.2 -/- -/- -/- -/- =/- =/= +/+ +/+ +/+ =/=
C.1 vs. C.3 =/- -/- =/= -/- +/+ -/- +/+ +/+ +/+ +/+
C.1 vs. C.5 -/- -/- -/- =/= +/+ -/- +/+ +/+ +/+ =/=
C.3 vs. C.4 -/- -/- -/- +/+ =/- +/+ +/+ +/+ =/+ =/=
C.6 vs. C.7 -/- -/- =/+ -/- -/- +/+ +/+ +/+ +/+ +/+
C.6 vs. C.8 =/= -/- =/= -/- +/+ -/- -/- +/+ +/+ -/-
C.6 vs. C.10 +/+ +/+ +/+ =/+ +/+ +/+ -/- +/+ -/- +/+
C.8 vs. C.9 -/- +/+ -/- =/= -/- +/+ +/+ +/+ =/= -/-
C.11 vs. C.12 +/+ -/- +/+ -/- =/+ +/+ +/+ +/+ +/+ +/+
C.11 vs. C.13 =/= -/- -/- -/- +/+ -/- -/- +/+ +/+ -/-
C.11 vs. C.15 +/+ +/+ +/+ +/+ +/+ +/+ =/- +/+ +/+ +/+
C.13 vs. C.14 =/+ +/+ =/+ =/- =/+ +/+ +/+ +/+ -/- =/=
C.16 vs. C.17 +/+ -/- +/+ -/- +/+ +/+ =/+ +/+ +/+ +/+
C.16 vs. C.18 =/- -/- -/- -/- +/+ -/- -/- +/+ +/+ -/-
C.16 vs. C.20 +/+ +/+ +/+ +/+ +/+ +/+ =/= +/+ +/+ +/+
C.18 vs. C.19 +/+ +/+ +/+ =/- +/+ +/+ +/+ +/+ -/- +/+
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perform much better in the low dimensionality scenarios. However, padding decision vari-
ables makes the decision space of an optimization problem harder to explore. Therefore,
the performance of the VL algorithms deteriorates with the growing number of decision
variables of the problem quicker compared to the VND-GDE3 and VND-MOPSO algo-
rithms.

However, Table 8.13 reveals a few exceptions. These exceptions can be divided into
two groups: 1) three-objective problem DTLZ2, 2) two-objective problems that are too
difficult for such a small number of fitness function evaluations (ZDT4, LZ8, and UF6,
especially for SET C.16 – SET C.20).

Three objective problem DTLZ2 shows that dHV values of VND algorithms are worse
than that of VL algorithms. However, GD values show that VND performed much better.
This is caused by the nature of the diversity preservation ENNS algorithm (see Subsec-
tion 2.2.3). The VND-GDE3 algorithm can converge close to the true Pareto-front faster
than VLGDE3. However, the diversity of the solution decreases as the algorithm ex-
ploits the proximity of the true Pareto-front. This is clearly visible in Figure 8.10 and
also suggested by GD values in Table 8.12. The same applies to the VND-MOPSO and
VLMOPSO comparison.

Testing problems such as ZDT4, LZ8, and UF6 are particularly demanding due to
many local optima. Moreover, their count grows with the increasing dimensionality of
the problem. The reason that the VLGDE3 algorithm can outperform the VND-GDE3
algorithm (at least from the GD point of view) is that VND-GDE3 quickly converges to
solutions with low dimensionality. However, if the dimensionality to which the algorithm
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Figure 8.10: Convergence plots of modified DTLZ2 problem. Plots show 10 runs of
VND-GDE3 (marked by "∙") and 10 runs of VLGDE3 (marked by "×") corresponding to
SET C.16 and SET C.17, respectively.
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converges is locally optimal, the algorithm gets stuck there. Contrarily, VLGDE3 is nat-
urally able to free itself from local optima dimensionality-wise either. On the other hand,
the variance of the nVD values is large. Therefore, the convergence of the algorithm is not
guaranteed. This situation is depicted in Figure 8.11.

A comparison between the VND-GDE3 and VND-MOPSO algorithm shows that it is
almost independent of the number of decision variables of the problem. In other words, if
the VND-GDE3 is better than the VND-MOPSO in the low dimensionality scenario, then
it is also better in the high dimensionality scenario.

Table 8.13 shows the results of non-parametric statistical testing. Signs in the table
confirm what was deduced from boxplots in Figures 8.5–8.9. The comparison seems bal-
anced if test problems have only ten possible dimensionalities. However, the VND-GDE3
algorithm outperforms VLGDE3 in most of the problems in the case of a hundred possible
dimensionalities. Note that the signs in the table are results of Friedman’s and Wilcoxon’s
non-parametric tests with a level of significance 𝛼 = 0.05. Friedman’s unadjusted 𝑝-values
were adjusted by Holmberg’s posthoc procedure.
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Figure 8.11: Convergence plots of modified ZDT4 problem. Plots show 10 runs of VND-
GDE3 (marked by "∙") and 10 runs of VLGDE3 (marked by "×") corresponding to SET
C.16 and SET C.17, respectively. Note that (b) shows one of the VLGDE3 runs marked
by darker "×" signs in order to show the fluctuation of nVD metric.
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9 APPLICATIONS

The FOPS optimization framework was used to study the performance of VND-GDE3
and VND-MOPSO algorithms. Studies were carried out with benchmark problems, i.e.,
with analytically prescribed fitness functions with known minima. However, strengths of
FOPS lie in a real-world application. The FOPS toolbox was designed to be as versatile
as possible for real applications that have various needs. It is also used as an internal
optimizer of the Antenna Toolbox for MATLAB (AToM [MM15]).

Section 9.1.1 presents an optimization aided design of a band-stop filter based on
a uniplanar band-gap (UBG) planar structure. A fitness function in this optimization
problem involves a full-wave analysis in the transient solver of CST Microwave Studio.
This optimization problem is here to demonstrate the potential of the FOPS toolbox. It
was published in [MM7, MM2].

A hybrid optimization – local optimization routine nested in a fitness function of a
global optimizer is shown in Section 9.2. The decision vectors of a global optimizer are
modified during the fitness evaluation by the local optimization. This feature is later
exploited in the clustering problem in Section 9.6. This problem is published in [MM2].

Section 9.3, shows the first VND application – the transmitter placement problem.
The problem is solved here with a multi-objective algorithm with a variable number of
dimensions. The number of transmitters is to be found by the algorithm as well as the
output power and the placement of each transmitter. The VND approach is compared to
the standard approach with a grid-like system. This problem is published in [MM2]

Section 9.3.1 shows the design of a linear antenna array. The antenna array is designed
by two different approaches – a standard approach with a uniform grid that employs the
standard GDE3 with a fixed number of dimensions and a VND approach that employs
VND-GDE3 algorithms. This problem is published in [62].

Digital circuits are synthesized in Section 9.4. The synthesis of a digital circuit is per-
formed with an algorithm with a variable number of dimensions. Therefore, an arbitrary
number of sums of products can be synthesized in a single run. The problem formulations
permit the use of both fixed and a variable number of dimensions representation. The
VND approach convincingly outperforms the fixed-length approach.

VND optimization algorithm is used in the image thresholding problem in Section 9.5.
In the first subsection, the advantages of the evolutionary approach over the exhaustive
thresholding method in the thresholding problem are presented. Afterward, an algorithm
with a variable number of dimensions is used to find an arbitrary number of thresholds for
a testing image. Finally, the evolutionary thresholding method is verified on the license-
plate recognition problem.

The last application of the VND algorithm is described in Section 9.6. VND algorithm
is used to clustering problem, where the number of clusters is not a priori known. This
is the main drawback of the K-means method. Nonetheless, the K-means method itself is
used inside the fitness function evaluation. However, the initial guess of cluster centers is

71



proposed by the VND algorithm.
VND algorithms were also exploited in other applications such as [MM1, MM12, MM9,

MM10]. However, these applications are not discussed in this thesis.
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9.1 Design of an Anisotropic Band-Stop Filter

The band-stop filter consists of a microstrip line above a ground plane with an array of
etched slots of varying widths (see Figure 9.1) [89]. The transmission properties of the
filter are altered by changing a number of step-impedance slot lines 𝑁 , a slot period 𝑎

(dimension of etched slots), and an angle 𝜙 between the microstrip line and the step-
impedance slots.

𝑑 = 𝑁 × 𝑎
metal

x

y

𝜙

slot𝑎/2
𝑎/2

𝑎

microstrip

Figure 9.1: Anisotropic band-stop filter structure. Gray: metal strips, white: slots.

The transmission characteristics of the band-stop filter were obtained by a full-wave
analysis in the transient solver of CST Microwave Studio. The design properties 𝑁 , 𝑎, and
𝜙 were acting as decision variables, and fitness functions evaluation consists of a full-wave
analysis in the CST Microwave Studio and parsing of the transmission characteristics to
achieve the fitness values. An RT/Duroid substrate (ℎ = 0.635 mm, 𝜖𝑟 = 10.2, 𝑡 = 35 𝜇m)
was used in the optimized structure.

Such evaluation is time demanding (approximately 5 to 30 minutes). Therefore, a great
emphasis should be put on keeping the overall number of the fitness functions evaluations
at minimum.

9.1.1 Optimization Parameters

Decision variables were discrete, and they were defined as follows: the number of the step-
impedance slot lines 𝑁 ∈ {5, 7, 9}, the slot period 𝑎 ∈ {0.5, 0.6, . . . , 2.0} mm, and the
angle between the microstrip line and the step-impedance slots 𝜙 ∈ {0, 2, 4, . . . , 90}∘.
The fitness values were obtained from a frequency response of the transmission coefficient
defined as follows (see Figure 9.2):

|𝑆21 (x, 𝐹 )| > − 5 dB, 𝐹 ∈ [0 GHz, 4 GHz] , (9.1)
|𝑆21 (x, 𝐹 )| < − 20 dB, 𝐹 ∈ [5 GHz, 8 GHz] , (9.2)
|𝑆21 (x, 𝐹 )| > − 5 dB, 𝐹 ∈ [9 GHz, 10 GHz] , (9.3)
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where x = {𝑎, 𝑁, 𝜙}𝑇 is the position of a solution and 𝐹 denotes the frequency.
Each frequency band forms one fitness function defined by (9.4)–(9.6). Basically, it

is a sum of 𝑆21 values that violates the defined frequency mask (9.1)–(9.3). The CST
Microwave Studio produces 5001 frequency samples of 𝑆21 within the interval from 0 GHz
to 12 GHz.

𝑓1(x) =
∑︁

♢ [−𝑆21(x, 𝐹 ) − 5] , 𝐹 ∈ ⟨0 GHz; 4 GHz⟩ (9.4)

𝑓2(x) =
∑︁

♢ [20 + 𝑆21(x, 𝐹 )] , 𝐹 ∈ ⟨5 GHz; 8 GHz⟩ (9.5)

𝑓3(x) =
∑︁

♢ [−𝑆21(x, 𝐹 ) − 5] , 𝐹 ∈ ⟨9 GHz; 10 GHz⟩ , (9.6)

where the operation ♢ [·] denotes that the output is equal to the argument in square
brackets only if the argument is positive. Otherwise, the output is zero.

Listing 9.1 shows the definition of the band-stop filter problem. All three decision
variables are discrete ('discreteVariables' field of the problem struct). The fitness
function is defined as the function handle: @(x, task) filterFitness(x, task). The
property 'fullControl' is described later in this subsection. The 'surrogate' field
enables an in-house surrogate optimization method (Section 4.4).

Listing 9.1: Band-stop filter problem definition.

1 function problem = filterProblem()

2 limits(:, 1) = [0.5, 2]; % slot period - a

3 limits(:, 2) = [0, 90]; % angle phi

4 limits(:, 3) = [5, 9]; % N number of slots

5 discreteVars{1} = 0.5:0.1:2;

6 discreteVars{2} = 0:2:90;

7 discreteVars{3} = 5:2:9;

8 surrogate = struct( 'type', 'tolerance-based surrogate', ...

9 'tolerance', [0.1, 2, 0.5]);

10 problem = struct( 'limits', limits, ...

11 'discreteVariables', {discreteVars}, ...

12 'fitness', @(x, y) filterFitness(x, y), ...

13 'fullControl', true, ...

14 'surrogate', surrogate);

15 end

Listing 9.2 shows the pseudocode of the fitness function. The 'fullControl' option
in the problem definition enables to pass the task reference into the fitness function eval-
uation. It is used here to access the CST Microwave Studio references encapsulated in
userData of the task object. Dimensions of the structure in CST are changed by the
'StoreParameter' and 'Rebuild' commands, and the solver is started by the 'Start'
command. Commands 'SelectTreeItem' and 'ExportPlotData' saves the frequency
response of the transmission coefficient.

74



Listing 9.2: Fitness function pseudocode.

1 function fitness = filterFitness(x, task)

2 mws = task.userData{1}(2); % collect CST object from task

3 solver = task.userData{1}(3);

4 invoke(mws, 'StoreParameter','a', x(1)); % change a

5 invoke(mws, 'StoreParameter','N', x(2)); % change N

6 invoke(mws, 'StoreParameter','phi', x(3)); % change phi

7 invoke(mws, 'Rebuild');

8 invoke(solver, 'Start');

9 invoke(mws, 'SelectTreeItem', 'S21') % save S21 to *.sig files

10 invoke(mws, 'ExportPlotData', fileName)

11 S21 = readCSTFile([path, fileName]);

12 fitness = getFitnessValues(S21); % parse S21 into fitness

13 end

The original paper [MM7] compares the performances of two different algorithms,
GDE3 and NSGA-II, in designing the band-stop filter. Both algorithms were set to have
20 agents over 20 iterations (400 fitness function evaluations per run). Both algorithms
were repeated ten times to obtain independent realizations of stochastic processes.
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Figure 9.2: The frequency response of the transmission coefficient of the optimal solution.

The comparative study setting results in 2×400×10 = 8000 fitness function evaluations
(approximately 56 days of computation if the evaluation of one fitness function takes ten
minutes). Fortunately, the decision space was set to a maximum of 3 × 16 × 46 = 2208
possible solutions. Therefore, the Tolerance-based Surrogate Method was used here to
decreases the overall number of fitness function evaluations.

Thanks to the surrogate optimization method, the whole procedure took only 15 days.
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Figure 9.2 shows the most promising solution from the non-dominated set. The figure
also shows the frequency mask (hatched areas) described in equations (9.1) – (9.3). The
decision variables of the trade-off solution are:

• Slot period: 𝑎 = 1.5 mm,
• Number of slots: 𝑁 = 9,
• Rotation angle: 𝜙 = 52∘.

76



9.2 Hybrid Optimization

The convergence rate of the optimization process can be significantly increased when
hybridizing two algorithms and exploiting their strengths (e.g., one excels in exploring and
one in exploiting). This will be demonstrated on a single-objective benchmark problem:

𝑓(𝑥) = 1 − cos(10𝜋𝑥) + 𝑥2, (9.7)
𝑥 ∈ [−1, 1] (9.8)

The fitness function contains eleven minima. One of them is the global one as shown
in Figure 9.3. The single-objective PSO algorithm with 5 agents and 10 iterations is run
(see Listing 9.3). The problem is defined using structure fields 'limits' and 'fitness'.
Then, the option 'fullControl' is set to the true value, which ensures that the task
reference will be available in the fitness function. It is indicated as the second input in
the definition of the fitness function handle on line 3 of Listing 9.3. Also, the reference
to the FOPS object is passed to the task definition as the task’s userData. Then, the
task is added to the FOPS instance and solved using the single-objective Particle Swarm
Optimization algorithm.
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Figure 9.3: SOPSO solutions updated by performing a nested, local Newton optimiza-
tion.
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Listing 9.3: Benchmark problem definition.

1 fops = FOPS(false);

2 problem.limits = [-1; 1];

3 problem.fitness = @(x, task) getF(x, task);

4 problem.fullControl = true;

5 problem.isVectorized = true;

6 settings = struct('nAgents', 5, 'nIters', 10);

7 fops.addTask(problem, 'SOPSO', settings, 'taskFC', fops);

8 fops.runTask('taskFC')

Listing 9.4: Fitness function definition.

1 function f = getF(vars, task)

2 fops = task.userData{1};

3 nAgents = size(vars, 1);

4 fFun = @(x) 1 - cos(pi/2*20*x) + x.^2;

5 f = fFun(vars);

6 for iA = 1:nAgents

7 problem = struct('limits', [-1; 1], ...

8 'initialPosition', vars(iA), 'fitness', fFun);

9 settings = struct('nIters', 10, 'nAgents', 1, 'diff', 1e-4);

10 fops.addTask(problem, 'SONEW', settings, 'localTask')

11 fops.runTask('localTask');

12 res = fops.tasks(2).results;

13 fops.deleteTask('localTask');

14 if res.fitness(end)< f(iA)

15 task.agents(iA).position = res.position;

16 end

17 end

18 end

More interesting is the content of the getF fitness function shown in Listing 9.4. Fit-
ness function is evaluated for all agents at line 5. Then we loop over all agents. A new task
using the Newton method 'SONEW' [6] is created and solved for every proposed solution.
The initial guess of the Newton method is set to the position found by the SOPSO algo-
rithm. The partial derivatives needed for the Newton method are found using the central
differences with the step defined in line 9 with the field 'diff'. After the Newton method
finds the local minimum, the position of the corresponding particle of the PSO task is
updated if the fitness function was improved. An improvement of the fitness function
is shown in Figure 9.3. The initial agent positions found by the PSO are depicted with
blue circles, while their updated positions are highlighted with red crosses. Thanks to the
nested local optimization, the PSO algorithms move the particles only in a sub-space of
local minima. Therefore, the convergence rate can be significantly increased.
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9.3 Optimal Placement of Transmitters

This example is defined as a multi-objective problem with a variable number of dimen-
sions. It means that the optimizer works with decision space vectors of different lengths
simultaneously according to the number of transmitters used. The optimization problem
is defined using three objectives:

𝑓1(x) = −
𝑁𝑇⋃︁
𝑖=1

𝑠𝑖, (9.9)

𝑓2(x) =
𝑁𝑇⋂︁
𝑖=1

𝑠𝑖 +
𝑁𝑇∑︁
𝑖=1

(𝑜𝑖) , (9.10)

𝑓3(x) =
𝑁𝑇∑︁
𝑖=1

(1 + 𝑟𝑖) . (9.11)

where x is the decision space vector of size 3 × 𝑁𝑇 :

x = {c1, 𝑟1, c2, 𝑟2, ..., c𝑁𝑇
, 𝑟𝑁𝑇

} . (9.12)

Here, the parameter 𝑁𝑇 stands for the number of transmitters used, 𝑠𝑖 is the area covered
by the 𝑖-th transmitter, 𝑜𝑖 is the area covered outside the area of interest by the 𝑖-th
transmitter (the waste of power), and c𝑖 denotes the position vector of the 𝑖-th transmitter.
For the sake of simplicity, we assume that the area covered by a single transmitter is
circular with a radius 𝑟𝑖.

Equations (9.9) – (9.11) define individual conflicting objectives put on the design. The
fitness function 𝑓1 maximizes the area that is covered by all 𝑁𝑇 transmitters (negatively
taken union of the covered area). Objective 𝑓2 minimizes the amount of wasted power by
means of reducing overlapping area and area covered outside the area of interest. Finally,
the function 𝑓3 minimizes the costs of the design. The cost of every transmitter consists
of a fixed part and a part corresponding to the amount of its power. This favors using a
transmitter with higher power rather than more transmitters with lower power covering
the same area. The transmitter can be placed on any point of the area of interest and
radius (power) is chosen from the interval [0.1𝑎, 0.5𝑎], where 𝑎 is the side of the squared
area of interest.

The problem definition is shown in Listing 9.5. Fitness values are obtained by using
the function handle @(x) transmitterFitness(x). The plotTransmitters function vi-
sualizes a single solution found by the algorithm, as shown in Figure 9.4. The content of
the plotTransmitters function is shown in Listing 9.6.
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Figure 9.4: Interactive plot of the Pareto-front with the system response for the trans-
mitter placement problem.

Listing 9.5: Optimal placement of transmitters definition.

1 function problem = VNDMOTransmitters

2 nVarsList = 3:3:15;

3 nMax = max(nVarsList)/3;

4 limits = [repmat([-1, -1, 0.1], 1, nMax); ...

5 repmat([1, 1, 0.5], 1, nMax)];

6 fitness = @(x) transmitterFitness(x);

7 systemPlot = @(x, f) plotTransmitters(x, f);

8 problem = struct( 'limits', limits, ...

9 'fitness', fitness, ...

10 'isVectorized', false, ...

11 'nVarsList', nVarsList, ...

12 'systemResponse', systemPlot);

13 end
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Listing 9.6: Transmitters placement: system response plot.

1 function plotTransmitters(result, fitness)

2 polygon = [-1, -1; 1, -1; 1, 1; -1, 1; -1 -1];

3 center = [result(1,1:3:end)', result(1, 2:3:end)'];

4 radius = result(1, 3:3:end)';

5 phi = linspace(0,2*pi, 101)';

6 plot(polygon(:,1), polygon(:,2), 'k')

7 hold on

8 for iC = 1:size(radius, 1)

9 pts = [center(iC,1) + radius(iC)*cos(phi), ...

10 center(iC,2) + radius(iC)*sin(phi)];

11 fill(pts(:,1), pts(:,2), 'r', 'FaceAlpha', 0.2)

12 plot(center(iC,1), circle.center(iC,2), 'rx')

13 end

The session of the FOPS software for solving the transmitter problem with the VND
variant of the GDE3 [10] algorithm is shown in Listing 9.7. The algorithm is set with de-
fault properties (scaling factor 𝐹 = 0.2, probability of crossover 𝑃C = 0.2 and probabilities
to follow 𝑃DT). The problem is solved using 40 agents and 200 iterations.

Listing 9.7: The FOPS session for the transmitter design problem.

1 fops = FOPS(true);

2 set = struct('nAgents', 50, 'nIters', 200);

3 fops.addTask('VNDMOTransmitters', 'VNDGDE3', set, 'VNDTask')

4 fops.runTask('VNDTask')

As can be seen in Table 9.1, the Pareto-front is built by decision space vectors of
different sizes (e.g., the first agent is built using only one transmitter). Trade-off solutions
found by the algorithm are visualized in Figure 9.4: the Pareto-front members on the left
and the system response on the right. Note that the system response is a feature of the
FOPS toolbox. After the user picks any point from the left sub-figure with a mouse click, it
is highlighted with a black cross marker, and the system response plot is updated according
to the picked solution using the user-defined function (in this case the plotTransmitters
function from Listing 9.6). This feature makes it easier to browse the Pareto-front and
decide on the final trade-off solution.

As can be seen from the system responses of selected solutions, as depicted in Fig-
ure 9.4, the individual objectives are respected. The plot sequence shows different trade-off
solutions. The sequence starts with an extreme solution where most of the area of interest
is covered by the signal, but the amount of the overlapping area is high. The following
plots show trade-off solutions built by a different number of transmitters until another
extreme solution is reached. Such a scheme offers minimal overlaps, but the coverage of
the area is poor.
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Table 9.1: Optimal positions of chosen transmitters.
Agent 𝑁𝑇 𝑥1 𝑦1 𝑟1 𝑥2 𝑦2 𝑟2 𝑥3 𝑦3 𝑟3 𝑥4 𝑦4 𝑟4 𝑥5 𝑦5 𝑟5

1 1 0.08 -0.37 0.29
2 5 -0.55 -0.50 0.50 -0.52 0.52 0.49 0.51 -0.57 0.49 0.65 0.51 0.50 0.04 0.12 0.49
5 5 -0.61 -0.49 0.50 -0.49 0.54 0.50 0.52 -0.50 0.49 0.52 0.49 0.50 -0.06 -0.16 0.43
6 5 -0.55 -0.53 0.50 -0.52 0.52 0.50 0.51 -0.57 0.49 0.65 0.50 0.50 0.04 0.12 0.49
7 4 -0.50 -0.50 0.24 -0.49 0.52 0.46 0.48 -0.49 0.42 0.51 0.49 0.10
8 5 -0.61 -0.50 0.50 -0.51 0.51 0.49 0.52 -0.50 0.49 0.52 0.49 0.50 -0.06 -0.16 0.43
11 3 -0.47 -0.45 0.50 -0.44 0.52 0.50 0.43 -0.11 0.49
13 3 -0.63 -0.50 0.50 -0.55 0.52 0.50 0.48 0.03 0.42
14 4 -0.52 -0.49 0.34 -0.49 0.47 0.49 0.34 -0.49 0.50 0.45 0.56 0.50
16 5 -0.53 -0.50 0.50 -0.52 0.52 0.49 0.51 -0.50 0.49 0.67 0.51 0.50 0.04 0.12 0.49
19 4 -0.50 -0.48 0.49 -0.44 0.48 0.49 0.43 -0.48 0.49 0.46 0.49 0.50
26 5 -0.52 -0.51 0.49 -0.49 0.53 0.50 0.48 -0.49 0.49 0.49 0.49 0.50 0.04 0.13 0.18
27 4 -0.50 -0.49 0.20 -0.49 0.53 0.50 0.48 -0.49 0.49 0.53 0.49 0.50
29 4 -0.50 -0.40 0.50 -0.50 0.47 0.46 0.50 -0.49 0.50 0.46 0.50 0.50
30 4 -0.51 -0.51 0.50 -0.50 0.46 0.49 0.50 -0.50 0.49 0.46 0.49 0.50
32 4 -0.52 -0.49 0.46 -0.49 0.51 0.47 0.47 -0.47 0.49 0.44 0.49 0.50
33 5 -0.50 -0.50 0.50 -0.48 0.51 0.49 0.52 -0.51 0.49 0.52 0.49 0.50 -0.06 -0.16 0.43
34 3 -0.47 -0.48 0.50 -0.50 0.52 0.50 0.43 -0.11 0.49
35 5 -0.53 -0.49 0.50 -0.55 0.52 0.49 0.51 -0.50 0.49 0.67 0.51 0.50 0.04 0.12 0.49
36 4 -0.61 -0.47 0.43 -0.49 0.47 0.45 0.34 -0.51 0.50 0.45 0.49 0.50
39 2 0.08 -0.37 0.29 -0.52 0.52 0.49
40 3 0.08 -0.37 0.29 0.17 -0.60 0.16 0.47 0.03 0.42
41 5 -0.52 -0.49 0.20 -0.49 0.40 0.47 0.47 -0.47 0.49 0.44 0.49 0.50 -0.25 -0.22 0.12
46 3 0.08 -0.37 0.29 -0.52 0.52 0.49 0.51 -0.57 0.49
49 4 -0.50 -0.50 0.49 -0.49 0.47 0.34 0.43 -0.40 0.49 0.52 0.49 0.10
50 4 -0.52 -0.47 0.45 -0.49 0.46 0.45 0.34 -0.51 0.50 0.41 0.49 0.50
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9.3.1 Linear Antenna Array Design

This section aims to delineate the difference between problem formulation with a fixed
number of dimensions and a variable number of dimensions. A linear antenna array
consists of 𝜈 antennas distributed alongside the 𝑥-axis. In this particular example, all the
constituent antennas are identical. Therefore, the formulation of the total radiation vector
of the antenna array is simplified to [90]:

Ftot (k) = A (k) F (k) , (9.13)

where k = 𝑘r is the wave number vector, 𝑘 is the free space wave number, and r is the
position vector. The radiation vector of an elementary antenna F (k) is multiplied by the
array factor 𝐴 (k). The array factor is determined by the array configuration, and it is
defined as:

A (k) =
𝑁∑︁

𝑖=1
𝑎𝑖 exp (𝑗k · d𝑖) . (9.14)

Here, 𝑗 is the imaginary unit, 𝑎𝑖 is the complex number representing excitation amplitude
and phase, and d𝑖 is the position of the 𝑖-th antenna.

Antenna array properties that are of interest in this study are the Side-Lobe Level
(SLL) and the number of antennas 𝜈. The problem formulation for a fixed number of
decision variables commonly utilizes the uniform grid. If the uniform grid is used, a
particular antenna is activated or deactivated according to the decision vector ([91, 92]).
Therefore, the distribution grid of antennas has to be determined a priori, and it might
affect the overall performance of the optimization. Contrarily, the VND formulation of
the problem allows an algorithm to not only find the proper number of antennas but to
find the optimal positioning on the 𝑥-axis as well.

The multi-objective problem using the uniform grid is formulated as follows:

𝑓1 = SSL (x) (9.15)
𝑓2 = 𝜈 (x) , (9.16)

where both objectives are to be minimized, and the x is the decision vector. In the case of
a uniform grid, the decision vector is a binary string of fixed length equal to the possible
number of antennas. In our comparative study, the array can contain up to 100 antennas,
and the gap between two grid positions is one-quarter of the wavelength (0.25 𝜆0).

The variable number of dimensions formulation gives:

𝑓1 = SSL (x, 𝑛) (9.17)
𝑓2 = 𝜈 (x, 𝑛) , (9.18)
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Figure 9.5: Comparison of VND-GDE3 (VND formulation) and GDE3 (uniform grid
formulation) algorithms on the linear antenna array problem.

where x is the vector of 𝑛 values expressing the gaps between consecutive elements of the
array. Note that the first antenna of the array is placed at 𝑥 = 0 m. The gap between
individual elements can vary according to the interval of 𝑥𝑖 ∈ ⟨0.25 𝜆0, 𝜆0⟩ . The number
of elements in the antenna array is 𝜈 = 𝑛 + 1.

The problem with the uniform grid was optimized by the standard GDE3 algorithm
with default properties as defined in [MM4]. The VND formulation of the problem was
optimized with the VND-GDE3 algorithm with default settings (i.e. SET A.3). Both
algorithms used 200 agents over 200 iterations. Results shown in Figure 9.5 accumulates
100 independent runs. The solutions marked with "×" signs belong to the uniform grid
formulation and the solutions marked with "∙" signs belong to the VND formulation. The
VND-GDE3 algorithm outperforms the standard GDE3 algorithm, especially from the
viewpoint of the number of the used antennas. The only drawback of the VND-GDE3
method is that the average number of non-dominated solutions found per one run is lower
(𝑁 = 10.62) than that of standard GDE3 (𝑁 = 24.88).
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9.4 Synthesis of the Digital Circuits

This section describes the design of digital circuits using evolutionary algorithms. The
design of digital circuits is generally a complex task [93]. A well-known method of sim-
plifying boolean algebra expression is to use so-called Karnaugh maps [94]. However, this
method can reasonably be used for expressions with no more than six input variables. The
Quine-McCluskey algorithm (QMC [95]) is in principle similar to the Karnaugh maps, but
it is more efficient for use in a computer algorithm. According to [96], the QMC algorithm
is an NP-complete problem. Therefore, its computational complexity grows exponentially
with the number of input variables.

The desired digital circuit is defined by its truth table. The truth table defines the
output value of the circuit for any combination of input variables. The truth table is of
length 2𝑁𝐼 , where 𝑁𝐼 is the number of input variables of the digital circuit. The truth
table of a simple digital circuit (Multiplexer with 3 input variables) is shown in Table 9.2.
An exhaustive expression of the three-input multiplexer is:

𝑦 = 𝑥2𝑥1𝑥0 + 𝑥2𝑥1𝑥0 + 𝑥2𝑥1𝑥0 + 𝑥2𝑥1𝑥0. (9.19)

This expression uses a sum of four products. The number of products corresponds to
the number of logical ones in the 𝑦 column of the truth table (Table 9.2). However, the
exhaustive expression can be simplified into an expression:

𝑦 = 𝑥2𝑥0 + 𝑥2𝑥1. (9.20)

The simplification task becomes more complex as the number of input variables of the
digital circuit grows (𝑁𝐼).

A many-input variables digital circuit can be synthesized by using an optimization
algorithm. The formulation of the problem is simple. The optimization algorithm proposes
an expression (sum of products – SOP), and its solution (y𝑝) is compared to the truth table
(yTT) in the fitness function. However, the problem has a variable number of dimensions
because the number of summed products (𝐷) in an expression can not be defined a priori

Table 9.2: Truth table of 3-input multiplexer.
𝑥2 𝑥1 𝑥0 𝑦

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1
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for an unknown digital circuit. Fitness function for the synthesis of the digital circuit can
be expressed by:

𝑓1 =
2𝑁𝐼∑︁

𝑖

𝐸𝑖, (9.21)

𝑓2 = 𝐷, (9.22)

𝐸𝑖 =

⎧⎨⎩1 if 𝑦𝑝,𝑖 ̸= 𝑦TT,𝑖

0 if 𝑦𝑝,𝑖 = 𝑦TT,𝑖.
(9.23)

Note that the first fitness function compares the two vectors y𝑝 and yTT and counts the
number of differences between them.

Two digital circuits are synthesized in this section – the 6-input multiplexer (MUX6)
and the 11-input multiplexer (MUX11). The truth table of MUX6 has 64 combinations
(see Table 9.3). The exhaustive expression contains a sum of 32 products. However, the
simplified expression is:

𝑦 = 𝑥5𝑥4𝑥0 + 𝑥5𝑥4𝑥1 + 𝑥5𝑥4𝑥2 + 𝑥5𝑥4𝑥3. (9.24)

As we can see, the simplified expression uses only four products.
The truth table of the11-input multiplexer has 2048 combinations. Again, half of them

result in logical ones. Therefore, the exhaustive expression is a sum of 1024 products. The
simplified solution is:

𝑦 =𝑥10𝑥9𝑥8𝑥0 + 𝑥10𝑥9𝑥8𝑥1 + 𝑥10𝑥9𝑥8𝑥2 + 𝑥10𝑥9𝑥8𝑥3+
+𝑥10𝑥9𝑥8𝑥4 + 𝑥10𝑥9𝑥8𝑥5 + 𝑥10𝑥9𝑥8𝑥6 + 𝑥10𝑥9𝑥8𝑥7.

(9.25)

The boolean algebra expression is encoded as a vector of integer decision variables,
where each variable corresponds to one product term in an SOP. The number of decision
variables can vary. The range of each decision variable depends on the number of input
variables of the digital circuit. Each input variable in the product term can be set, unset,
or missing. Therefore, a ternary representation is used. Table 9.4 shows an example of
ternary representation on a minimal expression of MUX3. A decision vector of boolean
algebra expression 𝑦 = 𝑥2𝑥0 + 𝑥2𝑥1 is x = {7, 14}.

9.4.1 Experiments

This subsection describes the comparative study where the 3-input, 6-input, and 11-input
multiplexers are synthesized with evolutionary algorithms. The standard GDE3 algorithm
is compared to the VND-GDE3 algorithm. The ternary representation enables us to exploit
both algorithms – with a fixed number of dimensions, and a variable number of dimensions
– without changes.

The only difference is that the VND algorithm calculates with SOPs with the number
of product terms 𝐷 = {1, 2, . . . , 𝐷max}, while the GDE3 works with SOPs with 𝐷max. A
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lower number of product terms can be reached if the decision variable (representing one
product term) contains such a value that represents all twos after ternary conversion (c.f.
Table 9.4).

Table 9.3: Truth table of 6-input multiplexer.
Index 𝑥5 𝑥4 𝑥3 𝑥2 𝑥1 𝑥0 𝑦 Index 𝑥5 𝑥4 𝑥3 𝑥2 𝑥1 𝑥0 𝑦

1 0 0 0 0 0 0 0 33 1 0 0 0 0 0 0
2 0 0 0 0 0 1 1 34 1 0 0 0 0 1 0
3 0 0 0 0 1 0 0 35 1 0 0 0 1 0 0
4 0 0 0 0 1 1 1 36 1 0 0 0 1 1 0
5 0 0 0 1 0 0 0 37 1 0 0 1 0 0 1
6 0 0 0 1 0 1 1 38 1 0 0 1 0 1 1
7 0 0 0 1 1 0 0 39 1 0 0 1 1 0 1
8 0 0 0 1 1 1 1 40 1 0 0 1 1 1 1
9 0 0 1 0 0 0 0 41 1 0 1 0 0 0 0
10 0 0 1 0 0 1 1 42 1 0 1 0 0 1 0
11 0 0 1 0 1 0 0 43 1 0 1 0 1 0 0
12 0 0 1 0 1 1 1 44 1 0 1 0 1 1 0
13 0 0 1 1 0 0 0 45 1 0 1 1 0 0 1
14 0 0 1 1 0 1 1 46 1 0 1 1 0 1 1
15 0 0 1 1 1 0 0 47 1 0 1 1 1 0 1
16 0 0 1 1 1 1 1 48 1 0 1 1 1 1 1
17 0 1 0 0 0 0 0 49 1 1 0 0 0 0 0
18 0 1 0 0 0 1 0 50 1 1 0 0 0 1 0
19 0 1 0 0 1 0 1 51 1 1 0 0 1 0 0
20 0 1 0 0 1 1 1 52 1 1 0 0 1 1 0
21 0 1 0 1 0 0 0 53 1 1 0 1 0 0 0
22 0 1 0 1 0 1 0 54 1 1 0 1 0 1 0
23 0 1 0 1 1 0 1 55 1 1 0 1 1 0 0
24 0 1 0 1 1 1 1 56 1 1 0 1 1 1 0
25 0 1 1 0 0 0 0 57 1 1 1 0 0 0 1
26 0 1 1 0 0 1 0 58 1 1 1 0 0 1 1
27 0 1 1 0 1 0 1 59 1 1 1 0 1 0 1
28 0 1 1 0 1 1 1 60 1 1 1 0 1 1 1
29 0 1 1 1 0 0 0 61 1 1 1 1 0 0 1
30 0 1 1 1 0 1 0 62 1 1 1 1 0 1 1
31 0 1 1 1 1 0 1 63 1 1 1 1 1 0 1
32 0 1 1 1 1 1 1 64 1 1 1 1 1 1 1

Table 9.4: An example of ternary representation of MUX3.
y = 𝑥2 𝑥0 + 𝑥2 𝑥1

0 2 1 1 1 2
0 · 32 2 · 31 1 · 30 1 · 32 1 · 30 2 · 30

7 14
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Figure 9.6: Standard boxplots of 𝑓1 on the comparison of VND-GDE3 and GDE3.

The maximal number of product terms is 𝐷max = 10 in the case of 3- and 6-input
multiplexer, and 𝐷max = 20 in the case of the 11-input multiplexer. All three problems
exploited 100 agents. The scaling factor was 𝐹 = 0.02, and the probability of crossover
was 𝑃𝐶 = 0.02 in both variants of the GDE3 algorithm. These values were established
experimentally. Such small values are beneficial in the case of a digital circuit design
problem. The main difficulty of such a problem is that the slightest change in the decision
vector can lead to a great change of a fitness value. The probability of dimension transition
of the VND-GDE3 algorithm was set to 𝑃DT = 0.35. The number of iterations used was
𝐺 = 100 for the 3-input multiplexer, 𝐺 = 1000 for the 6-input multiplexer, and 𝐺 = 10000

Table 9.5: Boolean algebra expressions proposed by VND-GDE3 algorithm and how
often the corresponding expression was found in 100 runs.

𝑁𝐼 Decision vector Boolean algebra expression Count
3 [7, 14] 𝑥2𝑥0 + 𝑥2𝑥1 100
6 [79, 158, 314, 377] 𝑥5𝑥4𝑥0 + 𝑥5𝑥4𝑥1 + 𝑥5𝑥4𝑥2 + 𝑥5𝑥4𝑥3 62
3 [61, 158, 314, 377, 556] 𝑥5𝑥4𝑥2𝑥0 + 𝑥5𝑥4𝑥1 + 𝑥5𝑥4𝑥2 + 𝑥5𝑥4𝑥3 + 𝑥4𝑥2𝑥0 4
6 [79, 158, 314, 377, 617] 𝑥5𝑥4𝑥0 + 𝑥5𝑥4𝑥1 + 𝑥5𝑥4𝑥2 + 𝑥5𝑥4𝑥3 + 𝑥4𝑥3𝑥1 2
6 [73, 76, 158, 314, 377] 𝑥5𝑥4𝑥1𝑥0 + 𝑥5𝑥4𝑥1𝑥0 + 𝑥5𝑥4𝑥1 + 𝑥5𝑥4𝑥2 + 𝑥5𝑥4𝑥3 2
6 [79, 158, 314, 371, 617] 𝑥5𝑥4𝑥0 + 𝑥5𝑥4𝑥1 + 𝑥5𝑥4𝑥2 + 𝑥5𝑥4𝑥3𝑥1 + 𝑥4𝑥3𝑥1 2

[6559, 13118, 26234, . . . 𝑥10𝑥9𝑥8𝑥0 + 𝑥10𝑥9𝑥8𝑥1 + 𝑥10𝑥9𝑥8𝑥2+
11 32777, 65528, 71927, . . . +𝑥10𝑥9𝑥8𝑥3 + 𝑥10𝑥9𝑥8𝑥4 + 𝑥10𝑥9𝑥8𝑥5+ 1

84563, 89666, 95498] 𝑥10𝑥9𝑥8𝑥6 + 𝑥10𝑥9𝑥8𝑥7 + 𝑥10𝑥9𝑥7𝑥6

[6559, 13118, 26232 . . . 𝑥10𝑥9𝑥8𝑥0 + 𝑥10𝑥9𝑥8𝑥1 + 𝑥10𝑥9𝑥8𝑥2𝑥0+
32777, 45916, 65528 . . . +𝑥10𝑥9𝑥8𝑥3 + 𝑥10𝑥8𝑥2𝑥0 + 𝑥10𝑥9𝑥8𝑥4+
71927, 84563, 89180 . . . +𝑥10𝑥9𝑥8𝑥5 + 𝑥10𝑥9𝑥8𝑥6 + 𝑥10𝑥9𝑥8𝑥7𝑥5+

11

89360, 109106] +𝑥10𝑥9𝑥8𝑥7𝑥5𝑥3𝑥2 + 𝑥10𝑥8𝑥7𝑥5

1

88



for the 11-input multiplexer. Each simulation was repeated 100 times.
Figure 9.6 shows the standard boxplots of the first fitness function – the number

of input combinations violating the truth table. Note that the problem formulates the
second fitness function as the number of SOPs. Therefore, if the optimizer finds a solution
that corresponds to the truth table, but the number of product terms is sub-optimal, the
chance of finding a solution with a lower number of SOPs is greater compared to the single-
objective approach. It is evident from the boxplots that the VND formulation performed
much better compared to the fixed-length formulation of the problem.

The synthesis of the 3-input multiplexer by the VND-GDE3 algorithm was successful
in all attempts. On the other hand, the GDE3 algorithm was unable to find the correct
solution (expression with only one error was found twice, two-errors expression was found
80-times, and the rest of the solutions contained 3 errors). In the case of the 6-input
multiplexer, the VND-GDE3 algorithm found expressions that meet the truth table in 99
tries out of 100. On the other hand, the best expression proposed by the GDE3 algorithm
contained 13 errors compared to the truth table. The difference is even more dramatic
in the case of the 11-input multiplexer. The VND-GDE3 algorithm found expressions
without errors exactly 10-times. Contrarily, the GDE3 algorithm has not found a solution
even remotely close to the truth table.

Table 9.5 shows expressions found by the VND-GDE3 algorithm for MUX3, MUX6,
and MUX11. The decision vector column contains integer values that are translated into
boolean algebra expression. The optimal MUX3 expression was found in all attempts
by the VND-GDE3 algorithm. In the case of the 6-input multiplexer, the VND-GDE3
algorithm found 62-times the optimal solution (with only four product terms). Other
solutions had a sub-optimal number of product terms. However, the truth table was met
(the first fitness value is zero) by all runs except one. Contrarily, the best solution of
the 11-input multiplexer found by the VND-GDE3 algorithm has nine product terms.
However, the optimal solution (see (9.25)) has only eight product terms. Note that ten
different solutions were meeting the truth table of MUX11, but only two of them are shown
in the table.
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9.5 Image Thresholding Problem

Image thresholding is the simplest method for digital image segmentation. The idea of
image thresholding is to find the optimal threshold value that divides the gray-level image
into "object" pixels (gray level is greater than the threshold value) and "background" pixels
(gray level is lower than the threshold value) [97].

Examples of thresholding applications can be a document image analysis (Optical
Character Recognition – OCR) [99], segmentation of thermal images [100], x-ray computed
tomography (CAT) [101] or license plate image recognition [102].

The most famous automated image thresholding algorithm is Otsu’s method [103].
This method is a histogram shape-based method. The method assumes two distinct peaks
in the histogram. Therefore, the threshold value separates the two classes of gray-levels so
that the intra-class variance is minimized. Figure 9.7a shows a widely used thresholding
testing image, and Figure 9.7b shows its histogram.

Otsu’s method maximizes the inter-class variance defined as:

𝜎2
𝑤 (𝑡) = 𝜔0 (𝑡) 𝜎2

0 (𝑡) + 𝜔1 (𝑡) 𝜎2
1 (𝑡) , (9.26)

where 𝜔0 and 𝜔1 are probabilities of the two classes separated by the threshold 𝑡, and
𝜎2

0 (𝑡) and 𝜎2
1 (𝑡) are variances of these two classes.

The probabilities are calculated from histogram using:

𝜔0 (𝑡) =
𝑡−1∑︁
𝑖=0

𝑝 (𝑖) , (9.27)

𝜔1 (𝑡) =
𝐿−1∑︁
𝑖=𝑡

𝑝 (𝑖) , (9.28)

(a) Greyscale original.
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(b) Histogram of testing image.

Figure 9.7: Cameraman testing image [98].
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where 𝑝 (𝑖) is calculated from histogram’s bins ℎ (𝑖) divided by the overall number of pixels
in figure ∑︀𝐿

𝑖=0 ℎ, and 𝐿 is the number of bins in the histogram.
The inter-class variance for a given threshold 𝑡 is calculated by the equation:

𝜎2
𝑏 (𝑡) = 𝜔0 (𝜇0 − 𝜇𝑇 )2 + 𝜔1 (𝜇1 − 𝜇𝑡) , (9.29)

where:
𝜇0 (𝑡) =

∑︀𝑡−1
𝑖=0 𝑖𝑝 (𝑖)
𝜔0 (𝑡) , (9.30)

𝜇0 (𝑡) =
∑︀𝐿−1

𝑖=𝑡 𝑖𝑝 (𝑖)
𝜔1 (𝑡) , (9.31)

and

𝜇𝑇 =
𝐿−1∑︁
𝑖=0

𝑖𝑝 (𝑖) . (9.32)

Otsu’s method calculates the inter-class variance exhaustively. Figure 9.8b shows the
histogram of the cameraman testing image (blue bar graph) and the corresponding values
of inter-class variance (red line). The black cross marker shows the threshold value found
by Otsu’s method – 𝑡 = 89. Figure 9.8a shows the cameraman testing image translated
into a binary image using Otsu’s threshold.

Otsu’s method is widely used in many applications. However, there are thresholding
tasks where multiple thresholds are sought. Therefore, if we want to find two threshold
values, equation (9.29) is modified into:

𝜎2
𝑏 (𝑡) = 𝜔0 (𝜇0 − 𝜇𝑇 )2 + 𝜔1 (𝜇1 − 𝜇𝑡) + 𝜔2 (𝜇2 − 𝜇𝑡) , (9.33)

(a) Thresholded cameraman image.

0 50 100 150 200 2500

500

1,000

1,500

level of gray

𝑁𝑖

0 50 100 150 200 2500

1,000

2,000

3,000
𝜎2
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(b) Histogram of the cameraman image (blue)
with inter-class variance values found by Otsu’s
method (red).

Figure 9.8: Otsu’s thresholding method explained on the cameraman testing image.
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where indices in sums in 𝜔0 and 𝜇0 calculations ranges from 𝑖 = 0 to 𝑡1 − 1, for 𝜔1 and 𝜇1

from 𝑡1 to 𝑡2 − 1, and for 𝜔2 and 𝜇2 from 𝑡2 to 𝐿 − 1.
For more thresholds, the equation can be easily scaled. However, if one threshold is

sought, the inter-class variance has to be computed for each possible threshold, i.e 254
thresholds. However, if there is more than one threshold, the inter-class variance has to
be calculated for each combination of thresholds, i.e. 𝑘-permutation of 𝐿 threshold values,
and 𝑘 marks the number of thresholds:

𝑃 (𝐿, 𝑘) = 𝐿!
(𝐿 − 𝑘)! . (9.34)

Concretely, 64 262 inter-class variance calculations to find two thresholds, but 4 064 700 024
calculations to find four thresholds.

The motivation for using an evolutionary algorithm to solve a multi-threshold thresh-
olding problem is evident. The problem is formulated as a multi-objective one with a

(a) Cameraman testing image [98]. (b) Sailboat testing image [104].

(c) Female testing image [104]. (d) Airplane testing image [104].

Figure 9.9: Thresholding testing images [104].
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(e) Boat testing image [104]. (f) Fingerprint testing image [105].

(g) San Diego testing image [104]. (h) Mountain testing image [98].

Figure 9.9: Thresholding testing images.

variable number of dimensions where the value of Otsu’s inter-class variance is used as
the first fitness function. The number of thresholds stands for the second fitness function.
The advantage of using a multi-objective formulation of the problem is that the algorithm
proposes a set of solutions with a different number of thresholds. Therefore, the user can
select the solution that suits the best to his needs without setting the number of thresholds
a priori. Note that the variability of the number of thresholds is in accordance with the
VND formulation.

9.5.1 Exhaustive vs. Evolutionary Approach

The comparative study of the standard (exhaustive) and evolutionary approach is pre-
sented. The exhaustive approach is represented by using Otsu’s method for 1, 2, 3, and
4 thresholds. The evolutionary approach uses the single-objective Differential Evolution.
This study is here to demonstrate the strength of the evolutionary approach, especially
with more thresholds. Note that this study is inspired by [106].

Table 9.6 shows the results of the thresholding study with a fixed number of decision
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variables. Threshold values can be seen for each testing images shown in Figures 9.9a –
9.9h. Results of exhaustive Otsu’s method are shown in the third column, and they are
considered as the reference. The fourth column shows threshold values proposed by the
single-objective Differential Evolution. Note that each simulation was repeated 100 times.
Therefore, the value shown in the fourth column is an average of 100 repetitions. Finally,
the fifth column shows a standard deviation of each threshold value. Note that 𝑘 denotes
the number of thresholds.

Table 9.7 compares the computational time and inter-class variance for Otsu’s method

Table 9.6: Thresholds found be the exhaustive Otsu’s method and SODE algorithm with
fixed number of dimensions.

Image 𝑘 Otsu SODE – 𝜇 SODE – 𝜎

1 89 89 0
2 [70, 144] [70, 144] [0, 0]
3 [59, 119, 156] [58.59, 119.0, 155.8] [0.950, 1.203, 0.711]

Cameraman

4 [42, 95, 140, 170] [42.24, 94.59, 139.7, 169.9] [2.173, 2.098, 1.087, 1.136]
1 126 126 0
2 [86, 155] [86, 155] [0, 0]
3 [80, 141, 195] [79.60, 141, 195.0] [0.600, 0.735, 0.546]

Sailboat

4 [69, 112, 159, 199] [68.61, 111.3, 158.9, 199.0] [1.536, 2.387, 1.986, 1.445]
1 74 74 0
2 [58, 110] [58, 110] [0, 0]
3 [34, 68, 114] [34.09, 67.93, 114.2] [0.567, 0.587, 0.812]

Female

4 [33, 61, 93, 129] [32.67, 61.23, 94.91, 131.5] [0.928, 1.654, 3.147, 3.892]
1 153 153 0
2 [112, 173] [112, 173] [0, 0]
3 [92, 145, 191] [92.21, 145.3, 191.3] [1.291, 1.522, 1.067]

Airplane

4 [85, 130, 173, 203] [84.88, 129.7, 172.8, 203.2] [2.277, 2.998, 2.911, 1.495]
1 103 103 0.000
2 [93, 155] [93, 155] [0, 0]
3 [73, 126, 167] [73.09, 126.2, 167.0] [0.585, 0.444, 0.222]

Boat

4 [65, 114, 147, 179] [65.46, 113.7, 146.7, 179.2] [1.374, 1.211, 0.890, 1.427]
1 144 143 0
2 [115, 185] [115, 184] [0, 0]
3 [99, 156, 201] [98.59, 155.2, 199.9] [0.750, 0.840, 0.725]

Finger

4 [84, 131, 173, 209] [84.22, 130.3, 171.9, 207.0] [2.133, 2.388, 2.106, 1.628]
1 140 140 0.000
2 [107, 165] [107, 165] [0, 0]
3 [91, 129, 176] [91.39, 129.2, 176.5] [0.6460, 0.8760, 0.8060]

San Diego

4 [79, 110, 144, 185] [78.85, 110.3, 144.1, 184.7] [2.224, 2.204, 2.236, 2.059]
1 136 137.67 1.078
2 [72, 168] [73.92, 169.6] [1.278, 1.059]
3 [55, 122, 196] [55.45, 125.1, 197.4] [0.497, 1.792, 1.078]

Mountain

4 [46, 100, 149, 206] [46.42, 102.2, 151.2, 207.6] [2.164, 1.817, 1.800, 1.402]
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and SODE optimization approach. Again, the table shows results of one run of the ex-
haustive method and 100 runs of the optimization algorithm, where the average value and
the standard deviation is shown.

If we look at Table 9.6, we can see that the thresholds found by the evolutionary
algorithm are very close to the thresholds found by the exhaustive method. The same
applies to inter-class variance values. However, the computational time of the exhaustive
method quickly grows with an increasing number of thresholds. Contrarily, the SODE

Table 9.7: Computational time and inter-class variance of the exhaustive Otsu’s method
and SODE algorithm with fixed number of dimensions.

Computational time [s] Inter-class Variance
Image 𝑘 Otsu SODE – 𝜇 SODE – 𝜎 Otsu SODE – 𝜇 SODE – 𝜎

1 0.0179 0.2801 0.0217 3289.1 3289.1 1.364E-12
2 0.3087 0.3193 0.0161 3650.3 3650.3 8.640E-12
3 30.367 0.3588 0.0237 3725.7 3725.7 5.880E-02

Cameraman

4 2168.5 0.3801 0.0243 3780.7 3780.2 2.819E-01
1 0.0314 0.2796 0.0169 3620.4 3620.4 2.728E-12
2 0.3030 0.3199 0.0158 3912.9 3912.9 5.002E-12
3 30.109 0.3594 0.0238 4049.8 4049.8 9.302E-02

Sailboat

4 2194.7 0.3801 0.0231 4117.3 4116.8 4.135E-01
1 0.0128 0.2786 0.0147 1122.1 1122.1 2.046E-12
2 0.2928 0.3216 0.0160 1318.6 1318.6 1.137E-12
3 33.010 0.3601 0.0234 1417.4 1417.3 1.068E-01

Female

4 2036.0 0.3865 0.0251 1457.2 1456.6 3.558E-01
1 0.0407 0.2815 0.0159 1773.1 1773.1 2.501E-12
2 0.3066 0.3221 0.0149 1928.6 1928.6 2.274E-12
3 31.795 0.3610 0.0243 2005.2 2005.1 9.235E-02

Airplane

4 2121.6 0.3863 0.0248 2050.4 2049.6 4.361E-01
1 0.0422 0.2801 0.0165 1617.7 1617.6 2.274E-13
2 0.3136 0.3196 0.0180 1863.3 1863.3 3.411E-12
3 37.030 0.3572 0.0239 1994.5 1994.4 3.149E-02

Boat

4 2216.9 0.3845 0.0269 2059.9 2059.5 2.120E-01
1 0.0222 0.2781 0.0153 2478.1 2422.7 9.095E-13
2 0.3211 0.3204 0.0146 2928.8 2855.7 5.457E-12
3 29.765 0.3593 0.0251 3084.8 3003.9 9.646E-02

Finger

4 2118.9 0.3852 0.0259 3156.3 3071.6 5.502E-01
1 0.0259 0.2791 0.0158 1635.8 1635.8 2.956E-12
2 0.3066 0.3201 0.0145 1989.9 1989.9 2.728E-12
3 29.502 0.3586 0.0228 2103.8 2103.7 1.045E-01

San Diego

4 2006.9 0.3850 0.0258 2161.9 2161.3 3.439E-01
1 0.0363 0.2787 0.0158 4921.0 4921.0 2.728E-12
2 0.3298 0.3192 0.0154 5779.9 5779.9 1.455E-11
3 30.355 0.3575 0.0234 6098.0 6098.0 9.095E-13

Mountain

4 2007.6 0.3806 0.0238 6227.2 6226.8 3.671E-01
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algorithm execution time is independent of the number of thresholds. In conclusion, if
there are only two threshold values to be found, it is beneficial to use the exhaustive
method. To find three thresholds with the exhaustive method, it takes about 30 seconds
compared to about 0.5 seconds of the execution time of SODE simulation. Note that the
SODE algorithm uses 100 agents over 100 iterations (10 000 fitness function evaluations).
Both parameters – the scaling factor and the probability of crossover – were set to 𝐹 = 0.2
and 𝑃𝐶 = 0.2.

9.5.2 Thresholding with Variable Number of Thresholds

This subsection shows the results of a study with a multi-objective thresholding problem
with a variable number of dimensions. The study is performed on the same set of testing
images as in the previous subsection. VND-GDE3 algorithm is exploited on each testing
image with 100 agents over 500 iterations. This time, each simulation is performed only
once. The algorithm is set as follows: the scaling factor 𝐹 = 0.2, the probability of
crossover 𝑃𝐶 = 0.2, and the probability of dimension transition 𝑃DT = 0.35.

As was mentioned before, the problem is designed so that an algorithm may propose a
set of solutions with a different number of thresholds as long as the value of Otsu’s inter-
class variance increases with the increasing number of thresholds. The maximal number
of thresholds was set to five.

Table 9.8 shows the thresholds proposed by the VND-GDE3 algorithm. The thresholds
proposed by the VND-GDE3 algorithm are very similar to those proposed by exhaustive
Otsu’s method (see Table 9.6). However, these results are carried out by just a single
optimization run. Each run of the VND-GDE3 algorithm takes about 5 s. Apart from
the proposed thresholds, Table 9.8 also shows the number of pixels that are assigned to
individual layers of the image after the thresholding (𝑁𝑡).

Figures 9.10–9.17 show testing images thresholded according to thresholds shown in
Table 9.8. The first subfigure in each figure shows a histogram for the current testing im-
age. Note that 𝑁𝑖 denotes the number of pixels of the image belonging to the corresponding
level of gray. As can be seen, there are some images where just a single threshold is suffi-
cient to differentiate between the foreground and background of the image (Cameraman,
Finger, Mountain). However, there are also images where the use of a single threshold
does not divide the image into a meaningful picture (Female, San Diego, Sailboat). Fortu-
nately, the user can select the appropriate number of thresholds for a given image post-hoc,
thanks to the use of a multi-objective optimization algorithm with a variable number of
dimensions. This can be useful in many applications. The following subsection presents
the license-plate recognition where the multi-objective VND thresholding is exploited.
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Table 9.8: Results of multi-objective VND thresholding. The table shows threshold
values and the corresponding number of pixels assigned to each of the greyscale layers
according to the thresholds 𝑁𝑡.

Image 𝑘 Thresholds Number of pixels per layer - 𝑁𝑡

1 89 [17506, 48030]
2 [70, 144] [16452, 16266, 32818]
3 [58, 118, 155] [15567, 7412, 15386, 27171]
4 [44, 96, 139, 169] [14644, 3492, 12766, 20568, 14066]

Cameraman

5 [34, 86, 124, 149, 172] [13723, 3582, 7669, 10055, 18872, 11635]
1 126 [106393, 105860]
2 [86, 155] [82542, 36770, 92941]
3 [80, 141, 195] [77459, 35114, 63554, 36126]
4 [70, 115, 161, 201] [67406, 33874, 21772, 60021, 29180]

Sailboat

5 [58, 86, 127, 167, 200] [50183, 32359, 24255, 20188, 55094, 30174]
1 74 [40855, 16713]
2 [58, 110] [36487, 13642, 7439]
3 [34, 68, 114] [16971, 22071, 11796, 6730]
4 [33, 62, 95, 131] [16320, 21107, 9382, 6734, 4025]

Female

5 [33, 58, 89, 118, 157] [16320, 20167, 8840, 6147, 4997, 1097]
1 153 [ 60487, 200123]
2 [112, 173] [ 35052, 36475, 189083]
3 [92, 145, 191] [ 18442, 38174, 35862, 168132]
4 [86, 130, 173, 203] [ 14750, 34127, 22650, 69893, 119190]

Airplane

5 [71, 107, 145, 181, 204] [ 7835, 23045, 25736, 21057, 69977, 112960]
1 103 [ 57228, 204916]
2 [93, 155] [ 51355, 134114, 76675]
3 [73, 126, 167] [ 41740, 37838, 143281, 39285]
4 [63, 113, 147, 180] [ 36582, 28944, 79803, 96971, 19844]

Boat

5 [51, 91, 127, 152, 181] [ 29002, 21149, 30823, 90125, 72134, 18911]
1 143 [ 48966, 109438]
2 [115, 184] [ 35433, 49734, 73237]
3 [99, 155, 200] [ 29301, 27648, 50081, 51374]
4 [86, 133, 175, 209] [ 24203, 18977, 31206, 44732, 39286]

Finger

5 [78, 120, 158, 187, 214] [ 20625, 16859, 21566, 30215, 36146, 32993]
1 140 [139580, 72485]
2 [107, 165] [ 87218, 76386, 48461]
3 [91, 129, 177] [ 56018, 67680, 48321, 40046]
4 [78, 110, 144, 184] [ 29463, 63135, 51777, 31960, 35730]

San Diego

5 [65, 96, 124, 156, 190] [ 12210, 53887, 49993, 40233, 23821, 31921]
1 137 [151273, 153691]
2 [74, 169] [ 75299, 103428, 126237]
3 [55, 127, 199] [ 55611, 81310, 70544, 97499]
4 [47, 103, 152, 206] [ 50755, 59822, 49919, 56108, 88360]

Mountain

5 [28, 79, 123, 168, 217] [ 40968, 38788, 57165, 41806, 46598, 79639]
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(a) Histogram of sailboat testing im-
age.

(b) Sailboat: one threshold.

(c) Sailboat: two thresholds. (d) Sailboat: three thresholds.

(e) Sailboat: four thresholds. (f) Sailboat: five thresholds.

Figure 9.10: Thresholded sailboat testing image.
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(a) Histogram of cameraman testing
image.

(b) Cameraman: one threshold.

(c) Cameraman: two thresholds. (d) Cameraman: three thresholds.

(e) Cameraman: four thresholds. (f) Cameraman: five thresholds.

Figure 9.11: Thresholded cameraman testing image.
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(a) Histogram of female testing image. (b) Female: one threshold.

(c) Female: two thresholds. (d) Female: three thresholds.

(e) Female: four thresholds. (f) Female: five thresholds.

Figure 9.12: Thresholded female testing image.
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(a) Histogram of airplane testing im-
age.

(b) Airplane: one threshold.

(c) Airplane: two thresholds. (d) Airplane: three thresholds.

(e) Airplane: four thresholds. (f) Airplane: five thresholds.

Figure 9.13: Thresholded airplane testing image.
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(a) Histogram of boat testing image. (b) Boat: one threshold.

(c) Boat: two thresholds. (d) Boat: three thresholds.

(e) Boat: four thresholds. (f) Boat: five thresholds.

Figure 9.14: Thresholded boat testing image.
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(a) Histogram of finger testing image. (b) Finger: one threshold.

(c) Finger: two thresholds. (d) Finger: three thresholds.

(e) Finger: four thresholds. (f) Finger: five thresholds.

Figure 9.15: Thresholded finger testing image.
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(a) Histogram of sandiego testing im-
age.

(b) Sandiego: one threshold.

(c) Sandiego: two thresholds. (d) Sandiego: three thresholds.

(e) Sandiego: four thresholds. (f) Sandiego: five thresholds.

Figure 9.16: Thresholded sandiego testing image.
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(a) Histogram of mountain testing
image.

(b) Mountain: one threshold.

(c) Mountain: two thresholds. (d) Mountain: three thresholds.

(e) Mountain: four thresholds. (f) Mountain: five thresholds.

Figure 9.17: Thresholded mountain testing image.
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9.5.3 License Plate Recognition by Using Thresholding

License plate recognition (LPR) or automatic number plate recognition (ANPR) is widely
used in many real-life situations including parking lot attendance, traffic laws enforcement,
etc. An image with a license plate is pre-processed before the optical character recognition
of the license plate by image thresholding [107], [108]. However, the thresholding in the
license plate recognition is not a trivial task [109]. The following figures in this subsection
show that lighting conditions have a major impact on the performance of the thresholding
technique. Note that image analysis in LPR consists of three parts: localization of the
license plate in the image, thresholding of the license plate region, and optical character
recognition of the characters. However, the localization and OCR steps are out of the
scope of this thesis. Therefore, the image thresholding is performed on the whole testing
image instead of the section with the license-plate. Such an approach makes the thresh-
olding more challenging. Nonetheless, it better demonstrates the advantage of the variable
number of dimensions approach.

The thresholding technique used for license-plate recognition is the same one from
the previous subsection. It uses a variable number of dimensions representation with two
objectives to find trade-off solutions with multiple threshold values. It will be shown that
the number of thresholds needed for the proper image segmentation cannot be determined
a priori.

Figures 9.18 – 9.21 show testing images for license-plate recognition. There are four
subfigures for each figure where the top-left shows the original greyscale image and the
remaining three subfigures show results of the thresholding method. Note that only a
limited number of subfigures is shown in this section in order to keep a reasonable extent
of this subsection. However, Appendix A in 10 contains more figures with results of
thresholded LPR testing images.

Figure 9.18 shows the AMG testing image. In this picture, the light from the head-
lamps is much brighter than the background of the license plate. Therefore, using just
one threshold creates two layers, but the license plate is apparent in neither of them.
Contrarily, if three thresholds are used, the license plate is clearly visible in the first layer
(see Figure 9.18d). The subsequent OCR routine would most likely yield the desired
"6852 KWS".

Figure 9.19 shows the BMW rear testing image. This picture shows very difficult light
conditions for license-plate recognition. It is caused by the sun glare in the area of the
license plate. Figure 9.19b shows the image with three thresholds, while Figures 9.19c
and 9.19d. show the third and fourth layers, respectively. It can be seen that the "RAW"
part of the license plate should be obtained correctly. Contrarily, the "PH 78" part of the
license-plate is hardly legible because the characters are made only by contours.

Figure 9.20 shows the BMW front testing image. If two thresholds are used (see
Figure 9.20b), the characters of the license plate can be seen, but they are rather noisy
and the last "9" is melting into the edge of the license plate. Contrarily, the characters
in the license plate are visible clearly in the case of three thresholds (Figures 9.20c and
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9.20d).
Figure 9.21 shows the Taxi testing image. Light conditions in this image are very

difficult. Moreover, the illumination from the license plate lamps makes the thresholding
task even harder. It can be seen in Figure 9.21b that most of the characters in the
license plate blends with the background. Figures 9.21c and 9.21d shows the thresholding
with two thresholds. In this case all the characters in the license plate fell into the first
layer. Contrarily, the whole background of the license plate is in the second or third layer.
Therefore, the character recognition task is simple if two thresholds are used.

(a) Original greyscale image – AMG. (b) AMG with one threshold.

(c) AMG with three thresholds. (d) Three thresholds – first layer.

Figure 9.18: LPR testing image – AMG [110].
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(a) Original greyscale image – BMW
rear.

(b) BMW rear with three thresholds.

(c) Three thresholds – third layer. (d) Three thresholds – fourth layer.

Figure 9.19: LPR testing image – BMW rear [111].

(a) Original greyscale image – BMW
front.

(b) Two thresholds – first layer.

Figure 9.20: LPR testing image – BMW front [112].
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(c) BMW front with three thresholds. (d) Three thresholds – first layer.

Figure 9.20: LPR testing image – BMW front [112].

(a) Original greyscale image – Taxi. (b) Taxi with one threshold.

(c) Taxi with two thresholds. (d) Two thresholds – first layer.

Figure 9.21: LPR testing image – Taxi [113].
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9.6 Clustering Problem

Clustering is a widely used unsupervised pattern classification technique. It separates
the 𝑁DI data-items (observations) into 𝐾 clusters based on some similarity/dissimilarity
metric [114]. The objective of the separation is to have data-items within one cluster to
be similar to each other, while the data-items within different clusters to be dissimilar.
Clustering techniques are used in a wide variety of applications: machine learning [115],
image segmentation [116], data mining [43], psychology [117], economics [118], etc.

There are many clustering techniques to be found in the literature [119], such as the K-
means clustering method [120], mean-shift clustering method [121], Density-based Spatial
Clustering of Applications with Noise (DBSCAN) [122], etc. However, in this section, the
evolutionary clustering approach will be compared to the K-means clustering method and
the DBSCAN method.

The K-means clustering method is probably the most popular clustering algorithm
for its simplicity. This algorithm minimizes the within-cluster sum of squares. In the
beginning, the algorithm randomly selects 𝐾 centroids. Afterward, each data-item is
assigned to the cluster with the nearest mean (with the minimal Euclidean distance). The
centroids are recalculated for data-items assigned to each cluster according to:

c(𝑔)
𝑞 = 1⃒⃒⃒

𝐶
(𝑔−1)
𝑞

⃒⃒⃒ ∑︁
x𝑗∈𝐶

(𝑔−1)
𝑞

x𝑗 , (9.35)

where c(𝑔)
𝑞 is the mean of the 𝑞-th cluster (centroid) for the current iteration, 𝐶

(𝑔−1)
𝑞 is the

set of data-items assigned to the 𝑞-th cluster in the previous iteration, and x𝑗 denotes the
𝑗-th data-item in the cluster. When the cluster means are updated, all the observations
are reassigned. These steps are repeated for a given number of iterations. It is evident
that the number of clusters 𝐾 must be given a priori. Nonetheless, the algorithm is widely
used for its simplicity and small computational complexity.

On the other hand, the DBSCAN clustering method can identify the number of clusters
𝐾. However, it is computationally demanding, and it also performs poorly when the
clusters are of varying density. In the beginning, the DBSCAN takes an arbitrary data
point and searches its vicinity for the presence of neighbors. If there is not a sufficient
number of points (user-defined parameter 𝑁𝑃 ), the data point is considered an outlier.
The area of the neighborhood is controlled with the second user-defined parameter 𝜖. If
there are 𝑁𝑃 or more neighbors within 𝜖 distance of the current data point, the neighbors
are marked to belong to the same cluster. This search is recursively repeated over all the
neighboring solutions until none of the new neighbors have enough data-items nearby. At
this point, all the data points in the current cluster are determined. Afterward, a new
unvisited point is retrieved, and the search process is repeated for another cluster. The
DBSCAN process is finished when all the data points are marked as visited - in other
words, all data points are either assigned to any cluster or marked as outliers.
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9.6.1 Evolutionary Clustering

The evolutionary approach used in this section takes over the principle of the K-means
clustering method and removes its fundamental disadvantage – 𝐾 must be given a priori.
The evolutionary algorithm proposes cluster means (centroids), and five iterations of the
K-means method are performed for every agent. Using the GDE3 algorithm with a variable
number of dimensions allows the method to test a various number of clusters as well as
diverse initial centroids. When those five K-means iterations are executed, the updated
centroid positions are injected back to the VND-GDE3 agent positions, and the fitness
values are calculated for the updated centroids. Note that this is identical to the approach
described in Section 9.2. In this case, the VND-GDE3 algorithm can be seen as a global
optimizer, while the K-means method is a local optimizer with rapid convergence. Also
note, that there is no need to perform many K-means iterations inside the fitness function
evaluation because the K-means method starts with the centroids stored in the agent
from previous iterations. Therefore, the K-means algorithm may perform up to 𝐺(K−means) =
5 × 𝐺(VND−GDE3) iterations, where 𝐺 denotes the number of iterations.

The fitness function evaluation consists of five K-means iterations and then the as-
sessment of the quality of clustering. The obvious approach is to calculate the number
of data-items that were incorrectly assigned to the wrong cluster in comparison with the
ground-truth (the ideal clustering solution) of the dataset. However, the ground-truth
in a real-world clustering problem is unknown. Therefore, the quality of the solution is
assessed by the Calinski-Harabasz index [123]. There are other measures to be found in
the literature [124], but the Calinski-Harabasz index suits best to our needs. The index is
fast to compute and favors clusters that are dense and well separated.

Calinski-Harabasz index, also known as the Variance Ratio Criterion, is the ratio of
the sum of between-clusters dispersion and inter-cluster dispersion. The higher the score
is, the better the clustering is. The index is calculated according to:

VRC = SS𝐵

SS𝑊

𝑁DI − 𝐾

𝐾 − 1 , (9.36)

where SS𝐵 is between cluster variance, SS𝑊 is within-cluster variance, 𝑁DI is the number
of data-items, and 𝐾 is the number of clusters. The between-cluster variance is obtained
by:

SS𝐵 =
𝐾∑︁

𝑞=1
𝑛𝑞 (c𝑞 − c𝐸) (c𝑞 − c𝐸)𝑇 , (9.37)

where 𝑛𝑞 is the number of data-items in the 𝑞-th cluster, c𝑞 is the center of the cluster 𝑞,
and c𝐸 is the center of all data points. The within-cluster variance is calculated according
to:

SS𝑊 =
𝐾∑︁

𝑞=1

∑︁
x𝑗∈𝐶𝑞

(x𝑗 − c𝑞) (x𝑗 − c𝑞)𝑇 , (9.38)
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where x𝑗 denotes the 𝑗-th data-item in the cluster and 𝐶𝑞 is the set of data-items in the
cluster 𝑞.

Finally, the fitness functions can be stated as:

𝑓1 = −VRC, (9.39)
𝑓2 = 𝐾. (9.40)

Note that the Calinski-Harabasz index is taken negatively because the VND-GDE3 expects
a minimization problem. The second fitness function is the number of clusters.

9.6.2 Verification of the Method

This subsection deals with eight benchmark clustering datasets. Each of the datasets
is solved by the standard K-means method, DBSCAN, and the evolutionary approach
described in the previous subsection. Each simulation is repeated ten times because of
the stochastic nature of the processes. The result of each simulation is compared to the
ground-truth of the dataset. The number of errors is given in Tables 9.10, 9.11, and 9.12
for the VND-GDE3, K-means, and DBSCAN methods, respectively. Finally, the results
of the clustering is visualized in Figures 9.22 – 9.28. Note that the Iris dataset is not
visualized because the data-items have four dimensions.

The VND-GDE3 method used 100 agents over 50 iterations. Controlling parameters
of VND-GDE3 algorithms were set as follows: the scaling factor 𝐹 = 0.2, the probability
of crossover 𝑃𝐶 = 0.2, and the probability of dimension transition 𝑃DT = 0.35. The
minimal number of clusters for all datasets was two, and the maximal number of clusters
was 35. The K-means method was performed for 250 iterations for each problem. The
number of clusters for each dataset was pre-set to the ideal value, as shown in Table 9.9.
The DBSCAN method uses two user-defined parameters – 𝑁𝑃 and 𝜖. They vary for each
dataset, and the value shown in Table 9.9 was obtained empirically. Note that Table 9.9
also contains references to where the individual datasets were obtained.

In Tables 9.10, 9.11, and 9.12, it can be seen that the VND-GDE3 produced very con-
sistent results compared to the K-means method. In the case of Flame and Aggregation

Table 9.9: Settings of clustering methods
VND-GDE3 K-means DBSCAN

Dataset 𝐾min 𝐾max 𝐾 𝑁𝑃 𝜖 𝑁DI Reference
Flame 2 35 2 4 1 240 [125]
Aggregation 2 35 7 3 1.2 788 [126]
Unbalanced 2 35 8 4 10000 6500 [127]
S1 2 35 15 4 20000 5000 [128]
S3 2 35 15 4 15000 5000 [128]
R15 2 35 15 4 0.4 600 [129]
D31 2 35 31 7 0.6 3100 [129]
Iris 2 35 3 5 0.25 150 [130]
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Table 9.10: Number of errors in clusters proposed by VND-GDE3
Run Flame Aggregation Unbalanced S1 S3 R15 D31 Iris

1 39 107 0 4 91 2 119 16
2 39 108 0 4 101 2 119 16
3 39 107 0 4 108 2 170 16
4 39 107 0 4 118 2 156 16
5 39 107 0 3 84 2 185 16
6 39 107 0 4 109 2 104 16
7 39 107 0 3 94 2 180 16
8 39 107 0 3 96 2 135 16
9 39 107 0 4 81 2 105 16
10 39 107 0 4 99 2 240 16

Table 9.11: Number of errors in clusters proposed by K-means method
Run Flame Aggregation Unbalanced S1 S3 R15 D31 Iris

1 38 102 2042 437 1542 193 752 77
2 38 165 2042 506 984 116 867 77
3 35 95 4073 2156 103 221 678 17
4 39 107 0 416 676 140 1050 17
5 39 169 1102 1503 1808 224 947 75
6 41 106 4053 487 1229 273 1194 74
7 41 107 2045 928 754 113 1089 17
8 38 146 2040 4 689 246 753 17
9 38 169 2041 1230 649 213 969 17
10 38 169 0 1562 599 173 848 75

Table 9.12: Number of errors in clusters proposed by DBSCAN method
Run Flame Aggregation Unbalanced S1 S3 R15 D31 Iris

∀ 9 135 14 190 3128 57 1073 124

datasets, the K-means method was able to find a better solution than VND-GDE3. How-
ever, the improvement in best-case scenarios is very small compared to the deterioration
in worst-case scenarios. It can be seen in Table 9.12 that the number of errors for any
repetition of the DBSCAN method resulted in the same cluster geometry. Although the
DBSCAN is stochastic, the only randomness is involved in the selection of the starting
(unvisited) solution in a new cluster.

The following Figures 9.22 – 9.28 contain a set of subfigures for each dataset. The first
subfigure shows the ground-truth. Below the ground-truth, there are pairs of subfigures
next to each other for each clustering method. The visualization shows the best-case
scenario. If the worst-case scenario for a corresponding method and dataset is diverse
enough, the visualization of the worst-case scenario is shown as well. Each cluster in a
figure is distinguished by a different color. However, there are only nine different colors
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in the qualitative color scheme used. Therefore, there may be more clusters using the
same color in the same figure. Therefore, it is necessary to distinguish the centroids of the
clusters as well. They are marked with the cross sign with the same color as the data-items
in the corresponding cluster.

The visualization of the Flame dataset is shown in Figure 9.22. It can be seen that
VND-GDE3 and K-means methods performed rather poorly. However, this dataset is
designed specifically so that clustering methods based on measurement of Euclidean dis-
tance from centroids would fail. Contrarily, the DBSCAN method excels in such problems.
However, its result is strongly dependent on the settings of the 𝑁𝑝 and 𝜖 controlling pa-
rameters. These parameters vary according to the clustering dataset under test, and the
setting itself is not a trivial task.

The Aggregation dataset is a rather deceptive one. There are clusters with different
sizes and a different number of data-items in them. Figures 9.23b and 9.23c show the best
solution from the VND-GDE3 method. The VND-GDE3 method was unable to divide the
three bottom left clusters with different sizes correctly. However, the K-means algorithm
was also struggling, as can be seen in Figures 9.23d – 9.23g. On the other hand, the
DBSCAN method managed well with the bottom left clusters. However, it got caught
in another trap. There is a connection between the two clusters on the right. This is
specifically designed to outwit the density-based algorithms such as the DBSCAN is.

Figure 9.24 shows the Unbalanced benchmark dataset. It can be seen from Tables 9.10,
9.11, and 9.12 that the VND-GDE3 algorithm found the ideal solution in all runs. On the
other hand, the K-means algorithm found the ideal solution only twice. In the remaining
attempts, the K-means method often failed to separate the three clusters on the left.
The problem is that these clusters contain a large number of data-items compared to the
clusters on the right. The DBSCAN method found a satisfactory solution, apart from the
data-items it marked as outliers.

The S1 benchmark dataset contains 15 clusters that are rather separated. The best
solution of VND-GDE3 and K-means methods are almost identical and not far from
ground-truth. However, the VND-GDE3 maintained such a solution consistently in all
runs. Contrarily, the K-means method found satisfactory solution just once. Figures 9.25f
and 9.25g show the worst solution from the K-means method. The number of incorrectly
assessed centroids is large. The DBSCAN method performed rather well. However, the
number of clusters proposed by the DBSCAN is 17 because some outlying solution were
incorrectly considered as a new cluster.

Figure 9.26 visualizes the S3 dataset. This dataset shows clusters that are poorly
separated compared to the S1 dataset. As shown in Figures 9.26b – 9.26e, the VND-
GDE3 performed rather well, and the difference between the best and worst solution is
relatively small. On the other hand, the difference between the best and worst solution of
the K-means method is extensive. The DBSCAN method on the S3 dataset completely
fails because some of the clusters are not separated at all.

Visualization of the R15 dataset is shown in Figure 9.27. The VND-GDE3 found ten-
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times the solution with only two errors. Contrarily, the K-means algorithm was not able
to cluster the data satisfactorily. The DBSCAN method failed to recognize 15 clusters.

Figure 9.28 shows the visualization of the D31 dataset. As the name suggests, the
number of clusters in this dataset is 31. That brings a considerable challenge to the
clustering algorithm. Nonetheless, the VND-GDE3 found solutions with a minimum of 104
errors and a maximum of 240 errors. The reason that there were 240 incorrectly assigned
data-items is that the algorithm proposed 35 clusters. However, in comparison with the
K-means and the DBSCAN methods, the VND-GDE3 still has the best performance on
the D31 dataset.

Finally, the Iris dataset is not visualized in figures because its data-items have four
dimensions. Nonetheless, this dataset is the most used in publications related to cluster-
ing discipline. Tables 9.10, 9.11, and 9.12 show that the VND-GDE3 algorithm is most
convenient because it found a solution with only 16 errors in all the repetitions.

(a) Ground-truth of Flame dataset.

(b) Best clusters proposed by VND-GDE3. (c) Ground-truth vs. best VND-GDE3.

Figure 9.22: Visualization of Flame clustering dataset.
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(d) Best clusters proposed by K-means. (e) Ground-truth vs. best K-means.

(f) Best clusters proposed by DBSCAN. (g) Ground-truth vs. best DBSCAN.

Figure 9.22: Visualization of Flame clustering dataset.

(a) Ground-truth of Aggregation dataset.

Figure 9.23: Visualization of Aggregation clustering dataset.
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(b) Best clusters proposed by VND-GDE3. (c) Ground-truth vs. best VND-GDE3.

(d) Best clusters proposed by K-means. (e) Ground-truth vs. best K-means.

(f) Worst clusters proposed by K-means. (g) Ground-truth vs. worst K-means.

Figure 9.23: Visualization of Aggregation clustering dataset.
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(h) Best clusters proposed by DBSCAN. (i) Ground-truth vs. best DBSCAN.

Figure 9.23: Visualization of Aggregation clustering dataset.

(a) Ground-truth of Unbalanced dataset.

(b) Best clusters proposed by VND-GDE3. (c) Ground-truth vs. best VND-GDE3.

Figure 9.24: Visualization of Unbalanced clustering dataset.
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(d) Best clusters proposed by K-means. (e) Ground-truth vs. best K-means.

(f) Worst clusters proposed by K-means. (g) Ground-truth vs. worst K-means.

(h) Best clusters proposed by DBSCAN. (i) Ground-truth vs. best DBSCAN.

Figure 9.24: Visualization of Unbalanced clustering dataset.
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(a) Ground-truth of S1 dataset.

(b) Best clusters proposed by VND-GDE3. (c) Ground-truth vs. best VND-GDE3.

(d) Best clusters proposed by K-means. (e) Ground-truth vs. best K-means.

Figure 9.25: Visualization of S1 clustering dataset.
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(f) Worst clusters proposed by K-means. (g) Ground-truth vs. worst K-means.

(h) Best clusters proposed by DBSCAN. (i) Ground-truth vs. best DBSCAN.

Figure 9.25: Visualization of S1 clustering dataset.

(a) Ground-truth of S3 dataset.

Figure 9.26: Visualization of S3 clustering dataset.
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(b) Best clusters proposed by VND-GDE3. (c) Ground-truth vs. best VND-GDE3.

(d) Worst clusters proposed by VND-
GDE3.

(e) Ground-truth vs. worst VND-GDE3.

(f) Best clusters proposed by K-means. (g) Ground-truth vs. best K-means.

Figure 9.26: Visualization of S3 clustering dataset.
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(h) Worst clusters proposed by K-means. (i) Ground-truth vs. worst K-means.

(j) Best clusters proposed by DBSCAN. (k) Ground-truth vs. best DBSCAN.

Figure 9.26: Visualization of S3 clustering dataset.

(a) Ground-truth of R15 dataset.

Figure 9.27: Visualization of R15 clustering dataset.
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(b) Best clusters proposed by VND-GDE3. (c) Ground-truth vs. best VND-GDE3.

(d) Best clusters proposed by K-means. (e) Ground-truth vs. best K-means.

(f) Worst clusters proposed by K-means. (g) Ground-truth vs. worst K-means.

Figure 9.27: Visualization of R15 clustering dataset.
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(h) Best clusters proposed by DBSCAN. (i) Ground-truth vs. best DBSCAN.

Figure 9.27: Visualization of R15 clustering dataset.

(a) Ground-truth of D31 dataset.

(b) Best clusters proposed by VND-GDE3. (c) Ground-truth vs. best VND-GDE3.

Figure 9.28: Visualization of D31 clustering dataset.
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(d) Worst clusters proposed by VND-
GDE3.

(e) Ground-truth vs. worst VND-GDE3.

(f) Best clusters proposed by K-means. (g) Ground-truth vs. best K-means.

(h) Worst clusters proposed by K-means. (i) Ground-truth vs. worst K-means.

Figure 9.28: Visualization of D31 clustering dataset.
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(j) Best clusters proposed by DBSCAN. (k) Ground-truth vs. best DBSCAN.

Figure 9.28: Visualization of D31 clustering dataset.
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10 CONCLUSION

This dissertation thesis deals with multi-objective evolutionary optimization with variable
number of dimensions. Many real-life optimization tasks use decision vectors of variable
length by nature. Although standard optimization algorithms with a fixed number of
dimensions can solve such tasks, either the computational demands are much higher com-
pared to the algorithms with a variable number of dimensions, or the representation of
the problem has to be simplified. Therefore, the risk of losing decision space resolution
emerges.

The idea of optimization algorithms with variable number of dimensions is probably as
old as optimization algorithms itself. However, the research of optimization methods with
variable number of dimensions is rather marginal compared to the fixed-length one. The
survey of work in the field of optimization with a variable number of dimensions showed
that there are many of them, but they are mostly only single-objective or can not work
with the decision vectors of uneven lengths in the pure-VND nature.

Particle Swarm Optimization for Variable Number of Dimensions is one of the algo-
rithms that is considered to be the pure-VND algorithm. However, it is a single-objective
optimization algorithm. Nonetheless, the employed methodology for handling the vec-
tors of different lengths was successfully applied in a multi-objective version of Particle
Swarm Optimization. That gave birth to the VND-MOPSO algorithm. Similarly, a multi-
objective Differential evolution-based algorithm with a variable number of dimensions was
derived from GDE3 – the VND-GDE3 algorithm [62].

Both novel methods were verified by comparative studies against their impure-VND
peers and also against the Clustered-GDE3 method. The Clustered-GDE3 method repre-
sents the standard algorithm with a fixed number of dimensions applied to problems with
a variable number of dimensions. It was shown that a pure-VND algorithm outperforms
both opponents, especially if the number of dimensionalities is large.

Before the comparison of the novel methods against others, the study of their setting
parameters had to be carried out. Both these controlling parameters (the probability
of dimensions transition in the VND-GDE3 and the probabilites to follow in the VND-
MOPSO) control the behavior of the algorithm in search of the optimal dimensionality of
the problem. Studies of other controlling parameters, common with non-VND peers, are
unnecessary because the VND methodology does not change the basic principles of the
corresponding predecessor. Therefore, the setting of parameters from various studies in
the literature still applies.

The verification of the methods utilizes a library of testing problems with a variable
number of dimensions. This library was created by modifying the well-known libraries
for multi-objective optimization (namely: DTLZ, LZ, UF, and ZDT libraries). Therefore,
the convergence properties of such testing problems are ensured. The methodology is well
described and is easily applicable to any scalable multi-objective problem.

All the methods and testing problems are included in the FOPS optimization frame-
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work [MM2, MM4]. The development of the framework is an important part of this thesis,
although its development began before my doctoral studies. The reason for the creation
of FOPS is that there did not exist any framework where optimization methods with a
variable number of dimensions could be implemented. The use of a framework is essential
if various and numerous comparative studies are to be composed, executed, and visualized.

FOPS is a unique tool for the optimization of all kinds. It has already been exploited
in various papers [MM8, MM9, MM1, MM10, MM11, MM12, MM13, MM14, MM15]. The
last chapter of this thesis presents several real-life applications published in [MM7, 63, 64].
All of them were carried out in the FOPS framework. This demonstrates the versatility
of the FOPS. Moreover, most of the applications are problems with a variable number of
dimensions from the field of electrical engineering.

The first VND application is the Optimal placement of transmitters. It was published
in [MM2] This problem is a perfect demonstration of the VND problem that can not be
tackled with a non-VND algorithm without considerable limitations. Either the number
of transmitters is defined a priori, or the decision space is sampled so the transmitters at
predefined positions can be enabled or disabled. The sampling of the decision space is
shown in the next application – the linear antenna array problem.

The linear antenna array problem presents a synthesis of dipole array where the side-
lobe level and the number of active dipoles are optimized. The problem shows two different
representations of the problem – representation with a variable number of dimensions tack-
led by the VND-GDE3 algorithm and representation with a fixed number of dimensions
using a uniform-grid. Uniform-grid representation is tackled by the standard GDE3 al-
gorithm. It is shown that better values of Side-lobe Level with fewer antennas used are
achieved with the VND-GDE3 algorithm. The problems was published in [62] and [MM12].

Another application is the synthesis of digital circuits. In this application, the 3-input,
6-input, and 11-input multiplexers were synthesized by the VND-GDE3 algorithm. The
number of product terms in the SOP expression was arbitrary. Therefore, the digital
circuits were synthesized without the use of Karnaugh maps or other time-consuming
methods.

The next-to-last application is the automated image thresholding. The standard, ex-
haustive approach is compared to the evolutionary approach in the first part. Afterward,
the optimization algorithm with a variable number of dimensions is used to segment the
testing images by multiple thresholds, and the last part utilizes the multiple threshold
approach in license-plate recognition.

Finally, the clustering problem is solved by a multi-objective evolutionary algorithm
with a variable number of dimensions. The evolutionary approach eliminates the main
disadvantage of the widely used K-means clustering method. Several clustering bench-
mark datasets were tackled by two standard clustering methods and one exploiting the
VND-GDE3 algorithm. It was shown that for most clustering datasets, the VND-GDE3
approach was the most successful method.
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APPENDIX A

This appendix contains an extended library of images from thresholding problem for
license-plate recognition. There are eight subfigures for each testing image noted from
a) to h):

a) original testing image,
b) testing image segmented by one threshold,
c) testing image segmented by two thresholds,
d) the best of three layers where the license plate is most clear
e) testing image segmented by three thresholds,
f) the best of four layers where the license plate is most clear
g) testing image segmented by four thresholds,
h) the best of five layers where the license plate is most clear.
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(a) Original greyscale image – AMG. (b) AMG with one threshold.

(c) AMG with two thresholds. (d) Two thresholds – first layer.

(e) AMG with three thresholds. (f) Three thresholds – first layer.

(g) AMG with four thresholds. (h) Four thresholds – first layer.

Figure 10.1: LPR testing image – AMG [110].
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(a) Original greyscale image – BMW rear. (b) BMW rear with one threshold.

(c) BMW rear with two thresholds. (d) Two thresholds – second layer.

(e) BMW rear with three thresholds. (f) Three thresholds – third layer.

(g) BMW rear with four thresholds. (h) Four thresholds – fifth layer.

Figure 10.2: LPR testing image – BMW rear [111].
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(a) Original greyscale image – BMW front. (b) BMW front with one threshold.

(c) BMW front with two thresholds. (d) Two thresholds – first layer.

(e) BMW front with three thresholds. (f) Three thresholds – first layer.

(g) BMW front with four thresholds. (h) Four thresholds – first layer.

Figure 10.3: LPR testing image – BMW front [112].
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(a) Original greyscale image – Taxi. (b) Taxi with one threshold.

(c) Taxi with two thresholds. (d) Two thresholds – first layer.

(e) Taxi with three thresholds. (f) Three thresholds – first layer.

(g) Taxi with four thresholds. (h) Four thresholds – first layer.

Figure 10.4: LPR testing image – Taxi [113].
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(a) Original greyscale image – Caddy. (b) Caddy with one threshold.

(c) Caddy with two thresholds. (d) Two thresholds – first layer.

(e) Caddy with three thresholds. (f) Three thresholds – first layer.

(g) Caddy with four thresholds. (h) Four thresholds – first layer.

Figure 10.5: LPR testing image – Caddy [131].
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(a) Original greyscale image – Fiesta. (b) Fiesta with one threshold.

(c) Fiesta with two thresholds. (d) Two thresholds – second layer.

(e) Fiesta with three thresholds. (f) Three thresholds – third layer.

(g) Fiesta with four thresholds. (h) Four thresholds – fourth layer.

Figure 10.6: LPR testing image – Fiesta [132].
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(a) Original greyscale image – Polo. (b) Polo with one threshold.

(c) Polo with two thresholds. (d) Two thresholds – first layer.

(e) Polo with three thresholds. (f) Three thresholds – first layer.

(g) Polo with four thresholds. (h) Four thresholds – first layer.

Figure 10.7: LPR testing image – Polo [132].
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(a) Original greyscale image – GTR. (b) GTR with one threshold.

(c) GTR with two thresholds. (d) Two thresholds – first layer.

(e) GTR with three thresholds. (f) Three thresholds – first layer.

(g) GTR with four thresholds. (h) Four thresholds – first layer.

Figure 10.8: LPR testing image – GTR [133].
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(a) Original greyscale image – MB. (b) MB with one threshold.

(c) MB with two thresholds. (d) Two thresholds – first layer.

(e) MB with three thresholds. (f) Three thresholds – first layer.

(g) MB with four thresholds. (h) Four thresholds – first layer.

Figure 10.9: LPR testing image – MB [134].
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(a) Original greyscale image – Porsche. (b) Porsche with one threshold.

(c) Porsche with two thresholds. (d) Two thresholds – first layer.

(e) Porsche with three thresholds. (f) Three thresholds – first layer.

(g) Porsche with four thresholds. (h) Four thresholds – first layer.

Figure 10.10: LPR testing image – Porsche [135].
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