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Abstract

In this paper elastic lateral-torsional behavior of simple beams is discussed. The motivation of the presented research is the observation 

that classic analytical prediction and finite element prediction are, typically, considerably different, when the second-order nonlinear 

behavior of beams with initial imperfections is analyzed. In order to understand and explain the observed differences, a novel analytical 

solution is presented for the geometrically nonlinear analysis of beams with initial geometric imperfection. The presented analytical 

solution is derived for doubly-symmetric cross-sections, but with the novelty that it takes into consideration the changing geometry as 

the load is increasing. The most important steps of the derivations are summarized, and the resulted formulae are briefly discussed. 

Numerical studies are performed, too: the results of the new analytical formulae are compared to those from shell finite element 

analysis. The results suggest that the new formulae are able to capture the most important elements of the behavior. By the analytical 

and numerical results, it is proved that classic analytical solutions for the geometrically nonlinear analysis of beams with geometric 

imperfections are necessarily different from the numerical results obtained by incremental-iterative procedures.

Keywords

lateral-torsional buckling, geometrically nonlinear analysis, geometric imperfections

1 Introduction
Buckling is one of the most critical behavior and failure 
types of thin-walled members. In the case of beams, when 
the primary action is bending, the global buckling is usu-
ally called lateral-torsional buckling, popularly abbrevi-
ated as LTB. If the beam is subjected to a loading with 
increasing intensity, the displacements are slowly increas-
ing in the plane of the loading, but when the load approx-
imates a certain level, the member can start to develop 
rapidly increasing out-of-plane displacements character-
ized by twisting rotations and translations perpendicular 
to the plane of loading. In a general sense this phenomenon 
is called buckling. If the beam is free from imperfections 
and its material is perfectly elastic, the analysis is usually 
termed as linear buckling analysis (LBA). The LTB prob-
lem, mathematically, is a generalized eigen-value prob-
lem: the eigen-vectors (or eigen-functions) are the buckling 
shapes, the eigen-values are the critical values of the load, 
e.g., critical moments. Closed-form analytical solutions 

for the critical moments are known, at least for simpler 
cases, and can be found in classic textbooks [1, 2]. It must 
be noted, however, that when the cross-section, or loading, 
or boundary conditions of the beam are less regular, it is 
not easy to find analytical solutions, that is why researches 
on LTB LBA continued for decades, see e.g., [3], and even 
nowadays the topic shows up in research papers [4–7].

Practical structures are never perfect, and in the case of 
buckling the – even small – initial imperfections can sig-
nificantly influence the behavior. That is why the solution 
of the LBA problem alone is usually not sufficient to pre-
dict the capacity, but somehow the effect of imperfections 
must be included. One of the simplest ways to consider 
the imperfections is to use (equivalent) geometric imper-
fections, i.e., to consider that the beam is not perfectly 
straight even before it is loaded. The concept, probably, 
was first applied by Young [8] for columns, and then was 
extended to other types of buckling. 
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It was realized very early that applying an initial imper-
fection can be a useful tool in predicting the load-bear-
ing capacity. The approach, perhaps, was first applied 
in [9], and the approach and resulting formula are named 
after the authors: Ayrton-Perry approach/formula. This 
approach, indeed, is the basis of the European buckling 
curves, proposed by [10], which are still in use in the cur-
rent Eurocode standards, e.g., [11, 12], both for column 
buckling and LTB. Further generalized application of the 
approach is possible, as proposed e.g., in [13].

Since nowadays structural analysis is typically per-
formed by computer programs, most popularly by the finite 
element method (FEM), it is a possible design approach 
to directly consider geometric imperfections in the analy-
sis. If the analysis is elastic, it is typically abbreviated as 
GNIA (i.e., Geometrically Non-linear Analysis with Imper-
fections), and this approach is directly included in many 
design standards, including [11]. Even so, it is not necessar-
ily evident what shape and magnitude of geometric imper-
fections should be applied. A popular idea is to apply some 
buckling shape, i.e., the result of an LBA analysis, but the 
question has not been fully solved yet, which explains the 
more recent research effort on this topic, e.g., [14].

Recently it was shown in [15], however, that there is 
a discrepancy between the results predicted by the classic 
analytical GNI solution (see e.g., [14, 16] and those calcu-
lated by shell FEM GNI analyses. The discrepancies can 
be important. Also, the discrepancies are not limited to the 
difference of certain numerical values, but some basic fea-
tures of the behavior are affected. For example, while the 
classic analytical solutions predict symmetric bifurcation 
for LTB, independently of the cross-section, shell finite 
element GNI analysis suggests asymmetric bifurcation in 
some cases. Moreover, while the classic analytical solu-
tions predict that the maximal moment equals the critical 
moment, numerical results do not always confirm this pre-
diction. To reveal the reasons of the experienced discrepan-
cies, the authors developed an advanced analytical model. 

The primary aim of this paper, therefore, is to present 
an advanced analytical solution for the nonlinear behav-
ior of simple beams with initial geometric imperfections. 
Some preliminary results have been reported in [17]. 
In this paper a more comprehensive presentation and dis-
cussion of the developed advanced analytical models are 
included, focusing on doubly-symmetric cross-sections. 
(It is to note that more general cross-sections will be dis-
cussed in a separate paper.)

In the paper, first the proposed analytical model is sum-
marized, then solutions are presented to various problems, 
starting with brief mentioning of classic solutions (LBA 
and GNIA), then presenting the most advanced one when 
the load is applied in increments and during the incre-
mental procedure the stiffness matrix and load vectors are 
updated. Numerical studies have also been conducted, the 
results of which are summarized at the end of the paper. 
Finally, conclusions are drawn. 

2 General description of the analytical model 
In this section the applied analytical model is described. 
The model is developed for simply-supported beams sub-
jected to two opposite end-moments, resulting in the uni-
form moment along the length, see Fig. 1. The cross-section 
is doubly-symmetric. In the examples I-sections beams are 
considered, being the most typical steel beams, but the der-
ivation is valid for any doubly-symmetric cross-section. 

Depending on the purpose of the analysis (e.g., linear 
buckling analysis, first- or second-order static analysis) 
the model needs adjustments, as we will see in subsequent 
Sections; here a generic description is given. 

The mechanical features are as follows: (i) the thin-walled 
member is modelled as an assembly of plane plates (referred 
to also as strips), (ii) global buckling/behavior is defined 
as the modes with no cross-section distortion, and with no 
in-plane transverse extension and no in-plane shear defor-
mations, (iii) the stress-strain field is assumed according to 
Kirchhoff plate theory for the out-of-plane behavior and to 
a conventional 2D stress-strain state for the in-plane behav-
ior of each plate element, (iv) the material model follows 
Hooke's law, (v) the end moments are applied as distributed 
loading, linearly varying over the (end) cross-sections.

Since global behavior is defined as displacements with 
no cross-section distortion, the global displacements of 
the reference line of the member (defined by the cross-sec-
tion mass centers) are expressed as follows:

Fig. 1 Simply supported beam in uniform bending
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where Um, Vm and Wm are global translational displace-
ment amplitudes, Æm is the global torsional displacement 
amplitude, and the f functions determine the longitudi-
nal distributions. Though the longitudinal displacements 
may have some effect, this effect is typically negligible for 
practical cross-sections and practical length ranges, there-
fore, the global longitudinal displacement of the cross-sec-
tions will be neglected here, i.e., Um = 0 is assumed.

From the global displacements of the cross-section the 
displacements of the strips' (longitudinal) mid-lines can be 
defined as follows (see Fig. 2):

v Vcos Wsin Y sin Z cosm i i i m i i m i i, , , ,� � �� �� �� � � �  (2)
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where Ym,i and Zm,i are the global coordinates of the i-th 
strip's mid-point, ωm,i is the sectoral coordinate introduced 
by Vlasov [2] (with respect to shear center) at the loca-
tion of the i-th strip mid-point. All the mid-point displace-
ments are expressed in terms of the global longitudinal 
coordinate X. Moreover, the local x and global X longi-
tudinal axis are parallel, and the X and x coordinates are 
numerically identical. Note that formulae for the calcula-
tion of shear center and sectoral coordinates can be found 
in textbooks, as well as a good summary is given in the 
Eurocode for cold-formed steel, see Annex C of [12].

By using the above displacements in the mid-point of 
the strips, the local displacement functions of the strips 
can be expressed as follows:

u u v y w z yzi m i m i m i m i� � � �, , , ,� , (6)

v v zi m i m i� �, ,� , (7)

w w yi m i m i� �, ,� , (8)

� �i m i� , . (9)

Thus, the u(x, y, z), v(x, y, z), w(x, y) and (x) local dis-
placement functions of each strip are expressed by the Um, 
Vm and Wm global displacement amplitudes.

For the solution the energy method is applied, i.e., the 
equilibrium is interpreted as the stationary point of the total 
potential function. The internal potential (i.e., accumulated 
elastic strain energy) and external potential (i.e., the neg-
ative of the work done by the loads) should be expressed. 
Classical formulae are used. The strain energy is expressed 
as follows:
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where the integral, in fact, means double integration with 
respect to x and y, for the whole surface of the strip, i.e., 
x is taken from 0 to L, and y is taken from (–bi/2) to (+bi /2). 
Moreover, L is the member length, bi and ti are the width 
and thickness of the i-th strip, respectively, n is the num-
ber of strips, and E and G are Young's modulus and shear 
modulus, respectively. It is to observe that the first term 
within the integral represents the membrane effect, while 
the second and third terms represent plate flexure.

The external potential is the negative of the work done 
by the external loads, and expressed as follows: 

�ext
i

n

V
x i x i� �

�
��
1

� �, , dA . (11)

In this expression σx,i is the longitudinal normal stress 
function for the i-th strip, εx,i is the corresponding strain 
function (i.e., longitudinal normal strain). Depending on 
the problem we want to solve, sometimes the first-order 
(linear) strain is needed, sometimes the non-linear strain, 
while in other cases both. For the linear part: 

� x i
I iu

x, �
�
�

. (12)

For the non-linear part we use the Green-Lagrange 
strain tensor, the strains can be expressed as:
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Fig. 2 Global/local coordinates and displacements
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It is to observe that the second-order strain can readily 
be interpreted as the quadratic approximation of the longi-
tudinal elongation/shortening due to the inclination of the 
fibers of the strip, which inclination is nothing else than 
the first derivative of the v and w transverse translation 
functions with respect to x. 

The stress in the member, therefore the stress in each 
strip, is dependent on the loading, as well as on whether we 
consider the changed stress state as the member deforms. 
If the member is subjected to uniaxial bending, the pri-
mary, first-order stress is linearly varying with Z, and can 
be expressed as: 

� � �x i
I Y

y
m i i i

M
I

Z y sin z cos, ,� � � � � � � � � �� � , (14)

where Iy is the second moment of area calculated for the 
Y-axis. Note that later on we will consider second-order 
stress terms, too.

Once the total potential is expressed, we can use the 
theorem of stationarity of total potential to find equilib-
rium. Practically, the first partial derivatives with respect 
to the displacement parameters (namely: Um, Vm and Wm) 
must be equal to zero. This leads to a system of equations. 
The nature of this equation system is dependent on what 
stress and strain terms we include in calculating the total 
potential, as will be shown as follows.

3 Classic analytical solution: linear buckling analysis
To get the linear buckling problem (LBA), we need to con-
sider trigonometric global displacement functions. When 
the member is hinged (i.e., forked), single half sine-waves 
work well, the considered displacement functions are, 
therefore:
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where Wm, Vm and Æm are the amplitudes for the verti-
cal and lateral translations and for the twisting rotation, 
respectively, X is the longitudinal coordinate axis, and L 
is the beam length. By following the procedure described 
above, the theorem of stationarity of potential leads to 
a system of linear equations, which, in other words, is 
a generalized eigen-value problem. This reads as:
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where the Fx, Fy and Fz symbols are defined as follows:
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where Iy and Iz are the second moments of areas calcu-
lated for the Y-axis and Z-axis, respectively, Iw is the warp-
ing constant, It is the torsion constant. The first matrix is 
the Ke elastic stiffness matrix, while the second one is the 
Kg geometric stiffness matrix of the problem. The first 
equation is independent of the other two equations, can 
be solved separately, and lead to the solution that Wm = 0. 
This means that in order to get a buckling solution, dis-
placement in the plane of the bending is not necessary to 
consider. The second and third equation form a general-
ized eigen-value problem. Due to its simplicity, there is 
analytical solution, which is nothing else than the critical 
moment value (s):

M F Fcr x z� � � . (18)

Since the cross-section is doubly-symmetric, the two 
algebraic solutions are plus-minus pair. The physical 
meaning is that if there is a positive critical moment with, 
say, the top flange compressed, then there is another crit-
ical moment with the same magnitude with the opposite, 
say, bottom flange compressed. By back-substitution, we 
can find the buckled shape. Longitudinally, both V and Æ 
have half-sine-wave shape. Since K + Kg is rank-deficient, 
the Vm and Æm amplitudes are dependent on each other, 
otherwise the amplitudes are arbitrary. The relationship 
between Vm and Æm is as follows:

V M
Fm m
cr

z
� �� . (19)

4 Classic analytical solution: GNIA
Next, let us briefly consider geometrically nonlinear anal-
ysis with geometric imperfection. The above derivation 
can similarly be completed by considering a geomet-
ric imperfection in the form of the buckling shape. The 
details of the derivation for this classic case are not shown. 
The derivation leads to an equation similar to Eq. (16), but 
the right-hand side will not be zero anymore, and, based 
on the observation from LBA we can simply eliminate the 
displacement in the plane of the bending. Finally, there are 
two equations, which can be written as follows:
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(20)

It is to emphasize that in the above equation Vm,ini and  
Æm,ini are the amplitudes of the initial geometry (when the 
beam is not loaded yet), and ΔVm and ΔÆm represent the dis-
placement increment from the imperfect state. The right-
hand-side vector is non-zero, and this can conveniently be 
called as load vector, which depends on the amplitudes of 
the initial imperfect geometry. The equation system can be 
solved, and unique solution can be found, as follows:
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The total displacement is the sum of the initial one and 
the increment, which finally leads to the well-known for-
mulae expressing the displacement amplification:
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The above formulae are also known (and will be 
referred to) as Young's formula. The formula is widely used 
in design practice (encouraged by many design codes, too) 
to estimate the amplification due to second-order effects. 

5 Classic GNIA with load increments
Now let us repeat the classical GNI analysis, but with incre-
mental loading. The same analytical model is employed 
as above, however, with some modifications. First, the 
primary and secondary displacements are not separated, 
i.e., the vertical translations will be considered, too. Since 
the primary displacements are essentially due to the pri-
mary loading, which is a uniform moment, a quadratic 
function is assumed for W, in accordance with the clas-
sic first-order solution. Therefore, the assumed global dis-
placement functions are:
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It is highlighted that V, W and Æ are the total displace-
ments, measured from the perfect member. 

Another small modification is that we assume arbitrary 
initial amplitudes, which means that the initial shape is 
not necessarily identical to a buckling shape. (But we will 
consider this special case, too.)
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Finally, which is the most important modification, the 
load is applied in increments. After a certain number of 
increments the load value is MYa, and the corresponding 
displacement amplitudes are: Wma, Vma and Æma. This state 
is an equilibrium state and is referred to as state 'a'. The 
goal is to find the displacement increments ΔWma, ΔVma 
and ΔÆma, as the load is further increased by ΔMY, that 
is when the member reaches the next equilibrium state, 
referred to as state 'b'. The load and the displacements at 
the end of the incremental step are, therefore:

M M M W W W

V V V
Yb Ya Y mb ma m

mb ma m mb ma m
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The incremental load application initiates some modi-
fication in the derivations, summarized as follows. When 
constructing the potential function, we need the incre-
ment of the internal potential, that is the increment of 
the strain energy as the member deforms from state 'a' to 
state 'b'. In each state the accumulated strain energy can 
be expressed by directly substituting into Eq. (10) the dis-
placement parameters, hence the increment can readily be 
expressed as the difference between the strain energies at 
the two states.
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Hence, the strain energy increment is expressed with 
respect to the displacement increments ΔWm, ΔVm and 
ΔÆm.
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The external part of the total potential can be handled 
similarly. This part of the potential increment is the neg-
ative of the work done by the stresses on the strain incre-
ments, where the strain is the sum of the first-order and 
the second-order strain. The increment of the first-order 
part can directly be calculated from Eq. (12), but applying 
it to the displacement increment:
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For the second-order strain increment we apply Eq. (13), 
as follows: 
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from which:

�
� � � �

� x i
II i i ia i iv

x
v
x

v
x

w
x

w
, �

�
�

�
�
�

�
�
� �

�
�

�
�

�
�
�

�
�
�

�
�
� �

�
�

1

2

1

2

2 2

xx
w
x
ia�

�
.
 

(32)

As far as stresses are concerned, obviously we have the 
primary stress, therefore we apply Eq. (14). 
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Thus, with all the above considerations, the expression 
for the increment of the external potential is as follows:
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It is to observe that this work increment, again, is 
expressed with respect to the displacement increments ΔVm, 
ΔWm and ΔÆm, hence the increment of the total potential is 
expressed by the displacement increments.

In equilibrium the total potential is stationary, therefore:
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with ΔΠ = ΔΠint + ΔΠext .
Eq. (35) is a system of three equations, which can be 

summarized in one single matrix equation as follows:
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The above equation system can be solved analytically. 
The solution is as follows:
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From the above formulae it is clear that the primary 
(vertical) displacement is independent of the other dis-
placements and vice-versa. It is also noteworthy that even 
if we consider only one component of the initial imper-
fection, i.e., if we consider either initial lateral translation 
or initial twisting rotation, still there is non-zero incre-
ment of both. In other words: lateral displacement induces 
twisting rotation, and twisting rotation induces lateral 
translation. This also means that typically the amplifica-
tion of Vmv and Æm are different, i.e., the shape of the beam 
changes during the loading process (and not only the ini-
tial shape is amplified).

Let us see the specific case when the initial shape 
is a buckling shape. We can consider the relationship 
between the lateral translation and twisting rotation ampli-
tude, as in Eq. (19). Moreover, for the sake of simplicity, 
let us focus on the first incremental step, i.e.: Wma = 0, 
Vma = Vm,ini, Æma = Æm,ini, and also MYa = 0, therefore 
MYb = ΔMY. The above formulae are significantly simpli-
fied, and read as follows:
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from which the total displacements at the end of this load 
step are:
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The obvious observation is that we get back the classic 
analytical solutions, even if the load is applied in incre-
ments. This is true for the vertical translation (classic 
first-order solution) and the other displacements (clas-
sic GNIA solution). Another important observation is 
that the initial translation and initial twisting are identi-
cally amplified; the consequence is that once the initial 
geometry is the buckled shape, the lateral translation and 
twisting rotation remains similar to the buckling shape 
throughout the loading process. As we will see in the next 
section, this is the consequence of the fact that the stiff-
ness matrix is unchanged during the analysis, see Eq. (37). 
In other words, in this model Kg is not updated.

6 GNIA with updated stiffness
In this section we perform GNIA similar to that in the pre-
vious section, however, the stiffness matrix and load vector 
are updated in each incremental step, in order to follow the 
typical scenario in an incremental finite element analysis. 

The same displacement functions and same initial geom-
etry are used as above, see Eqs. (24–25). The strain energy 
is calculated as in the previous section, see Eqs. (27–29). 
Moreover, the first- and second-order strains are calculated 
as previously, see Eqs. (30) and (32). The important differ-
ence here is that the stresses need to be determined in each 
load step, and the external potential, therefore, is calcu-
lated differently. 

We have the primary stress, just as expressed by Eq. (33).  
However, as now the load is imposed on the member by 
increments, and in each increment, we calculate the actual 

displacements, second-order stresses develop due to the 
displacements, namely: due to V and Æ. To determine these 
second-order stresses, we utilize classic differential equa-
tions, namely equations (6–5) and (6–6) of [1].

Equation (6–5) of [1] can be written (by using the nota-
tions of the actual paper) as follows:
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Mz Y
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2

2
0 . (47)

This equation expresses the moment equilibrium in 
the minor-axis direction. The first term represents the 
stress resultant, which, if initial geometric imperfection 
is present, is to be calculated from the (V – Vini) displace-
ment. The second term represents the minor-axis compo-
nent of the MY as the cross-section is twisted. Since the 
resultant of the stresses for the minor-axis bending can be 
expressed as:

M EI
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XZ z
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� �� �

�

2

2 , (48)

the minor-axis bending moment due to twisting rotation 
of the cross-section is:

M MZ Y� � , (49)

from which the stress in the i-th strip, e.g., at state 'b', is:
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 (50)

Thus, when the member is twisted, MY generates MZ. 
This can readily be illustrated, see Fig. 3. It is to note that 
the assumed longitudinal distribution of Æ is a half-sine 
wave, accordingly the longitudinal distribution of MZ is 
a half sine-wave, which is different from the uniform lon-
gitudinal distribution of MY. 

Fig. 3 Illustration of minor-axis moment induced by twist
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Similarly, if the member is laterally displaced, MY gen-
erates bi-moment. Equation (6–6) of [1] can be written 
(by using the notations of the actual paper) as:w
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V
X
Mt w Y

��
�

�
� �
�

�
�
�

�
3

3
0 . (51)

This equation expresses the equilibrium of torsional 
moments. The first and second terms represent the stress 
resultants from Saint-Venant torsion (i.e., resultants of shear 
stresses) and warping torsion (i.e., resultant of warping nor-
mal stresses). If initial geometric imperfection is present, 
these terms should be calculated from the (Æ – Æini) dis-
placement. The third term represents the torsional moment 
component of the external MY moment, due to the inclina-
tion of the cross-section as it laterally displaces. The actual 
version of Eq. (51), therefore, can be written as follows:
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Both V and Æ are assumed to have a half sine-wave lon-
gitudinally, and the same for the initial shapes. By consid-
ering these functions we get:
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It is known that the torsional resultant of the warping 
normal stresses is the bi-moment:
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2

2 , (55)

from which, by using Eqs. (24–25), the bi-moment ampli-
tude can be expressed as:
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Substituting Eq. (54) into Eq. (56) we get the bi-mo-
ment amplitude which represents the influence of the lat-
eral translation, as follows:
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From the bi-moment the stress in the i-th strip can read-
ily be calculated, e.g., at state 'b' it is:
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where ωi is the sectoral coordinate function for the i-th strip. 
In the case of a doubly-symmetric I-section beam, the 

normal stresses due to lateral displacement can be illus-
trated as in Fig. 4, where the equilibrium of a part of the 
beam is presented. 

As it is shown in Fig. 4, the top flange is subjected to 
uniform compression at the supports, the bottom flange is 
to uniform tension. Between the supports the flanges are 
subjected to eccentric compression/tension, therefore there 
is lateral bending from which linearly varying stresses 
develop, just as if the cross-section were subjected to 
bi-moment. (It is to mention, however, that this illustration 
considers the normal stresses only. Shear stresses must also 
be involved in order to maintain torsional equilibrium.)

Thus, with all the above considerations, the external 
potential increment in Eq. (34) must be supplemented by 
an additional term, and finally the external work incre-
ment is expressed as follows:
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 (59)

Fig. 4 Illustration of bi-moment induced by lateral translation
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In equilibrium the total potential is stationary, there-
fore, we apply Eq. (35), which leads to a system of equa-
tions just as Eq. (36), however, now  and  are slightly dif-
ferent, as follows:
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The equation system can be solved analytically. The 
resulting displacement increments are as follows:
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The expressions for the displacement can slightly be 
simplified if the initial shape is the buckling shape, i.e., 
when the initial twist and initial lateral translation are 
dependent on each other. However, whether the initial 
shape is the buckling shape or not, it is clear that the lateral 
translation and twisting rotation are different from those 
predicted by the Young's formula. Moreover, the formulae 
for V and Æ are different. 

An important characteristic of these formulae is that 
if the sign of the initial geometry is reversed then (i) the 
vertical W displacement is unchanged, (ii) the sign of 
the lateral increment is reversed, and (iii) the sign of the 

twisting rotation increment is reversed. This also means 
that a symmetric bifurcation is predicted (as the initial dis-
placement converges to zero). 

As the bending moment increases, the denominator of 
the formulae can decrease to zero, which identifies sin-
gularity. From the formulae it can be seen that the singu-
larity belongs to a bending moment smaller than Mcr. The 
distance of the singularity to Mcr is largely dependent on 
the twisting rotation (squared). Since the whole analytical 
model is based on the assumption that the displacements 
are small, the bending moment where singularity happens 
is only marginally smaller than Mcr.

Another theoretical observation is that the primary (W) 
and secondary (V and Æ) displacements are not indepen-
dent. However, the secondary ones are not affected by 
the primary one, only the primary one is affected by the 
secondary ones. This influence is typically small, again, 
because the displacements themselves are (or: assumed 
to be) small.

7 Comparison to shell FEM: stresses
Three members are considered. All are simply supported 
and subjected to uniform major-axis bending, and all have 
doubly-symmetric I-shaped sections. The depth of each 
section is 200 mm, the flange and web thicknesses are 
20 mm. One cross-section has a flange width of 50 mm 
(referred to as narrow I-section), another has a flange width 
of 200 mm (referred to as wide I-section), while the third 
one has a flange width of 100 mm (referred to as medium 
I-section). The member length is either 2 or 4 m. Standard 
isotropic steel material is used, E = 210 GPa, G = 80.8 GPa. 
GNI analyses are performed, and stresses are calculated by 
using the new formulae, as well as by shell FEM. 

For the shell FEM calculations, the Academic Teaching 
Introductory Release of the commercial Ansys soft-
ware [18] is employed. The beams are modelled by shell 
elements, by using the so-called SHELL181 element, which 
is a four-node element with six degrees of freedom at each 
node (3 translations + 3 rotations). The element is based on 
the first-order shear-deformation theory (usually referred 
to as Mindlin-Reissner shell theory). It has large deflection 
and large strain capabilities.

The finite element mesh is highly regular. The maximum 
element size in the transverse direction was set to 20 mm 
(which means, e.g., 10 elements along the web depth). In the 
longitudinal direction the element size is larger (in order to 
decrease the total number of elements), however, it was 
defined so that the aspect ratio would not be too large. 
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The end support conditions are modelled using kine-
matic coupling constraints which relate the displacements 
of the cross-section nodes to a master node at the first 
and last cross-sections. The master node is defined at the 
mass center of the cross-section. The transverse transla-
tional displacement degrees of freedom are included in the 
coupling, in order to allow the end-section to warp freely. 
To model the fork supports, the master nodes are sup-
ported against transverse translation and against twisting 
(plus at one end the longitudinal translation is supported, 
too, in order to avoid potential numerical instabilities). 

It is to underline that the cross-section stress (accord-
ing to beam model theory) is the superposition of three 
components: major-axis bending, minor-axis bending, and 
warping torsion, as illustrated in Fig. 5. 

In our study the major-axis bending is the primary 
stress, while the other two components are the secondary 
stresses, due to the developed lateral translation and twist-
ing rotation (which are due to the initial geometric imper-
fection). The stresses at the flange tips, therefore, can be 
interpreted/calculated by the generic formula:

� � � �x ABCD x major x minor x warping, , , , .� � � �  (65)

In order to better separate the effect of initial lateral 
translation and initial twisting rotation, only one of these 
two imperfection components is considered in this specific 
analyses. The longitudinal normal stresses are calculated 
at various load levels for the middle cross-section, selected 
results are summarized in Tables 1 and 2. (The stress val-
ues in the Tables belong to a load level MY /Mcr = 0.55.)

It is obvious that the secondary stresses are generally 
non-negligible, they can be quite significant, they can 
even be larger than the stresses from the primary load-
ing. The magnitude of the secondary stresses is propor-
tional to the magnitude of the V and Æ displacements. 
Consequently, the influence of the secondary stresses is 
proportional to the magnitude of V and Æ displacements, 
which is primarily determined by (i) the initial magnitude 

of the geometric imperfection, (ii) the cross-section shape, 
and (iii) the member length, as can be concluded from 
Eqs. (62–64). Practically: secondary stresses are larger 
if the initial imperfection is larger, and if the flanges are 
wider, and if the member is shorter.  

It is also noteworthy to mention that stresses from shell 
FEM cannot be considered as perfect. It is well-known 
that the calculated stresses at the boundaries of the finite 
elements are extrapolated, the stresses are not-compatible 
at the element edges, that is why some kind of smooth-
ing/averaging is usually applied in FEM softwares. Hence, 
stress calculation from a shell FE model requires approxi-
mations and engineering judgments. 

It is also to mention that at higher load levels the shell 
FEM stresses themselves show certain inconsistency in 
the sense that they cannot exactly be superposed from 
the 3 linear components. This is the sign of the fact that 
a shell model is never identical to a beam model, e.g., the 
cross-sections do not remain perfectly rigid, the stress field 
is more general than the one assumed by beam models, etc. 

Fig. 5 Components of longitudinal normal stresses

Table 1 Stresses at the flange tips from GNIA with lateral imperfection

cross-section 
point

shell FEM
(MPa)

New analyt.
model (MPa)

b = 200 mm A 1153 1149

L = 2 m B 1131 1118

V0 = L/1000 C -1212 -1233

Æ0 = 0 D -1055 -1035

b = 200 mm A 1198 1212

L = 2 m B 1086 1055

V0 = L/200 C -1528 -1629

Æ0 = 0 D -741 -638

b = 100 mm A 201.3 201.0

L = 4 m B 213.2 213.8

V0 = L/1000 C -223.3 -222.8

Æ0 = 0 D -190.9 -192.0

b = 100 mm A 177.8 175.4

L = 4 m B 236.4 239.4

V0 = L/200 C -287.3 -284.4

Æ0 = 0 D -126.7 -130.4

b = 50 mm A 224.0 220.7

L = 2 m B 236.5 234.4

V0 = L/1000 C -246.6 -242.7

Æ0 = 0 D -213.7 -212.4

b = 50 mm A 199.4 193.4

L = 2 m B 261.2 261.7

V0 = L/200 C -311.8 -303.5

Æ0 D -148.4 -151.6
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By considering all these aspects, it is fair to say that the 
shell FEM results and the results from the new analytical 
model show good agreement, at least until the V and Æ 
displacements remain small.

8 Comparison to shell FEM: load-displacement paths
In this section the member length is 2 m, and the wide and 
narrow cross-sections are discussed. The imperfection is 
taken as the buckling shape, the initial value of the lateral 
translation was set to 2 mm, which is 1/1000 of the length. 
Otherwise, the analyses are identical to those in the pre-
vious section. 

Now the focus is on the load-displacement path. Selected 
results are presented in Figs. 6–8. The plots demonstrate 
that the second-order lateral translation and twisting rota-
tion are smaller than what the Young-formula predicts. 
The deviation increases as the moment increases. It can 
also be observed that: the wider the flanges are, the larger 
the deviation from the Young-prediction is. Though the 

vertical, primary displacement is slightly different from the 
first-order solution (which is a straight line in the load-dis-
placement plot), the deviation from the first-order solution 
is rather small.

Table 2 Stresses at the flange tips from GNIA with twist imperfection

cross-section 
point

shell FEM
(MPa)

New analyt.
model (MPa)

b = 200 mm A 1214 1198

L = 2 m B 1070 1069

V0 = L/1000 C -1004 -986

Æ0 × h/2 = L/1000 D -1264 -1282

b = 200 mm A 1285 1263

L = 2 m B 997 1005

V0 = L/200 C -874 -838

Æ0 × h/2 = L/500 D -1392 -1430

b = 100 mm A 282.8 286.3

L = 4 m B 130.6 128.5

V0 = L/1000 C -109.7 -106.7

Æ0 × h/2 = L/1000 D -303.4 -308.1

b = 100 mm A 355.2 365.2

L = 4 m B 54.8 49.6

V0 = L/200 C -14.0 -6.0

Æ0 × h/2 = L/500 D -395.8 -408.8

b = 50 mm A 314.7 314.5

L = 2 m B 145.6 140.6

V0 = L/1000 C -121.9 -118.6

Æ0 × h/2 = L/1000 D -338.1 -336.5

b = 50 mm A 398.0 401.5

L = 2 m B 61.9 53.7

V0 = L/200 C -14.8 -9.6

Æ0 × h/2 = L/500 D -444.3 -445.5

 Fig. 6 Load vs. lateral translation

Fig. 7 Load vs. twisting rotation

Fig. 8 Load vs. vertical translation
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A general observation is that the actual values from the 
presented analytical solution and from the shell FEM are 
not identical. It is important to understand that exact agree-
ment cannot be expected due to the differences between 
the two models. One difference is that in the shell FE 
model the longitudinal distribution of the displacements 
can slightly be different from those assumed in the analyt-
ical model. Also, there are deformations in the shell model 
which are neglected in the analytical model: in-plane 
shear deformations, small localized plate bending defor-
mations, and also out-of-plane shear deformations (since 
the SHELL181 finite element of Ansys is based on the 
Reissner-Mindlin plate theory). The differences between 
the analytical and shell FEM results are not limited to the 
secondary displacements, but differences are experienced 
in the critical moments as well as in the primary displace-
ments (see Fig. 7). Still, it is clear that the tendencies how 
and when the load-displacements paths deviate from the 
classic analytical solutions (e.g., Young's formula) are the 
same from both the newly introduced analytical model 
and from the shell FEM calculations.

9 Conclusions
In this paper new, updated analytical solutions were shown 
for the GNI analysis of simple beams subjected to later-
al-torsional displacements. Closed-form formulae were 
derived to follow the non-linear second-order load dis-
placement path of an initially imperfects beam. Numerical 
studies were performed to compare the results from the 
new formulae and those from shell finite element calcu-
lations. The new analytical formulae predict symmetric 
bifurcation for doubly-symmetric cross-section, just as 
classic analytical solutions. However, the secondary dis-
placements are smaller than those calculated from Young's 
formula, and the difference is getting larger as the flange 
width increases. Moreover, the influence of the second-
ary displacements on the primary ones is clearly visible. 
The results show that the derived new formulae are able 

to capture the behavior predicted by shell finite element 
analysis. Even though there are numerical differences, 
the tendencies are similar. The new analytical solutions 
well explain the differences between the results of clas-
sic analytical solutions and shell finite element analyses. 
Based on the presented derivations and numerical results, 
it is clear that the key question is whether the secondary 
stresses due to the lateral translation and twisting rotation 
are considered or not during the analysis: classic analyti-
cal solutions do not consider this factor (therefore the stiff-
ness is assumed to be independent of the actual deflections 
of the member), while standard finite element procedures 
do consider this factor (therefore the stiffness of the mem-
ber is updated). 

The primary importance of the presented research is 
that it proves analytically that classic analytical solutions 
for the lateral-torsional behavior of imperfect beams are 
necessarily different from solutions that apply an incre-
mental procedure with stiffness updating. Moreover, the 
derivations clearly highlight the reason of the differences. 

From practical aspect, the results suggest that the non-
linear behavior is influenced by the geometrical propor-
tions of the cross-section: the wider the flanges are, the 
farther the behavior is from the one predicted by the 
Young's formula. This dependency of the nonlinear behav-
ior on the cross-section proportions indicates that the LTB 
capacity of the beam – among other factors, such as resid-
ual stresses – is dependent on the cross-section geometry. 

Though it would be unfair to suggest that classic analyt-
ical solutions are incorrect, still, it is fair to say that a cal-
culation method with stiffness updating is a better descrip-
tion of the physical reality, therefore carefulness is needed 
when classic analytical solutions are applied.
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