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Abstract: This paper deals with comparison of multi-objective optimization methods. Basic prop-
erties of multi-objective optimization are explained here. Algorithms NSGA-II, MOPSO and GDE3
are briefly introduced and compared using performance metrics on several test functions.
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1 INTRODUCTION

Multi-objective optimization (MOOP) is a process of finding set of optimal solutions (known as
Pareto-optimal solutions) when objective functions of solved problem are conflicting. Pareto-optimal
solutions express the trade-off between individual objectives. The decision whether one solution is
better than the other or not is made using fitness functions values.

In the multi-objective optimization, there are two goals: To find a set of solutions as close as possi-
ble to the Pareto-optimal front. To find a set of solutions as diverse on the Pareto-optimal front as
possible. First goal is identical with single-objective optimization task. Second one is specific for
multi-objective optimization only.

2 OPTIMIZATION METHODS

In this section NSGA-II [1], MOPSO [2] and GDE3 [3] optimization methods are briefly described.

2.1 NSGA-II

Elitist Non-dominated Sorting Genetic Algorithm [1] uses non-dominated sorting [4] on combined
parent and offspring population of 2N members. In a selection process, only N members are selected
to form next parent population.

After selection process, new parent population is submited to crossover and mutation operations to
create new offspring population. Whole process is repeated for given number of iterations.

2.2 MOPSO

Multi-objective Particle Swarm Optimization [2] simulates the movement of swarm of bees. At the
beginning, agent’s positions and velocities are randomly assigned. Then, non-dominated solutions are
inserted to an external archive. For each agent personal best (pbest) and global best (gbest) positions
[2] are assigned. In the next step, velocity vectors are computed to find a new agent’s positions.

New positions can be out of decision variable’s ranges, thus boundary conditions has to be applied.
After this step, content of external archive and agent’s personal and global best positions are updated.
Whole process is repeated for given number of iterations.
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2.3 GDE3

Third Version of Generalized Differential Evolution [3] creates trial vector ~u from vector of decision
variables~x according to equation (1).

u j,i,g = x j,r3,g +F · (x j,r1,g− x j,r2,g), (1)

where j denotes j-th decision variable, i denotes i-th agent, g denotes g-th generation, r1,r2,r3 are
randomly chosen agent’s indexes and F is scaling factor [3].

Afterwards ~ui,g or ~xi,g or both are selected to create new vector of decision variables ~xi,g+1 based on
dominance relation. If both vectors are selected, overall number of solutions is larger then N, thus
crowding comparison [1] has to be used to select most promising solutions.

3 COMPARATIVE STUDY

Efficiency of the above described methods was tested using several test functions. Comparison be-
tween optimization algorithms was based on Generational Distance (GD) [4], Spread (∆) [4] and Hy-
pervolume metrics [4]. Another considered parameter was computational complexity of algorithms.

Test functions used for algorithm comparison are: Schaffer’s study (SCH), Fonseca’s and Fleming’s
study (FON), Kursawe’s study (KUR), Poloni’s study (POL), Zitler-Deb-Thiele’s: ZDT1, ZDT2,
ZDT3, ZDT4 and ZDT6 [4][1].

3.1 SIMULATION RESULTS

Table 1 contains average values from 20 simulation runs. Values of computational time, generational
distance, spread and hypervolume were taken after 200 iterations of populations with 200 individuals
for each test function. It is not possible to localize true Pareto-optimal front for KUR and POL testing
functions. Thus, generational distance cannot be calculated.

The algorithms were for purposes of our comparative study set as follows:

NSGA-II settings: Probability of crossover - PC = 1,
Probability of mutation - PM = 0.5,
Size of mating pool (tournament selection) - |MP|= 2,
Binary precision - BP = 20.

MOPSO settings: Cognitive learning factor - C1 = 1.5,
Social learning factor C2 = 1.5,
Inertia weight - linearly decreasing from W = 0.9 to W = 0.5.

GDE3 settings: Scaling factor - F = 0.2,
Probability of crossover - CR = 0.4.

NSGA-II’s computational time is quite stable for every test function. Small time variances between
individual problems are caused by different number of decision variables. In MOPSO, if small num-
ber of non-dominated solutions is found, non-dominated sorting is performed on smaller population
(in NSGA-II strictly 2N) and diversity maintanance is not required which results in smaller compu-
tational effort. GDE3’s computational time instability has similar reason as MOPSO’s, but it is less
apparent.

Generational distance of MOPSO and GDE3 for ZDT4 test function is quite large. Both algorithm
converged to local Pareto-optimal front, which is main difficulty with ZDT4 test function.

Hypervolume values are diverse for each test function due to different sizes of objective space.
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SCH FON KUR POL ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
Computational time (s)

NSGA-II 14.551 14.202 14.33 14.28 16.553 15.918 16.599 14.193 14.03
MOPSO 3.521 2.803 2.134 4.753 1.629 0.8195 1.395 0.334 0.387
GDE3 11.737 10.13 9.666 8.979 6.006 5.663 6.045 6.211 6.347

Generational Distance (-)
NSGA-II 1.65E-5 6.96E-4 - - 1.15E-2 0.267 3.4E-3 2 0.251
MOPSO 2.43E-5 2.10E-3 - - 1.24E-2 0.238 1.13E-2 7.64 4.8
GDE3 1.73E-5 3.14E-4 - - 2.33E-2 0.176 1.08E-2 26.7 0.484

Spread (-)
NSGA-II 0.139 0.110 0.191 0.109 0.513 0.588 0.577 0.662 0.704
MOPSO 0.084 0.300 0.849 0.184 1.439 1.187 1.438 1.042 1.099
GDE3 0.119 0.100 0.185 0.119 0.368 0.792 0.484 0.782 0.755

Hypervolume (-)
NSGA-II 12.639 0.297 25.84 359.5 0.649 0.308 0.778 1.280 0.204
MOPSO 13.307 0.298 26.78 377.9 0.284 0.094 0.501 1.4E-5 0.906
GDE3 13.303 0.303 26.13 357.3 0.674 0.128 0.789 0.016 0.205

Table 1: Simulation results

4 CONCLUSION

Resulting values from simulation shows that although MOPSO is the fastest algorithm it is outper-
formed by other two algorithms in almost every cases and for complex test functions (ZDT) shows
poor diversity maintanance. Algorithms GDE3 and NSGA-II show similar results for easier test func-
tion such as SCH, FON, KUR and POL, but results from more complex test functions (ZDT family)
are in favor of NSGA-II. NSGA-II converges systematically to true Pareto-optimal front in wide
spread of solutions (ZDT test functions need more time to scour vast decision variable space), but
GDE3 can converge closer to true Pareto-optimal front if satisfactory number of individuals and iter-
ations is used (SCH, FON and KUR test functions are sufficiently searched through with comparative
study settings).
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