

BRNO UNIVERSITY OF

TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF MECHANICAL ENGINEERING

FAKULTA STROJNÍHO INŢENÝRSTVÍ

INSTITUTE OF MATHEMATICS

ÚSTAV MATEMATIKY

VISUALIZATION OF SCALAR FIELDS BY

BACK-TO-FRONT METHOD

VIZUALIZACE SKALÁRNÍCH POLÍ METODOU BACK-TO-FRONT

MASTER'S THESIS

DIPLOMOVÁ PRÁCE

AUTHOR

AUTOR PRÁCE

Ing. Hana Gurecká

SUPERVISOR

VEDOUCÍ PRÁCE

doc. PaedDr. Dalibor Martišek, Ph.D.

BRNO 2020

Faculty of Mechanical Engineering, Brno University of Technology / Technická 2896/2 / 616 69 /

Brno

Specification Master's Thesis

Department: Institute of Mathematics

Student: Ing. Hana Gurecká

Study programme: Applied Sciences in Engineering

Study branch: Mathematical Engineering

Supervisor: doc. PaedDr. Dalibor Martišek, Ph.D.

Academic year: 2019/20

Pursuant to Act no. 111/1998 concerning universities and the BUT study and examination rules, you

have been assigned the following topic by the institute director Master's Thesis:

Visualization of scalar fields by back–to–front method

Concise characteristic of the task:

In this work, method back–to–front and possibilities of its use for three–dimensional scalar data in

fixed data grid will be described.

Goals Master's Thesis:

In this work, methods suitable for visualization of scalar data in fixed data grid wil be described and

software implemented.

These methods will be tested on the data from fluorescent confocal microscope.

Software solution will be a part of the work.

Recommended bibliography:

ŽÁRA, J. a kol. Moderní počítačová grafika, Computer Press Praha, 1998.

MARTIŠEK, D. Matematické principy grafických systémů, Littera Brno, 2002.

Deadline for submission Master's Thesis is given by the Schedule of the Academic year 2019/20

In Brno,

ABSTRAKT

Diplomová práce je zaměřena na metody zobrazování skalárních dat v pevné datové

mříţce, konkrétně dat získaných uţitím fluorescenčního konfokálního mikroskopu.

Teoretická část textu začíná představením fungování konfokálních mikroskopů a

zasazení problematiky zkoumaných grafických metod do matematického kontextu.

Následující kapitola se věnuje odvození integrálu pro zobrazování objemů a z něj

vyplývající back-to-front metodu. Teoretická část je zakončena představením metod

vhodných pro zobrazování trojrozměrných skalárních dat při pouţití back-to-front

algoritmu. V praktické části je pak popsán implementovaný algoritmus.

ABSTRACT

This master’s thesis is focused on scalar data in rigid data mesh imaging. In particular

the data are acquired from fluorescent confocal microscope. The theoretical part begins

with introduction to confocal microscopy followed by putting the subject of examined

graphical methods in mathematical context. Next chapter is devoted to volume

rendering integral derivation and consequent back-to-front method. The theoretical part

is finalized by introduction of methods suitable for rendering 3D scalar fields using

back-to-front algorithm. In the practical part the implemented algorithm is described.

KLÍČOVÁ SLOVA

Konfokální mikroskopie, lineární prostory, projektivní prostory, integrál pro

zobrazování objemů, metoda back-to-front, Bresenhamův algoritmus

KEYWORDS

Confocal microscopy, linear spaces, projective spaces, volume rendering integral, back-

to-front method, Bresenham algorithm

GURECKÁ, Hana. Visualization of scalar fields by back-to-front method. Brno,

2020,(44s). Dostupné také z: https://www.vutbr.cz/studenti/zav-prace/detail/125349.

Diplomová práce. Vysoké učení technické v Brně, Fakulta strojního inţenýrství, Ústav

matematiky. Vedoucí práce Dalibor Martišek.

https://www.vutbr.cz/studenti/zav-prace/detail/125349

AFFIRMATION

I declare that I have written the master’s thesis Visualization of scalar fields by back-to-

front method on my own according to advice of my master’s thesis supervisor and using

the sources listed in references.

In Brno, June, ………………………………………………

Hana Gurecká

I would like to express thanks to my master’s thesis supervisor doc. PaedDr. Dalibor

Martišek, Ph.D. for numerous comments and valuable suggestions on improving my

thesis.

Hana Gurecká

1

OBSAH

1 INTRODUCTION ... 2

2 CONFOCAL MICROSCOPY .. 3
2.1 Fluorescence microscopy ... 3
2.2 Confocal fluorescence microscopy ... 4

2.3 Confocal microscopy limitations .. 6

3 MATHEMATICAL BACKGROUND ... 9
3.1 Spaces ... 9

3.2 Projections .. 14

4 BACK-TO-FRONT ALGORITHM ... 17
4.1 Direct volume rendering and volumetric data representation..................................... 17
4.2 Basics of lighting theory ... 18
4.3 Volume rendering integral .. 21

4.3.1 Absorption of the light .. 21
4.3.2 Emission of the light ... 23
4.3.3 Emission and absorption combined .. 23
4.4 Back-to-front algorithm .. 24

5 SOFTWARE SOLUTION .. 26
5.1 Loading data from file .. 26

5.2 Input variables .. 27
5.3 Generation of output window ... 29

5.4 AABB ray intersection ... 31
5.5 Bresenham algorithm .. 33

5.5.1 Basic Bresenham algorithm in 2D .. 34
5.5.2 Bresenham algorithm for all directions in 3D .. 36
5.6 Back to front method implementation .. 38

6 RESULTS AND DISCUSSION .. 41

7 CONCLUSION .. 43

8 LITERATURE ... 45

9 LIST OF ATTACHEMENTS ... 47

2

1 INTRODUCTION

At the beginning of this thesis we will describe the general design of confocal

microscopes and mention their advantage over standard widefield microscope. We will

explain how simulated fluorescence works followed by the explanation of two basic

principles of confocal microscopy: point to point illumination and rejection of out of

focus light. These principles ensure that we can scan one particular point in a focal

plane at the time. In the last subchapter we will focus rather on confocal microscopy

limitations, particularly light detection limitations and scanning speed limitations.

Chapter three will be devoted to covering the mathematical background of the

graphical algorithms and methods described further in the text. We will start with a

quick recapitulation of the basic spaces used in computer graphics in general such as

linear spaces, normed linear spaces, unitary spaces, affine spaces and Euclidean spaces.

At the end of the first subchapter we will put the spaces and related terms to context

with analytic geometry. Second subchapter will introduce one of the foundations for

future back-to-front algorithm implementation: the projective space with parallel and

perspective projections.

Equipped with the mathematical foundations chapter four will focus on the

direct volume rendering as a suitable approach to imaging of data with inner structures

and back-to-front algorithm in particular. First we will shortly discuss possibilities of

volumetric data representation particularly for 3D scalar field. Most methods for direct

volume rendering are based on some version of approximation of the volume rendering

integral which models propagation of light through participating media. Taking that in

mind the thesis will continue with introduction of basic radiometric quantities defining

light and its transmission. Following subchapter will make use of radiometric properties

in volume rendering integral derivation. Last subchapter of the fourth chapter will

introduce discretization of the volume rendering integral denoted as back-to-front

visualization method, short notion on transfer functions and projection methods suitable

for visualization by the back-to-front method.

The fifth chapter will describe the practical implementation of algorithms

introduced in the theoretical part of the thesis. In particular we will describe loading the

sets of bitmap images generated by scanning of a specimen by confocal microscope and

their representation in the computer. We will follow by description of user defined

projective and graphical inputs and their influence on the generated image. As we will

have loaded data and defined all variables we will start the description of the

computation part of the algorithm. In particular we will derive a method for output

window generation and describe fast methods for axis aligned bounding box with ray

intersection and Bresenham’s line segment rasterization algorithm. The last subchapter

will sum up the practical implementation of the back-to-front methods.

In the sixth chapter we will discuss achieved results.

3

2 CONFOCAL MICROSCOPY

This chapter is based on [1] [2] and [3]. Confocal microscope was introduced by Marvin

Minsky in 1955 as a great improvement in observing thick 3D specimen. It is based on

two essential principles: point to point illumination and rejection out of focus light. In

this chapter we will describe one general design of such microscopes with laser light

source. Confocal microscopes can image a specimen by reflected or transmitted light or

by simulated fluorescence from fluorophores (fluorescent dyes). The simulated

fluorescence is the most common one and even our dataset is acquired using such dyes.

Therefore, we will describe the functioning of a confocal microscope with respect to

this specimen illuminating method.

Fluorophores are chemical compounds which upon excitation by photon of a

given wavelength can emit light of longer wavelength e.g. a fluorophore excited by blue

light emits green light. This effect is known as fluorescence. Many different kinds of

fluorophores are available with very specific properties. For example they are able to

bond to macromolecules of specific parts of a cell (mitochondria, Golgi apparatus, etc.).

Then, upon excitation, we are able to see the stained part of the cell glowing by emitted

color (Fig.1).

Fig. 1: Widefield (upper) vs. Confocal (lower) fluorescent microscopy images
1

2.1 Fluorescence microscopy

Classical fluorescence (epifluorescence/widefield) microscope consists of a light source

objective and dichroic mirror. Dichroic mirror can transmit a specific part of

1
 Pictures acquired from: https://www.olympus-lifescience.com/en/microscope-

resource/primer/techniques/confocal/confocalintro

4

wavelength spectra and reflect the rest of it. In the (Fig.2) we can see that the light from

source (blue) is reflected by a dichroic mirror through the objective onto the specimen.

The dyed parts of specimen are excited and emit (green) light. This light with source

light travels back through the objective and the dichroic mirror filters the original blue

light away by reflecting it back to the source. On the other hand the light emitted by

fluorophore with longer wavelength travels through the mirror onto the photodetector.

The wide field microscopy has a significant disadvantage which is an illumination of

the whole specimen at once. This causes that onto one point of the image plane

(camera) falls light not only from the corresponding point of the focal plane but also

light scattered from points in other layers of specimen. As a consequence the image

from the widefield microscope is blurred (Fig.1).

Fig. 2: Widefield microscope scheme

2.2 Confocal fluorescence microscopy

As we mentioned previously, confocal microscopy addresses the problem of secondary

fluorescence emitted by not in focus parts of the specimen. Confocal microscope does

not take the image at one instance but rather focuses on one specific point in the focal

plane at the time. This is achieved by replacing standard objective with two lenses and a

screen with a pinhole. The lenses are set up so they transmit light from the focus point

of one to the focus point of the other (from here the name “confocal”). Obviously the

lenses transmit also out of focus light as well so pinhole is put around the focal point of

the second lens in order to let all of the light of point in focus through and significantly

attenuate the out of focus light (Fig.3a).

5

Fig. 3: a) Confocal lenses b) Confocal microscope scheme

Considering this two lenses setting, most of the intensity of the light source is naturally

centred in the focus point of the first lens. However, there is still a significant amount of

light reaching other parts of the specimen causing excitation and consequently the out of

focus light. Another performance improvement can be done if we don’t illuminate the

whole specimen but instead we focus the excitation light to the point of interest in the

focal plane. This is achieved by introducing another pinhole aperture in front of the light

source (Fig.3b). In the figure we can observe that such illumination restricts the

excitation area to the cone above and below the focus point. Most of the light emitted

from this cone area is not confocal with the lens pinhole and therefore is filtered away.

In previous text we described how we scan one exact point in the focal plane. In

order to scan the whole plane we need to add two extra motor driven mirrors to the

construction. By rotating the mirrors we may reach any point on the focal plane.

Another part of the confocal microscope is the light source. Up to now we have

spoken about a light source of given wavelength in general. By filtering away all the

redundant light by the screens with pinholes, we are left with very few photons that

make it through the whole system. Solution to this is either longer exposure time, which

would significantly increase the scanning time of the specimen, or source of very high

intensity. Given that the laser source is used in modern confocal microscopes.

 The problem of too low light intensity coming to a light detector is addressed

also by so called photomultiplier tube detectors (PMT detectors) which replaced

standard CCD chips used in widefield microscopy. These detectors are transforming

incident light to electric current. Such current is multiplied in the tube and is interpreted

as high intensity light. The PMT is connected to a computer, which from incoming

information builds up a raster image pixel by pixel. The whole setup of fluorescent

confocal laser scanning microscope is shown in (Fig.4).

 Thanks to the level of elimination of out of focus light it is possible to acquire

sharp images of different depths through specimen. Making a series of cuts in short

regular step size along z-axis (optical axis) is referred to as optical sectioning. From

6

these cuts using visualization algorithm we are able to reconstruct the specimen (this

will be discussed in greater detail in chapter 4 of this thesis).

Fig. 4: Fluorescent confocal laser scanning microscope scheme

2.3 Confocal microscopy limitations

Although confocal microscopy offers many advantages, there are some considerations

that have to be taken into account. First there are light concerning limitations that are

related to how much light can reach the light detector. Another concern is scanning

speed regarding the limit of mirror rotation speed.

Light detection limitations

First issue that should be mentioned is the resolution of the image which is a limitation

for microscopes in general. In the theory we suppose that a point light source generates

point illumination of the specimen. In praxis, due to diffraction of the light, that is not

the case. Diffraction phenomena causes that ideal light point generated by circular

aperture with a perfect lens is projected onto the image plane in the shape of Airy

pattern. The Airy pattern is in two dimensions viewed as a bright central region (disc)

with concentric rings around. The radius of Airy disc is dependent on wavelength of

the light and aperture of the microscope:

(

(1)

where is the wavelength and NA is numerical aperture of objective. Aperture is given

by:

(

(2)

with n as index of refraction of the medium in which the lens is situated and is half

angle from which the light can approach the lens. The Airy pattern limits maximal

resolution of the image. According to Rayleigh criterion the two points are

distinguishable if they are at least their radius of Airy disc away from each other.

Maximal resolution for confocal microscopes is typically about 200nm. As we are

7

interested in optical cuts through the specimen we have to take into consideration the z-

axis. Such generalization of Airy disc into 3
rd

 dimension is called point-spread function

and is ellipsoid shaped rather than a sphere as optical axis resolution tends to be poorer,

typically around 500nm.

 Another consideration, that has to be taken, is about the pinhole size. It is

desirable to minimize the pinhole and consequently make the resolution along the

optical axis smaller. Although, if the pinhole size is too small, then very few photons

can make it to the detector and signal-to-noise ratio will decrease. As a fairly good

approximation of pinhole size is Airy disc radius as a smaller pinhole doesn’t bring

much further improvement.

 Further question is how intensive laser should be used. The obvious answer

would be as intensive as possible as the signal-to-noise ratio would be increased.

However, high intensity laser may damage the specimen and degrade the fluorophore as

it gets saturated.

 Finally the amount of photons that reach the PMT detector can be influenced by

concentration of fluorophore coloring the specimen. This signal enhancement has a

limit too as the molecules can quench each and limit the fluorescence from deeper parts

of the specimen as the fluorophores in the shallower parts absorb most of the exciting

photons.

Scanning speed

As we mentioned before, the point scanning in confocal microscopes is achieved by two

rotating mirrors for x and y axis. Originally two galvanometers were used as motors for

the rotation. By this method it was possible to acquire one image in 0,1-1s. However,

this rate is not sufficient for observation of dynamical processes. Moreover the long

relatively exposure to the intensive laser may cause damage to the specimen. As a

consequence two main methods were developed for enhancing the scanning speed.

First method is based on replacing the galvanometer scanning horizontally (fast)

by acousto-optic deflector (AOD). AOD deflector is a crystal which changes its

refractive index depending on sound frequency input. By fast altering the input

frequencies it is possible to steer the laser with great precision and make around 30

images per second. Disadvantage of using AOD deflectors is that they are deflecting

different wavelengths differently. Meaning that we may point the source light with great

precision but the fluorescence from the specimen of longer wavelength is not reflected

to the source direction, as in the case of a mirror. So instead of the pinhole it is used as a

slit for descanning fluorescence from the vertical scanning (slower) galvanometer

driven mirror. As a consequence the resulting image is distorted but still high quality.

Second method replaces two mirrors and an excitation light pinhole by a

spinning disc (Nipkow disc) with a mask of thousands of pinholes in order to scan

multiple pixels at once. The pinholes are arranged so every pixel in the image is reached

and scanning of one image can take about 1/15 of the spin. With 40 revolutions per

second it is possible to acquire up to 600 images per second. The first drawback to using

Nipkow disc is that a few hundreds of points are illuminated at once and therefore

8

background fluorescence is increased which is especially significant in the thick

specimen. Also, as the disc rotates quickly, the light coming from the specimen through

pinholes and to the detector is weakened and stronger fluorophores need to be applied.

9

3 MATHEMATICAL BACKGROUND

In this chapter we will state the basic mathematical foundations for computer graphics

and back-to-front algorithm in particular. First we will review the linear algebra

structures supporting the notion of Euclidean space and analytic geometry. Further we

will continue with basic projection methods in the context of analytic geometry terms.

3.1 Spaces

This subchapter will recapitulate linear, unitary and affine spaces and basic concepts

related to them in order to introduce Euclidean space and analytic geometry. The

information and definitions in this chapter are taken from [4][5]. As the purpose of this

chapter is not meant to be a full introduction to algebra but rather brief recapitulation,

the proofs of the basic notions are omitted and can be found in the cited literature.

Linear space

Def.: 1: Linear (vector) space over a field (is a set V together with operations

 and such that for each and scalars

the following axioms hold:

i. ((

ii.

iii.

iv.

v. ((

vi.

vii. (((
viii. (((.

Elements of the linear space are called vectors and operation is vector addition, is

multiplication of a vector by scalar, is scalar multiplication and + is scalar addition.

The symbols 0 and denote neutral vector (zero vector) and opposite vector,

respectively.

Def.: 2: Normed linear space is linear space equipped with mapping ‖ ‖ such

that for each and it satisfies:

i. ‖ ‖ ‖ ‖

ii. ‖ ‖ | |‖ ‖

iii. ‖ ‖ ‖ ‖ ‖ ‖.

The mapping ‖ ‖ is called norm.

Def.: 3: Linear space V equipped with mapping such that for each

and it satisfies:

10

i.

ii.

iii. (((

iv. ((
is called unitary space and the mapping is called scalar product.

Further in the text we will denote the operations as , as or

keeping in mind that those are vector operations in the sense of (Def.1). Also opposite

vector will be replaced by– .

Note that unitary space V equipped with mapping ‖ ‖ satisfying for

 :

 ‖ ‖ √ (3)

is also a normed linear space. Moreover both normed linear space and unitary space

have metrics induced by norm and scalar product, respectively, defined

for each :

 (‖ ‖ (4)

 (√((. (5)

Def.: 4: A subset { } of a vector space is called linearly dependent if

there exist such that ∑

 and at least one . Otherwise,

the subset is called linearly independent.

Def.: 5: A vector is called linear combination of nonempty set { }

 if and only if there exist such that ∑

 . A linear

combination of empty set is the neutral vector .

Def.: 6: A linear space L formed as set of all linear combinations of a set is

called (linear) span and denoted as 〈 〉.

Def.: 7: A subset is called finite basis of linear space V if and only if it is

linearly independent and its span is equal to V.

Remark: Although the basis of given linear space V is obviously not unique, it is

possible to show, that for arbitrary choice of the base vectors for V, the cardinality| |

remains the same.

Def.: 8: Let a linear space have a finite base . Then the number n of vectors in is

called dimension of the linear space and the space is denoted as .

Remark: Particularly interesting is the case, when we want to determine dimension of

the trivial vector space { }. The only vector in the space is clearly linearly

dependent by (Def.:4). In order to determine dimension, we have to find some basis of

V. As the base vectors are expected to be linearly independent the base . Using

(Def.:5) we can say that the empty set really generates the zero vector space: 〈 〉 { }

and because | |=0 the trivial vector space has zero dimension.

11

Def.: 9: Let be a linear space with a base . Then for any we call the

coefficients satisfying the equation ∑

 ; coordinates of the vector

v in basis and we write (.

Def.: 10: Let V be a unitary space. Then the vectors satisfying are

called orthogonal. If in addition the vectors satisfy ‖ ‖ ‖ ‖ they are called

orthonormal.

Def.: 11: A subset of unitary space { } is called orthogonal system

if each pair of vectors where it satisfies . If in addition

 ‖ ‖ we call the set G orthonormal system.

Affine space

Def.: 12: Let be a nonempty set with associated linear space over a field and

with a mapping with following properties:

i. and : such that (

ii. : (((.

Such a set is called an affine space with dimension n. Elements of affine space are

called points. An ordered pair [A,B] is called the location of vector u. We denote:

 (̅̅ ̅̅ or analogically .

Fig. 5: Affine spaces

At this point it is convenient to highlight that without the associated linear space, the set

of points has neither relation between two points nor neutral element (origin), therefore

no way to uniquely specify points in the terms of coordinates.

Def.: 13: Let be an affine space with associated linear space and with point

 called origin. Let { } be a base of the . Then the ordered (n+1)-

tuple 〈 〉 is called a linear coordinate system. Moreover for where

 we denote [] where the ordered coefficients

 are called affine coordinates of point A.

Def.: 14: Let be a nonzero vector, a point and a constant. Then the set

 { | } is called (affine) line. Moreover all the points in the

set p are called collinear.

12

Def.: 15: Let collinear and mutually different points, be defined

as , . Then the number such that . is called affine ratio of

the points B,C,D (in this order) .

With affine spaces arises the concept of affine transformations which preserves

collinearity, parallelism, affine ratio and convexity. These transformations are

particularly relevant in graphical systems as all operations on geometric objects are

accomplished by composition of affine transformations.

Def.: 16: Let , be linear spaces. A mapping is called linear if for

each and satisfies:

i. (((

ii. (= (.

Def.: 17: Let be an affine spaces with associated linear spaces , . The

mapping is called affine mapping/affine transformation if there exist an

associated linear transformation such that for each and

equation:

 (((
9

(6)

holds.

Note that the affine transformation is a combination of linear map and translation.

Consequently the affine transformation can be expressed as:

(

(7)

where (MA represents linear map, (associated map, , ,

M is matrix and . In the (Fig.6) are shown some examples of affine

transformations and their matrices.

Fig. 6: Examples of affine transformations in 2D

Moreover it is also possible to represent affine transformations between n-dimensional

spaces using single ((augmented matrix:

13

 *

+ (

) *

+

(

(8)

Such representation is admissible because of existence related projective space.

Projective spaces will be discussed further in this chapter.

Euclidean space

Def.: 18: Let be an affine space with associated unitary space of ordered n-tuples

over the field of real numbers with a base { } and with point .

Then we call the Euclidean space and the ordered (n+1)-tuple 〈 〉 the

Cartesian coordinate system. Moreover for where we

denote [] where the ordered coefficients are called Cartesian

coordinates of point X.

Remark: Euclidean space is obviously equipped with scalar product:

∑

 . In this case, metric is given as | | √∑ (

 and norm ‖ ‖

√∑

 for each and . In the following text, Euclidean space will

be understood in this sense.

Note that in preceding text we dealt with linear spaces over some unspecified

field equipped with a norm and a scalar product. Euclidean space is a special case of

affine space where the underlying field is a field of real numbers but more importantly

the associated space is unitary space with a uniquely defined metric and scalar product.

Such definition allows us to compute angle between two vectors as:

 (

‖ ‖‖ ‖
)

(

(9)

which is essential for geometry.

Analytic geometry

Geometry in general studies figures in the n-dimensional spaces of different types. As

we suggested earlier, in the field of computer graphics we are particularly interested in

analytic geometry as it studies figures, their properties and manipulation with them in

the terms of algebraic equations and therefore in the form suitable for computer

algorithms. For such a description it is necessary to have an associated space with a

coordinate system where each object can be described as set of points of dimension n.

The most common such space is the above described Euclidean space of dimension two

or three (plane and solid geometry respectively) with the Cartesian coordinate system.

By means of analytic geometry we are able for example to determine relative positions,

intersections or apply affine transformations of points, lines and other geometrical

objects defined by equation (or system of equations).

Further in the thesis all the described theory, formulas and implementation of

back to front algorithm will assume Euclidean space in accordance with all the

definitions and notions stated above.

14

3.2 Projections

In computer graphics we often visualize three dimensional data on two dimensional

output device, usually the computer screen. In order to do that, we use various types of

projection methods. The projection methods and their capability to preserve geometric

properties of objects (lengths, angles, ratios, parallelism etc.) are addressed by also

called projective geometry. In this subchapter we will first introduce projection space

and homogeneous coordinates which are widely used in computer graphics for

projection computations. After that we will introduce two main types of projections.

Chapter is supported by knowledge from [4][6][7].

Projective space

The projective space and homogeneous coordinates is an extension of the Euclidean

space and Cartesian coordinates which makes computation of geometric transformations

easier.

Def.: 19: Let be a linear space over the field of real numbers . Then the set of

one dimensional subspaces of is called projective space and denoted as .

An alternative (and more intuitive) definition of projective space is based on the fact,

that any one dimensional subspace of a vector space is just a multiplication of a nonzero

vector where and .

Def.: 20: Let be a linear space over the field of real numbers and an

equivalence defined as:

for any { } and some { } Then we define the associated

projective space as a set of equivalence classes on : { } .

Although the projective space is in literature introduced as in (Def.: 19), we will

continue with the more elegant version (Def.: 20)

Def.: 21: Let be a projective space and [] . Then the equivalence class

 ̅ [] is called geometric point of projective space and when (then

the (are called homogeneous coordinates of ̅ and we denote

 ̅ [].

Def.: 22: Let be a linear space, be associated projective space and

 { }. We say, that two points ̅ ̅ where ̅ [] ̅ [] are

linearly independent if the vectors are linearly independent. Moreover a pair of

independent points defines projective line ̅ { ̅ ̅ } and a triplet of independent

points is called projective plane { ̅ ̅ ̅ }.

Note that the projections in general are transformations from n dimensional spaces to

spaces with dimension lower than n and of various shapes. In the following we will

15

consider only the special case where each point of a 3D geometric object in Euclidean

space is mapped to its image in the Euclidean projection plane.

For points in Euclidean space [] there is isomorphism to the

projective subspace given as ̅ [] where { }. Moreover

we can normalize homogeneous coordinates of points in to the form []

as: [] [].

Although we have excluded the possibility of the result of computing, for

example intersection of two parallel lines, in the projective space can result in the fourth

coordinate of the point being equal to zero. These points indicate the ideal points i.e. the

points at infinity. See that such representation brings up a great advantage of projective

spaces for computer graphics as infinity is represented by finite real coordinates.

Another noteworthy remark is that any transformation (including projections) in

projective space can be achieved solely by matrix multiplication. At this point we can

highlight that affine transformations represented by augmented matrix (as introduced in

the previous subchapter) are achieved by affine space extension to projective space.

Perspective and parallel projections

Now that we have introduced the projective space, we may move forward to the

projections. Having the 3D object (set of points) in Euclidean space and (Euclidean)

projective plane, the projections are defined as intersection of lines passing through the

points of the object with the projection plane. Such lines are called projectors and by

the arrangement of the projectors we distinguish two major types of projections:

parallel and perspective.

Def.: 23: Let us have a projection plane defined by its normal vector
(and a viewpoint but . Let and . Then

the transformation which maps onto such that and ,

where is projector line defined by and , is called projection. Moreover if is

ideal point we say is parallel projection. Otherwise is called perspective projection.

Fig. 7: a) Perspective projection b) Parallel projection

The general projection with viewpoint and projection plane as defined above can be

expressed by projection matrix:

 ((10)

16

where I is identity matrix and are row vectors.

In literature we can often find further classification of the above projections (Fig.8).

Fig. 8: Classification of Perspective and parallel projections

Considering the perspective projection, each line not parallel to the projective plane is

projected converging to some vanishing point which represents projection of an ideal

point. In addition if a line is parallel to some of the coordinate axes it converges to

principal vanishing point. On the projective plane there can be up to three principal

vanishing points depending on the position of the projective plane with respect to

coordinate axes. In particular the parallel is called one/two/three point if the projective

plane intersects one, two or three coordinate axes respectively.

In the case of parallel projection we distinguish orthographic and oblique

projections. Orthographic projection is typical by the projectors being orthogonal to the

projective plane. Moreover if the projective plane is parallel to two of coordinate axes

then we speak about multiview projection. Otherwise the orthographic projection is

axonometric. On the other hand oblique projection has no right angle between

projectors and projective plane.

Now that we have introduced both major types of projections it is appropriate to

discuss their suitability. Because in the perspective projection the size of the projected

objects varies with distance from the viewpoint, it is being used widely in computer

graphics as it reflects human visual perception and therefore creates more a realistic 3D

impression. On the other hand in general it does not preserve parallelism nor angles. On

the contrary the parallel projection does not form a realistic view of objects but

preserves parallelism, relative proportions and in some cases even angles and distances.

Therefore parallel projection is more suitable for scientific purposes when we are

interested in objective measurement of data.

17

4 BACK-TO-FRONT ALGORITHM

This chapter is devoted to the introduction of a back-to front algorithm. In the first short

subchapter we will introduce direct volume rendering and how are the volumetric data

represented in the computer. As the back-to-front algorithm is based on the physical

model of light propagation we will continue with definition of basic radiometric

quantities needed for derivation of the volumetric integral which exactly describes the

propagation of the light through volume. In the last subchapter we will discretize the

volume rendering integral and obtain the back-to-front algorithm.

4.1 Direct volume rendering and volumetric data representation

This subchapter is based on [6][8][9]. By volume rendering we denote a set of methods

invented to visualize 3D data on 2D images by simulating light transport across the

volume. These procedures are used for imaging data from computed tomography (CT),

magnetic resonance imaging (MRI) or as in our case confocal microscopy. Volume

rendering methods are generally used when the visualized data contain inner structures.

The cost of precision and detail in volume rendering are large datasets that need to be

processed. On the other hand, by using less space demanding surface rendering methods

like triangular surface meshes or boundary representation of objects, on such data, we

would have lost a significant amount of information.

In volume rendering it is usually worked with a set of physical data (velocity,

density, temperature…) assigned to discrete points in space [] where v

is the value of the observed quantity. The value v may be binary (observed phenomenon

is or is not present) or single valued (measured value of observed phenomenon). Note

that v may be of higher dimension if there are more types of information observed at the

point. In some applications it is advantageous to include also time component so that

 [] and observe the dynamic change of the data over a time period.

The assignment of the observed data to the points in space can be either

completely random or more often arranged to regular or irregular grid structures. The

basic structures for volumetric data are shown in (Fig.9).

Fig. 9: From left: Cartesian, rectangular, rectilinear, structured, unstructured grid

The first three data arrangements in the figure are based on axis aligned rectangles,

more precisely: Cartesian (isotropic) grid is made of cubical cells, rectangular grid is

18

composed of homogenous rectangles and rectilinear grid is axis-aligned but the spacing

along axis is arbitrary. The structured grid is achieved by application of non-linear

transformation to a rectangular grid. In the case of unstructured the grid cells don’t have

to be implicitly connected to their neighbours. Note that depending on the type of

represented data, the grids have arbitrary dimension.

Since our data samples are raster images with square pixels with constant

distance between each slice, it is convenient to organize them into 3D rectangular grid,

where v is triplet 〈 〉 of colour components of each pixel. The basic

element of a regular volumetric grid is called voxel (volume element) which is a 3D

analogy for 2D pixel. In literature there are two possibilities how to estimate the value

of observed phenomena using voxels. Either the assigned value is constant in the whole

volume of voxel or is considered valid in the voxel centre. In the latter case any value at

a point that is not the centre of the voxel is interpolated from two closest voxel centres.

Further in the text we will use the first voxel interpretation.

Fig. 10: a) Binary pixel grid, b) binary voxel grid.

4.2 Basics of lighting theory

This section we will deal with the theory of light transmission which is crucial to

realistic rendering of objects. Information in this part is based on [6][10][11]. Even in

real life we are able to see objects because of the light falling to our retina. The

discipline in physics dealing with light and its properties is called radiometry and

discipline dealing with human perception of light is photometry. These two topics are

quite close. Actually the radiometric quantities are convertible to photometric and vice

versa. In this chapter we will introduce basic terms of these disciplines in order to be

able to derive volume rendering integral further in the text.

 The light has dual nature, it behaves as waves as well as particles. In computer

graphics we mostly neglect the wave nature, polarization and dispersion and we

consider the light as rectilinear rays of infinite velocity which are not affected by

gravity or electromagnetic fields. Basic element of light is called photon which

represents the smallest emittable energy of light of wavelength []. The energy of a

photon [Joule] is determined by equation:

19

(

(11)

where is Planck constant and is the velocity

of the light in vacuum.

 Radiation universally indicates propagation of energy through space. Radiant

energy Q[Joule] refers to an amount of energy of all photons in specific area:

 ∫

(

(12)

where represents number of photons of wavelength . In general physics an integral

for the whole wavelength spectrum or for the visible spectrum is used. In computer

graphics we are typically using RGB model (or in that matter any colour model with

finite number of wavelengths) so we are only interested in the three corresponding

scalar wavelengths. For such case we introduce spectral radiant energy [Joule

] representing radiant energy per unit wavelength

(

(13)

In literature regarding computer graphics the subscript is often omitted as the interest

in just three basic colours is a matter of course. Further in the text we will omit this

subscript as well keeping in mind that any mentioned quantities are meant for specific

wavelength and for the general case we only need to integrate a given equation over the

desired spectrum.

The time rate of spectral radiant energy (received or emitted) is defined as

spectral radiant flux (power) [Watt]

(

(14)

The spectral radiant flux per unit of area in a surface that is incident on (density

of radiant flux) is called spectral irradiance E [Watt]:

(

(15)

where A represents illuminated surface and is incident radiant flux. The irradiance

leaving considered surface (either emitted or reflected) is called radiant excitance

(radiosity) M

(

(16)

where subscript o in means outgoing. In most computer graphic related literature the

irradiance and radiosity are not distinguished as there is no difference in their equations

from the mathematical point of view, and both terms are called irradiance. Further in the

thesis, we will as well, merge these two terms as distinction is not important for us.

Note that irradiance is a function of position on a surface therefore in general case,

when we can’t assume that the radiant flux is constant over a considered portion of

surface, we have to consider radiant flux from/to any direction in hemispherical solid

angle (Fig.11a)).

20

 Sometimes it may be more suitable to consider the density of radiant flux in

solid angle rather than on the unit of area. Then we are speaking about radiant intensity

I [Watt] defined as:

 (17)

where is solid angle in specific direction defined by (Fig.11b)).This function of

direction and point is useful, when we deal with point sources of radiation.

Fig. 11: a) Irradiance- radiant flux per unit area dA incident to a point x at object surface. b)

Radiant intensity- radiant flux per element of solid angle defined by point x and

direction .

Finally we are getting to the most important radiometric quantity called radiance

L[Watt]. Radiance is a function of position (point), area and direction.

More precisely it states absorbed or emitted power on unitary solid angle per unitary

area projected perpendicularly to the given direction. The defining equation is:

 (18)

where represents projected area of unitary area to the surface containing the

point of interest (this follows from Lambert law), is element of solid angle in

specified direction and is the angle between the given direction and normal to the

surface.

The importance of radiance lies in the fact that what we described in terms of

physic is actually what human eye, cameras etc. detect as color and what we have stored

in pixels of our raster image dataset. Moreover from radiance equation (18) we may

derive all the radiometric quantities described above.

In most algorithms regarding computer graphics the radiance is considered

constant on the whole trajectory (ray). This is not our case though. We want to render

our data so they appear semi-transparent. We may achieve this by considering the 3D

data matrix as participating media which will be elaborated in the next subchapter.

21

4.3 Volume rendering integral

Most of the image order methods are based on approximation of volume rendering

integral (VRI) which considers volume as a participating medium. Participating

medium is a cloud consisting of small particles where each particle can absorb, emit or

scatter light (for example water, fog or smoke are rendered as participating media) (Fig.

12). In our case we will consider low-albedo particles meaning that reflectivity of the

particles is negligible and the light passing through volume is considered to be a single

ray (hence the name “ray casting methods”). The idea of volume rendering integral was

first described by Blinn [12] and formally derived by Max in [13]. This section is cited

from [6][8][13].

Fig. 12: Participating medium

VRI is in general integrated over visible spectrum of wavelengths. As we mentioned in

the previous subchapter while dealing with raster data we are interested only in

wavelengths of red, green and blue colour. In the following we will derive the VRI for

one scalar wavelength with validity for each particular colour. In the next subsections

we will consider the absorption and emission components of the equation separately and

later we will combine them to form VRI.

4.3.1 Absorption of the light

Absorption only participating medium consists of perfectly black particles which do not

emit any light. We will consider a very thin cylindrical layer of volume with area of

base B and thickness (Fig.13). In the volume we consider medium with spherical

particles of identical radius r and with density of particles per unit volume . Let the

light flow through the layer perpendicularly to the base. Then each particle casts a

shadow (projection) of area to the base B. Consequently the volume contains

Fig. 13: Absorption of light

22

 particles. If we take small enough so we can suppose that the particles

are not overlapping each other, then the area of B overshadowed by the particles is

approximately . Relatively speaking the occluded fraction of the light

flow is . Taking the probability of overlapping particles tends to

zero and we get differential equation:

 (((((19)

where s is a length parameter, I(s) is light intensity at distance s. Coefficient (

 (is called extinction coefficient and expresses the rate of decline of light intensity

along a ray. Solution to (19) is

 (
 ∫ (

 (20)

where is intensity of light at distance s=0 (at point where the ray intersects the

volume) (Fig.14) and

 (∫ (

 (21)

is called accumulated transparency or simply transparency. Complementary element to

transparency on voxel of length l is opacity

 (∫ (

 (22)

Moreover if the extinction coefficient is constant in voxel (then we can also

express opacity by Taylor expansion:

(

 (23)

For small voxels we may approximate (23) as (.

Fig. 14: Intensity function (

A mapping that assigns value to scalar function f(X) is called transfer function.

Depending on the chosen transfer function we distinguish different optical models. For

example the simplest optical model is thresholding, given by

 {
 (
 (

where K is a constant threshold.

23

4.3.2 Emission of the light

Now we consider a situation when each particle of the participating medium adds some

portion of intensity to the light flow. We will use the same cylindrical layer model as in

the derivation of the absorption component of VRI. For elimination of the absorption

we will now consider the particles to be completely transparent so no light intensity is

lost traversing through volume.

Let C be an intensity emitted by each particle per unit of area. Then similarly to

the absorption approach we can deduce that intensity added to particle projection to the

base is approximately and for unit area we get intensity . By sending

 we get equation

 ((((((24)

where (is called the source term. Solution to the equation (24) is

 (∫ (

 (25)

4.3.3 Emission and absorption combined

For a more realistic view we have to consider particles as intensity emitters as well as

attenuation source. Corresponding relation is obtained by combination of equations (19)

and (24) :

 ((((26)

And the solution to the equation (26) for (is:

 (
 ∫ (

 ∫ (∫ (

 (27)

Or alternatively for (

 (
 ∫ (

 ∫ (∫ (

 (28)

where represents edge of the volume and a point in the eye (or image frame). As we

can see the first term in (27) is the light intensity of background multiplied by

transparency T(s) (21) and the second term is intensity contribution of each particle on

the ray multiplied by transparency between and :

 (∫ (

 (29)

And we can rewrite equation (27) as

 ((∫ ((

. (30)

The equation (30) is known as volume rendering integral. Note that for the simplicity

we have set the length interval as 〈 〉 but it can be written more generally as 〈 〉.

24

4.4 Back-to-front algorithm

The volume rendering integral cannot be computed analytically. Therefore we have to at

least approximate it. We employ discrete Riemann sum over the casted ray with discrete

samples at distances spaced apart by . By such discretization we get

 (
 ∫ (

 ∫ (∫ (

 ∑ (

 ∑ (∑ (

 ∏ (

 ∑ (∏ (

where | | . Using equation (21) we have transparency ((

and (hence

 (∏

 ∑ ∏

(

(31)

Equation (31) is currently known as back-to-front visualization method. However, the

phrase "back-to-front" does not describe data processing itself but direction of data

processing only. Data in this direction may be processed in different ways. In the

following we will introduce basic options for these different solutions and output image

generation.

Transfer functions

Note that having a scalar field, if we combine all the information stored, some of the

properties of imaged data can get attenuated. For example if we scan a cell and apply

the back to front algorithm the nucleus will be partially overshadowed by the cell

membrane. Although this approach produces fairly realistic output, sometimes we may

prefer to highlight particular parts of the imaged object and inhibit or even hide others.

For a such purpose it is possible to apply transfer functions.

Transfer functions in general are mappings from a 3D scalar field to optical

properties. For example in case of magnetic resonance imaging it is of the form

 where I is intensity, represent colour and is opacity (Fig.15).

As we will render data from confocal microscope we have the colours assigned so the

mapping is rather .

Fig. 15: An example of a transfer function for a grey scale set of images where the color of

the graph determines color for pixels with given intensity.

25

In the implementation of the back to front algorithm we will consider:

 Constant transfer function with for all values of RGB intensities

 Piecewise constant transfer function with (where is subset of the

 color space.

In our implementation the transfer function is user defined piecewise constant. Note that

it is possible to define the function differently. There are even some semi-automated

methods for their determination based for example on dataset histograms, frequency

distributions, gradient methods etc. The topic of transfer functions is extensive and far

beyond the limits of this thesis, but a brief summary in case of interest can be found for

example in [19].

Back-to-front methods

Along with transfer functions, which assign opacity to the individual voxels and the

basic back to front compositing equation (31) we have alternative projective methods

for generation final image out of scalar field:

 Maximal intensity projection where the voxel with highest intensity on the ray is

taken as an output.

 Average intensity projection computes output pixel as average of all voxels

intersected by the ray.

 Constant transparency method iterates over voxels on the ray and each step i

computes:

 ((32)

where the T is constant transparency, is intensity of processed voxel and (1-T)

represents constant opacity. Term (models emission of processed voxel.

 Volume Rendering integral method iterates over voxels on the ray and each step i

computes an approximation to volume rendering integral as:

 (33)

 is assigned transparency given by transfer function and represents intensity of

processed voxel which is considered to be its emission.

26

5 SOFTWARE SOLUTION

In the following chapter the software implementation of the scalar field imaging

methods will be described. The algorithm is implemented in c++ language within Visual

Studio 2019 integrated development environment. Consequently the following text will

be written with respect to c++17 standard. In the attachment of this thesis the

implementation can be found in two versions. First version is an algorithm written as a

console application giving faster results. Second version is the algorithm running in

intuitive graphical user interface for a price of noticeably increased computing time.

Note that in the two attached versions there is no other difference, than graphical

appearance and way of entering the variables. In this chapter we will introduce the

algorithm step by step as it is implemented in attached files.

The idea of software application is founded on a projection method combined

with a back to front algorithm described in the preceding chapters. More precisely we

are projecting the data matrix onto a projective plane (output window) where the final

projected value is a function of voxels hit by the projection line (Fig.16) .

Fig. 16: The main idea of the implementation

5.1 Loading data from file

The first step is to load data that are going to be visualized. Recall that we have data

acquired by confocal microscope i.e. set of images. In the application the set of images

is supposed to be in the BMP file format and with equal resolution. Moreover each

image name needs to end with a decimal number starting from zero and indicating its

position in the scanned specimen. From such a set the algorithm reads each image

incrementally by its number, pixel by pixel. The read scalar values (R, G, B) are then

represented by a 3D matrix (Fig. 17). For further computations we also create integer

array variable representing dimensions of the created matrix

dim=[number of loaded images, width, height].

27

Fig. 17: Data representation

In the following text we will denote the dimensions as [IM, W, H]. In the console

implementation the path to the images has to be defined manually in the code with the

slash direction as backslash in the strings is reserved for special pattern characters.

5.2 Input variables

In this part we will introduce the user defined variables. Thoughtful alteration of them

will more or less significantly influence the output and can produce relevant

computation results. We can split the variables into two categories: projective variables

for definition of geometrical properties of the view (most of them can be seen on

Fig.16) and graphical variables representing coefficients for computation resulting

colour for output pixels. In the console version of the algorithm the input variables can

be set on the lines 1071-1088.

a) Projective variables

 Camera position [] is an array of doubles representing a point from

which we are looking at a data matrix. Due to further computations .

Convenient choice of values might be e.g. consistent with:

‖ ‖ { (}

 Distance dist representing the distance between the camera position and projective

plane. Due to further computations .

 In the implementation we can decide about the projection method using boolean

variable perspective. If the variable is set to true the output image is computed as a

result of perspective projection. False value sets projection method to parallel.

Depending on choice of projection we need one of the following variables in order

to determine size of output window:

o If we are imaging by perspective projection, we need a double variable angle

that determines the angle under which we want to see the data matrix (optic

angle) in degrees. Due to further computations ({ }

28

o In the means of parallel projection double variable mag is coefficient by

which we magnify the output window or alternatively it is the inverse of

magnification of data matrix. Clearly .

 As we have discussed in the chapter about confocal microscopy the resolution in the

optical axis is typically worse than the resolution in focal plane. If we neglected the

fact we would get the resulting image disproportionately flatter in the optical axis.

In order to get realistic result we define optDist integral variable which determines

the optical distance between the individual images. In the terms of application we

virtually expand the data by inserting spaces of size optDist in between the actual

images (Fig.18). The optical distance is typically given by the microscope. The

dimension of expanded matrix in optical axis is given by: (.

Note that we haven’t excluded the case of as for some cases it can

provide the same output at less computational cost as any other value.

Fig. 18: Optical distance representation in data matrix

 Closely related to the optical distance is a boolean variable called spaces. It

determines how to cope with empty space generated by . If the value is

set to false it approximates the empty space with weighted average of the right and

left nearest data voxels. It is an especially convenient setting for perspective

projection as it creates a visually more realistic impression of the data without

intensity jumps due to the gaps. On the other hand the variable set to true leaves the

space empty, which is a more suitable setting for performing measurements.

Moreover for the average and maximal intensity method the spaces are

automatically assumed empty as computing approximations would be redundant or

even distorting.

b) Graphical variables

 BTFmethod is an integral variable representing the method applied on the data.

0: Maximal intensity projection method,

1: average projection method,

2: constant transparency method,

29

3: volume rendering interval method with constant transfer function,

4: volume rendering interval method with user defined piecewise constant

 transfer function.

 Transparency is integral value in the interval <0;100>, which in the case of the

method with constant transparency defines the coefficient T in the equation (32), in

the case of volume rendering integral method coefficient in equation (33).

 For volume rendering integral method with user defined transfer function there is:

o Vector called TF of seven integer arrays representing the upper and lower

bound for each of R,G,B intensities and assigned transparency. These

intervals should not overlap and obviously the lower bounds need to be

lesser or equal to upper bounds.

o Opacity constant called op which is used for multiplication of each voxel

intensity value in the given interval.

o Default opacity dop which is used as opacity constant outside of the defined

interval.

 Threshold is integral variable from interval <0;254> determining whether to include

a given voxel in the computation of output pixel intensity. More specifically if the

voxel doesn’t exceed a given threshold by any value of intensity (R,G,B) it is

skipped. Thoughtful choice of threshold can significantly accelerate computation or

even filter away some noise.

 Brightness is integral coefficient from <-255,255> that is added to each intensity

(R,G,B) of output pixels up to intensity = 255 or down to intensity=0 in order to get

brighter result.

 Contrast is double variable multiplying each intensity (R,G,B) of output pixels up to

intensity = 255 in order to get a more contrasting result.

5.3 Generation of output window

As we have loaded the data and acquired the user defined variables it is possible to

continue within the algorithm. We will proceed by definition of the output data window.

Although the definition differs by the projection method used, the variation in fact

manifests only in one parameter and therefore can be implemented as a single function.

The output window position and rotation in the coordinate system will be

defined by vectors (and (. The vectors can be determined

by posing six requirements:

1. The distance of the output window from the camera position is equal to the dist

variable: Taking the direction of view and making its length equal to

dist:

‖ ‖
 , then we acquire the centre of the output window .

2. Vector r is parallel to the xy plane. Therefore .

3. Vector r is perpendicular to the direction of view d:

30

and with we acquire:

4. In the case of perspective projection the last restriction is given by the user defined

optic angle transformed to radians and for parallel projection it is given by the mag

variable. In fact both given variables determine the length of the vector r:

‖ ‖ {
 ‖ ‖ (

)

Then:

‖ ‖ √

 √

 (

)

from which we can compute:

 √

and we acquired all coordinates of vector r.

5. Vector s is perpendicular to both d and r thus we can compute it as cross product of

d and r and acquire:

 (

6. The output window size proportionally corresponds to the input/output image size:
‖ ‖

‖ ‖

. This fulfils the computed as:

‖ ‖

‖ ‖

Note that our task will be to go through the output window pixel by pixel and shoot a

ray through it in order to compute the projection of the data matrix. Previously in the

theoretical part of the thesis we have chosen the notation, where the voxel (or now in

the case of output window pixel) has the constant value in its whole volume (area).

Bearing that in mind we can represent each pixel by a point. Setting:

as starting point and

vectors representing distance between the nearest two pixels in the directions of r and s.

Then value of each output pixel can be estimated as:

where and are integers.

31

 This part of the algorithm is implemented as function outputWindowGen()

which returns (saves to referenced variable) point and vectors .

5.4 AABB ray intersection

In this subchapter we will look into the algorithm for finding the intersection of the

projective line with the data matrix (box). Naive approach would be to find intersections

of the line with all six planes forming the block separately. Then we would check

whether the intersection point lies within the rectangle boundaries in the plane.

Although functional, this approach has a lot of special cases that have to be handled

which make the algorithm relatively slow. Since ray-box intersection is very widely

used in computer graphics, several much more effective and robust algorithms had been

developed. In the software solution there is implemented the axis aligned bounding box

(AABB) algorithm introduced in [14]. This subchapter will be based on the information

form [6][14].

 The algorithm is based on comparison of parameters (of the

parametric line equations:

(

(34)

where the point P is the position of the camera and vector projLin direction of view.

The box is defined by two points on its space diagonal. These points are called lower

and upper bound where the lower bound has the minimal and the upper bound maximal

coordinates on the axes (Fig.19). In our case we also have consider the distance

Fig. 19: Upper and lower bounds representing a box

in-between the samples in the optical axis optDist so our bounds are determined as:

 *
 ((

+

 *
 (

+

(35)

Since the box is axis aligned, each coordinate of the bounds represents one of the six

boundary planes of the box and we can acquire the intersections of them with the

viewing ray as:

32

 (36)

where the meaning of subscripts is: { } and { } From the above

equation we express :

 (

) (37)

Now that we have the intersections with all six planes we want to determine which two

of them (if any) are placed on the box. First we will explain the logic behind the

parameters comparison on the 2D space with a viewing ray increasing in both axes.

Next we will generalise the algorithm to all directions of the ray and finally we will

make a simple extension onto 3D space.

 So the first question to be asked is if the viewing ray intersects the box at all.

From the (Fig. 20a)) we can see, that if either or the ray

doesn’t intersect the box. In that case we terminate the algorithm and we assign (0,0,0)

value to the related pixel on the output screen. Otherwise, the ray intersects the box and

we need to figure out which two of the four points lie on it. Looking at (Fig. 19b) we

can see that any ray intersecting the box intersects first the lines defined by Bmin and

then the lines of Bmax, whilst the points lying on the box are those defined by

 (and (.

Fig. 20: a) Case of the viewing ray missing the box; b) the viewing ray intersecting the box.

As we mentioned this parameter comparison is only valid for the viewing ray increasing

in both axes. We can generalize the approach by switching Bmax,j and Bmin,j coordinates

for all j-axes in which the viewing ray is decreasing. For extension to the 3
rd

dimension

we only need to compare acquired to the values , the same way

as we did in x,y comparison.

 In this algorithm there is one special case that needs to be handled. That is if a

coordinate of the ray direction is 0. In C++ division by zero is possible for

float/double data type and by IEEE standard [15] it yields for positive and negative

numerator respectively so the algorithm works correctly. However, if the numerator is

equal to 0.0 the result would be NaN (not a number) so we have to set the result to

33

±infinity. Closely related to this problem is that if we determined the increase/decrease

of the ray in an axis based on whether the corresponding coordinate is , by the same

standard it is defined that 0.0=-0.0 which would be lethal for the intersection

determination. Therefore it is convenient to compute rather with the ray

inversion {

}.

Pseudocode for the AABB vs. ray intersection algorithm:

In the software solution the intersection of the ray with box is implemented as a

function which returns boolean data type valued true for the ray intersecting and false

for missing the box. Moreover if the ray intersects the box the function saves the

intersection points to referenced Point structures A,B.

5.5 Bresenham algorithm

As follows from the previous description of the back to front algorithm we will need to

compute thousands of rays going through our 3D data grid and hence the rays

determining algorithm should be very fast. Suitable one is a line segment rasterization

𝐵 𝑃 𝒑𝒓𝒐𝒋𝑳𝒊𝒏 𝑡𝑚𝑎𝑥

1. Set 𝐵𝑚𝑖𝑛 *
 (IM 𝑜𝑝𝑡𝐷𝑖𝑠𝑡(IM

 𝑊

 𝐻

+

𝐵𝑚𝑎𝑥 *
IM 𝑜𝑝𝑡𝐷𝑖𝑠𝑡(IM

W

H

+

𝑖𝑛𝑣𝑞 {

𝑝𝑟𝑜𝑗𝐿𝑖𝑛𝑥

𝑝𝑟𝑜𝑗𝐿𝑖𝑛𝑦

𝑝𝑟𝑜𝑗𝐿𝑖𝑛𝑧
}

2. If (𝑖𝑛𝑣𝑞𝑖 swap (𝐵𝑚𝑖𝑛 𝑖 𝐵𝑚𝑎𝑥 𝑖) 𝑖 {𝑥 𝑦 𝑧}

3. Initialize:

If ((𝐵𝑚𝑖𝑛 𝑖 𝑃𝑖 𝑎𝑛𝑑 𝑖𝑛𝑣𝑞𝑖): 𝑡𝑚𝑖𝑛 𝑖 𝑖𝑛𝑣𝑞𝑖

else: 𝑡𝑚𝑖𝑛 𝑖 (𝐵𝑚𝑖𝑛 𝑖 𝑃𝑖 𝑖𝑛𝑣𝑞𝑖

If ((𝐵𝑚𝑎𝑥 𝑖 𝑃𝑖 𝑎𝑛𝑑 𝑖𝑛𝑣𝑞𝑖): 𝑡𝑚𝑎𝑥 𝑖 𝑖𝑛𝑣𝑞𝑖

else: 𝑡𝑚𝑎𝑥 𝑖 (𝐵𝑚𝑎𝑥 𝑖 𝑃𝑖 𝑖𝑛𝑣𝑞𝑖

4. If (𝑡𝑚𝑖𝑛 𝑥 𝑡𝑚𝑎𝑥 𝑦 𝑜𝑟 𝑡𝑚𝑖𝑛 𝑦 𝑡𝑚𝑎𝑥 𝑥): return no intersection

else set: 𝑡𝑚𝑎𝑥 𝑚𝑖𝑛(𝑡𝑚𝑎𝑥 𝑥 𝑡𝑚𝑎𝑥 𝑦

 𝑡𝑚𝑖𝑛 𝑚𝑎𝑥(𝑡𝑚𝑖𝑛 𝑥 𝑡𝑚𝑖𝑛 𝑦

5. If (𝑡𝑚𝑖𝑛 𝑡𝑚𝑎𝑥 𝑧 𝑜𝑟 𝑡𝑚𝑖𝑛 𝑧 𝑡𝑚𝑎𝑥): return no intersection

else set: 𝑡𝑚𝑎𝑥 𝑚𝑖𝑛(𝑡𝑚𝑎𝑥 𝑡𝑚𝑎𝑥 𝑧

 𝑡𝑚𝑖𝑛 𝑚𝑎𝑥(𝑡𝑚𝑖𝑛 𝑡𝑚𝑖𝑛 𝑧

6. Set: 𝐴 𝑃 𝒑𝒓𝒐𝒋𝑳𝒊𝒏 𝑡𝑚𝑖𝑛

7. Return A,B

34

algorithm which takes two boundary points of a line segment and generates a sequence

of integer voxel coordinates representing a line segment in a raster image. In this

subchapter we will introduce the Bresenham line segment rasterization algorithm and its

extension to the 3
rd

 dimension based on [6][16][17]. The Bresenham algorithm is an

incremental algorithm based on integer arithmetic. Using only integer computations

results in significant speed acceleration.

5.5.1 Basic Bresenham algorithm in 2D

As said above for two integer input points A= [x1, y1] and B = [x2, y2] we are looking

for integer line segment representation. The algorithm is derived from the line equation:

(

(38)

where

 is the slope of the line segment and b is translation. Knowing

the slope m we can determine main axis to which given line segment leans to:

 {
 〈 〉

(

(39)

In the rasterization algorithm we are iteratively moving along the main axis with the

unit step and for each such step we decide whether to make a step along the secondary

axis as well (Fig.21a)).

Fig. 21: a) Rasterization of line segment with main axis x. b) Closer pixel determination.

For simplicity the algorithm will be explained assuming:

i. Input points lie in the first

quadrant of the plane.

ii. Input points are ordered from left to right. ().

iii. The slope 〈 〉 → the main axis is x.

Other cases will be discussed in the next subchapter.

Let pixel [xi,yi] be processed. Now we have to make a decision whether to move the

next pixel up in the y axis [xi+1, yi+1] or stay on the same level [xi+1, yi]. The decision

is based on distances d1, d2 of the two possible pixels from the real line segment

(Fig.21b). The pixel closer to the real line segment will be picked and processed next.

The real line segment coordinate in the y-axis is:

35

 (

(

(40)

and the distances from each pixel:

 ((41)

 (. (42)

If we subtract the distances:

 ((43)

we can determine which pixel to choose only by the sign of the result. If the the

closer pixel is [xi+1, yi] and will be processed next, in the other case we process pixel

[xi+1, yi+1].

In order to make the calculation faster it is desirable to transform equation (43)

to integer form. First we substitute b=y1-mx1 and get:

 ((

((

 .

Next we multiply the equation by positive member so we eliminate the fraction and

we get decision parameter for i-th step of the algorithm in the form:

 ((

 (

 (44)

where (is a constant. By expressing of the subsequent

decision parameter:

 ((45)

and subtracting equations (44) and (45) we can express the subsequent decision

parameter from :

 ((46)

where

 {

hence

 {

 (47)

The first decision parameter in the sequence is stated by inserting initial point [x1, y1] to

the equation (47):

 (48)

36

Pseudocode for the basic version of the Bresenham algorithm:

5.5.2 Bresenham algorithm for all directions in 3D

In the previous subchapter we concentrated on the principle of Bresenham algorithm

and we considered one specific case of algorithm in two dimensions. In this subchapter

we will extend the algorithm to a general form in the three dimensional space along

with an introduction to how the algorithm is implemented in the software solution.

At first we considered x as the main axis. In order to generalize the algorithm we

first have to decide, which of the three axes the main one is. We determine it easily by

comparing the absolute values of input points A[x1,y1,z1], B[x2,y2,z2] differences |

 |, | |, | | where the greatest difference determines the main axis along

which there will be a constant unit step.

Moreover in the subchapter 5.5.1 we have considered one specific direction

given by the input points A, B (increasing in both x and y axis). But there are four
possible directions of line rasterization in the plane and eight directions in the 3D space.

Some of the cases can even result in sign alterations in (47). Although, if we realize that

the line segment increases/decreases in the secondary axes symmetrically with respect

to the centre of the line segment, we may omit the alterations using absolute values of

 .

Even when the computation of decision parameters is now generalized, we

still need to acknowledge the direction of rasterization. This may be expressed by three

coefficients { } where value 1 represents ascending and -1 descending of

the line segment in the considered axis. As a result we move along the main axis with

step and for each secondary axis we keep its own decision coefficient given by:

 (49)

𝑦 𝑦

𝑝 𝑝 (𝑦 𝑥

1. Set: 𝑥 𝑥 𝑥 , 𝑦 𝑦 𝑦

2. Initialize 𝑝 𝑦 𝑥

3. Set [x, y]=[x1, y1]

4. Process point [x, y]

5. While 𝑥 𝑥

a. 𝑥 𝑥

b. If 𝑝 then

else

 𝑝 𝑝 𝑦

c. Process point [x, y]

6. End.

37

 {

 (50)

where | | and subscripts m and s indicate main and secondary axis,

respectively.

Pseudocode for the 3D general Bresenham algorithm:

In the software solution the Bresenham algorithm is implemented as two nested

functions. The first function takes the two border integer points as an input, determines

the main axis and coefficient for each secondary axis (1.-4. in the pseudocode). The

second function is then called with differences, coefficients and related positions in the

point structure (linking m,s1, s2 to the corresponding axes) ordered so that the main axis

coefficients are on first positions. Then the line 5.- 9. in the pseudocode is executed and

the processed points are saved in the Line structure for later use in back to front

algorithm.

𝑠 𝑠 𝑐𝑠

𝑝 𝑝 𝑠 𝑚

𝑠 𝑠 𝑐𝑠

𝑝 𝑝 𝑠 𝑚

1. Set 𝑥 |𝑥 𝑥 |, 𝑦 |𝑦 𝑦 |, 𝑧 |𝑧 𝑧 |

2. If 𝑥 𝑥 : 𝑐𝑥 else: 𝑐𝑥

If 𝑦 𝑦 : 𝑐𝑦 else: 𝑐𝑦

If 𝑧 𝑧 : 𝑐𝑧 else: 𝑐𝑧

3. If 𝑥 𝑦 and 𝑥 𝑧: main axis is x

else if 𝑦 𝑥 and 𝑦 𝑧: main axis is y

else: main axis is z

4. Link main axis as m, secondary axes as s1, s2

5. Initialize 𝑝 𝑠 𝑚 𝑝 𝑠 𝑚

6. Set [x, y, z]=[x1, y1, z1]

7. Process point [x, y, z]

8. For i=1:(dm+1)

a. 𝑚 𝑚 𝑐𝑚

b. If 𝑝 then

else

 𝑝 𝑝 𝑠

c. If 𝑝 then

else

 𝑝 𝑝 𝑠

d. Process point [m, s1, s2]

9. End.

38

5.6 Back to front method implementation

At this point we are getting to the core of the algorithm. As it was outlined at the

beginning of this subchapter for each pixel of the output window we will:

1. Cast a ray through it.

2. Compute intersection of the ray with data matrix. (AABB-ray intersection)

3. Determine the set of voxels lying on the intersection. (Bresenham)

4. Perform one of the methods suitable for back to front application.

As for the first step the casted ray (projection line) is represented as a point and

direction vector. In the case of perspective projection the point is camera position P and

the vector is computed as:

where is a point representing the processed output pixel. In the case of parallel

projection the point is and the direction is simply equal to the direction of

view d as it is perpendicular to the output window.

 The algorithm proceeds with a function intersection which takes the point and

direction defining ray, dimensions dim and constant optDist as input. If there exist an

intersection with a data matrix it returns bool value true, the intersections are saved to

referenced points A,B and the algorithm proceeds. On the other hand if there is no

intersection the current output pixel value is set to zero and the program proceeds with

processing the next output pixel.

In the next step (if the intersections exist) the points A,B are rounded to integral

values and taken as input to the Bresenham function. This function generates the array

AB of coordinates of the voxels lying on the intersection of the ray with the data matrix

from the furthest to nearest. In the implementation there are two versions of the

Bresenham function. One is for the choice of weighted average for the spaces between

the images in the data matrix and returns coordinates of all the voxels on the

intersection. Second returns only intersected voxels with data as it is unnecessary to

involve void voxels in the computation.

The fourth step applies one of the imaging methods, considered in the theoretical

part, on the voxels intersected by the ray. As the methods are straightforward we will

describe their implementation in terms of short pseudocodes.

 Maximal intensity method

1. Initialize voxel 𝑂𝑢𝑡𝑝𝑢𝑡𝑅 𝐺 𝐵 , intensitySum = 0, maxIntensitySum = 0,

2. For each voxel P in AB:

If (𝑃𝑅 𝑡 𝑟𝑒𝑠 𝑜𝑙𝑑 OR 𝑃𝐺 𝑡 𝑟𝑒𝑠 𝑜𝑙𝑑 OR 𝑃𝐵 𝑡 𝑟𝑒𝑠 𝑜𝑙𝑑)

 intensitySum=𝑃𝑅 𝑃𝐺 𝑃𝐵

 If (intensitySum> maxIntensitySum)

 maxIntensitySum= intensitySum

 𝑂𝑢𝑡𝑝𝑢𝑡𝑅 𝐺 𝐵 𝑃𝑅 𝐺 𝐵

else continue with next voxel;

3. End.

39

 Averages

 Constant transparency method:

 Volume rendering integral with constant transfer function

 Volume rendering integral with user defined transfer function

1. Initialize voxel 𝑂𝑢𝑡𝑝𝑢𝑡𝑅 𝐺 𝐵

2. For each voxel P in AB:

If (𝑃𝑅 𝑡 𝑟𝑒𝑠 𝑜𝑙𝑑 OR 𝑃𝐺 𝑡 𝑟𝑒𝑠 𝑜𝑙𝑑 OR 𝑃𝐵 𝑡 𝑟𝑒𝑠 𝑜𝑙𝑑):

 𝑂𝑢𝑡𝑝𝑢𝑡𝑅 𝐺 𝐵 𝑃𝑅 𝐺 𝐵 (𝑡𝑟𝑎𝑛𝑠𝑝 𝑂𝑢𝑡𝑝𝑢𝑡𝑅 𝐺 𝐵 𝑡𝑟𝑎𝑛𝑠𝑝

else continue with next voxel;

3. End.

1. Initialize voxel 𝑂𝑢𝑡𝑝𝑢𝑡𝑅 𝐺 𝐵

2. For each voxel P in AB:

If ((𝑃𝑅 𝑡 𝑟𝑒𝑠 𝑜𝑙𝑑 OR 𝑃𝐺 𝑡 𝑟𝑒𝑠 𝑜𝑙𝑑 OR 𝑃𝐵 𝑡 𝑟𝑒𝑠 𝑜𝑙𝑑):

 𝑂𝑢𝑡𝑝𝑢𝑡𝑅 𝐺 𝐵 𝑃𝑅 𝐺 𝐵 𝑂𝑢𝑡𝑝𝑢𝑡𝑅 𝐺 𝐵 𝑡𝑟𝑎𝑛𝑠𝑝

else continue with next voxel;

3. End.

1. Initialize voxel 𝑂𝑢𝑡𝑝𝑢𝑡𝑅 𝐺 𝐵

2. For each voxel P in AB:

If (𝑃𝑅 𝑡 𝑟𝑒𝑠 𝑜𝑙𝑑 OR 𝑃𝐺 𝑡 𝑟𝑒𝑠 𝑜𝑙𝑑 OR 𝑃𝐵 𝑡 𝑟𝑒𝑠 𝑜𝑙𝑑)

 𝑂𝑢𝑡𝑝𝑢𝑡𝑅 𝐺 𝐵 𝑃𝑅 𝐺 𝐵 𝑂𝑢𝑡𝑝𝑢𝑡𝑅 𝐺 𝐵

else continue with next voxel;

3. 𝑂𝑢𝑡𝑝𝑢𝑡𝑅 𝐺 𝐵
𝑂𝑢𝑡𝑝𝑢𝑡𝑅 𝐺 𝐵

𝑠𝑖𝑧𝑒𝑂𝑓(𝐴𝐵

4. End.

5.

1. Initialize voxel 𝑂𝑢𝑡𝑝𝑢𝑡𝑅 𝐺 𝐵

2. For each voxel P in AB:

If ((𝑃𝑅 𝑡 𝑟𝑒𝑠 𝑜𝑙𝑑 OR 𝑃𝐺 𝑡 𝑟𝑒𝑠 𝑜𝑙𝑑 OR 𝑃𝐵 𝑡 𝑟𝑒𝑠 𝑜𝑙𝑑) AND

(𝑃𝑅 𝐺 𝐵 𝑖𝑠 𝑤𝑖𝑡 𝑖𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠):

 𝑂𝑢𝑡𝑝𝑢𝑡𝑅 𝐺 𝐵 𝑃𝑅 𝐺 𝐵 𝑡𝑓 𝑃𝑅 𝐺 𝐵 𝑡𝑟𝑎𝑛𝑠𝑝 𝑂𝑢𝑡𝑝𝑢𝑡𝑅 𝐺 𝐵

else continue with next voxel;

3. End.

40

When the computation of either method is done the resulting pixel values are modified

by the user setting of brightness and contrast:

and the algorithm continues with processing the next pixel. When all the output pixels

are processed the result is saved in the folder with project as Output.bmp.

41

6 RESULTS AND DISCUSSION

The implementation of methods for scalar data visualization described in the chapter 5

was tested on the following three datasets acquired by confocal microscope as series of

BMP images with dynamic range 8 bits per colour component:

 Dataset1: two speciments of protozoan Paramecium caudatum, real size cca

No of Images: 57

Width: 1600

Height: 1600

(relatively high resolution, relatively small noise)

 Dataset2: tobacco cell, real size cca

No of Images: 100

Width: 800

Height: 800

(suitable small resolution, heavily degradated by noise)

 Dataset3: tobacco cell, real size cca

No of Images: 96

Width: 954

Height: 638

(suitable resolution, slightly degradated by noise)

Note that in the ZIP attachment to the thesis, there is only Dataset1 provided with half

of the original resolution due to size restrictions. On the attached CD there are all three

datasets in full resolution. In the attached files there are also two versions of application.

One is pure algorithm where the manipulation with input data has to be done in the

actual code. The second is implemented as a graphic user interface where the inputs can

be entered and changed intuitively.

In the appendix of the thesis you can find the examples of images generated by

the algorithm. Particularly there are three examples from each set and each set is shown

from different points of view generated by back to front method with constant

transparency in order to give an idea how the original specimen looked. Moreover there

are results of average projection, maximal intensity projection and volume rendering

integral with constant transfer function and user defined transfer function method with

two versions transfer function for each dataset. Further there is shown an impact of

optical distance setting and difference between parallel and perspective view.

From chapter 5, where the algorithm functionality is described is obvious, that in

general the parallel projection is faster than projective, as we don’t have to compute the

viewing ray direction. With the same clarity we can say that treating optical distance in-

between the voxels as an empty space rather than estimating weighted average of

incident voxels is exceptionally faster. In fact, depending on the defined optical distance

variable, this artificial stuffing of the void voxels quickly becomes the heaviest process

in the algorithm. Looking at the implemented methods, we can observe that the

maximal intensity and average projections are very similar and relatively fast in terms

42

of processing time. On the other hand these methods are quite rigid when it comes to

output information. On the contrary, back to front method with constant transparency

and volume rendering integral provide more flexibility in the image output definition

and consequently in the amount of information obtainable at the cost of longer

computation time. Naturally the constant transfer function for volume rendering integral

is faster than the method with user defined transfer function as in the latter we need to

check whether the value of a voxel lies in the interval for each voxel in the data matrix

and each interval defined.

Note that we may only need to reconstruct the frontal 3D view of the scanned

specimen (in the direction of optical axis x). Then it is not needed to fill the void

between the voxels, as those empty spaces won’t be visible. Moreover in this case when

we apply a parallel projection method the optical distance becomes redundant, as it

won’t result in change in the output. Knowing this, we can significantly reduce the

runtime of the algorithm.

43

7 CONCLUSION

The first theoretical chapter in this thesis is devoted to confocal microscopy. In

particular we have described how simulated fluorescence from fluorophores serves in

widefield and confocal microscopy. We have continued with explanation how confocal

microscopes focus on one particular point in a focal plane and they filter out of focus

light using two pinhole aperture and two confocal lenses. Further we discussed the

whole microscope setup. The chapter continues with introduction of limitations

regarding confocal microscopy. We have mentioned light detection limitations – the

resolution limitation caused by diffraction phenomena, pinhole size, laser intensity and

amount of fluorophore and scanning speed limitations followed by description of

acousto-optic deflectors and Nipkow discs addressing the speed limitation issues.

Chapter three sets the mathematical background for computer geometry and

back-to-front algorithm in particular. In this chapter we have quickly recapitulated the

basic definitions regarding linear, normed, unitary, affine and Euclidean spaces and put

them in context with analytic geometry. The second subchapter brings up projective

space definitions followed by introduction of parallel and perspective projections and

ends with a short discussion on their suitability.

The fourth chapter leads toward the back-to-front algorithm. First we have

introduced a direct volume rendering concept which is advantageous for data with inner

structures imaging and possibilities of representation of such volumetric data in the

computer with accent to 3D scalar fields. In order to create realistic rendering of objects

the direct volume rendering methods are mostly based on volume rendering integral,

which describes the light propagation through the participating media. In the second

subchapter we have introduced the basic radiometric quantities used for describing the

transmission of light: photon energy, radiant energy, radiant flux, irradiance, radiant

intensity and most importantly radiance. Based on the theory we have described the

derivation of the volume rendering integral by combination of absorption and emission

of light by particles in participating media. The theoretical part of the thesis culminates

in the fourth subchapter, where the back-to-front visualization method is obtained by

discretization of volume rendering integral followed by brief introduction of transfer

functions and methods suitable for imaging scalar data fields by back-to-front method:

maximal intensity projection, average intensity projection, constant transparency

method and volume rendering integral method.

The fifth chapter is dedicated to step by step description of the back-to-front

algorithm implementation. We have mentioned the loading of the images from the given

dataset and continued with introduction of the user defined projective and graphical

variables, their possible ranges meaning in the algorithm. Having the input variables

defined we approached the output window generation where we determined its exact

position in the coordinate system based on the camera position, distance of the window

from camera position, optic angle or magnitude (depending on the projection) and

44

resolution of the input/output images. As subsequent parts of the algorithm are repeated

up to millions times (depending on images resolution) we have implemented fast

methods of their computation. The first algorithm is used for finding intersection of a

ray with axis aligned bounding box using comparison of parameters from parametric

line equation. Another fast implemented method is Bresenham algorithm for line

segment rasterization. The algorithm is based on integer arithmetic where a simple

decision parameter is compared to zero. The last section of the practical part describes

implementation of the back-to-front methods introduced in chapter four.

In the sixth chapter we have discussed the results of implemented methods in the

terms of computational complexity and their suitability for different result purposes. For

the end we can summarize, that the maximal intensity projection, average projection,

constant transparency method and volume rendering integral method with constant

transfer function can be used for getting an overall idea about given data whereas

volume rendering integral method with user defined transfer function is more suitable

for specific information extraction. Furthermore the parallel projection with void in-

between the data is better for measurement purposes where the precision is required,

while perspective projection and filling the optical distance with weighted average

provides a more realistic impression.

45

8 LITERATURE

[1] Semwogerere, D, Weeks, ER. Confocal microscopy. In: Wnek, G, Bowlin, G (eds)

Encyclopedia of biomaterials and biomedical engineering. New York: Taylor &

Francis, 2005, pp. 705–714.

[2] PRASAD, V, D SEMWOGERERE a Eric R WEEKS. Confocal microscopy of

colloids. Journal of Physics: Condensed Matter [online]. 2007, 19(11) [cit. 2020-

06-24]. DOI: 10.1088/0953-8984/19/11/113102. ISSN 0953-8984.

[3] VERGARA-IRIGARAY, Nuria, Michèle RIESEN, Gianluca PIAZZA, et al. Laser

Scanning Confocal Microscopy. Encyclopedia of Nanotechnology. Dordrecht:

Springer Netherlands, 2012, 2 1192-1192. DOI: 10.1007/978-90-481-9751-

4_100341

[4] MARTIŠEK, Dalibor. Matematické principy grafických systémů. Brno: Littera,

2002. ISBN 80-857-6319-2.

[5] SOJKA, Eduard. Počítačová grafika II: průvodce studiem. Ostrava: VŠB -

Technická univerzita, Regionální centrum celoţivotního vzdělávání, 2003. ISBN

80-248-0293-7.

[6] ŢÁRA, Jiří. Moderní počítačová grafika. 2., přeprac. a rozš. vyd. Brno: Computer

Press, 2004. ISBN 80-251-0454-0.

[7] DUNCAN, Marsh. Applied geometry for computer graphics and CAD. Springer:

London, 2000. ISBN 1-85233-080-5.

[8] HANSEN, Charles D. a Chris R. JOHNSON. The visualization handbook.

Burlington: Elsevier Butterworth-Heinemann, 2005. ISBN 0-12-387582-X.

[9] YAGEL, R., D.M. REED, A. LAW, PO-WEN SHIH a N. SHAREEF. Hardware

assisted volume rendering of unstructured grids by incremental slicing. In:

Proceedings of 1996 Symposium on Volume Visualization [online]. ACM, 1996,

55-62 [cit. 2020-06-24]. DOI: 10.1109/SVV.1996.558043.

[10] SHIRLEY, Peter a Stephen Robert MARSCHNER. Fundamentals of computer

graphics. 3rd ed. Natick, Mass.: A K Peters, c2009. ISBN 978-1-56881-469-8.

[11] MCCLUNEY, William. Introduction to Radiometry and Photometry (1st ed 1994).

Boston, London: Artech House Publ, ISBN 0-89006-678-7.

[12] BLINN, James F. Light reflection functions for simulation of clouds and dusty

surfaces. ACM SIGGRAPH Computer Graphics [online]. 1982, 16(3), 21-29.

DOI: 10.1145/965145.801255 Accessible:

http://portal.acm.org/citation.cfm?doid=965145.801255

[13] MAX, N. Optical models for direct volume rendering. IEEE Transactions on

Visualization and Computer Graphics [online]. 1(2), 99-108 DOI:

10.1109/2945.468400.

[14] WILLIAMS, Amy, Steve BARRUS, R. Keith MORLEY a Peter SHIRLEY. An

efficient and robust ray-box intersection algorithm. In: ACM SIGGRAPH 2005

Courses on - SIGGRAPH '05. New York, New York, USA: ACM Press, 2005,

2005, s. 9 DOI: 10.1145/1198555.1198748.

46

[15] IEEE Standards Association. IEEE standard for binary floating-point arithmetic.

IEEE Report (New York), 1985. ANSI/IEEE Std 754-1985.

[16] BRESENHAM, J. E. Algorithm for computer control of a digital plotter. IBM

Systems Journal [online]. 1965, 4(1), 25-30. DOI: 10.1147/sj.41.0025. ISSN

0018-8670

[17] MARTIŠEK, Dalibor a MARTIŠEK Karel. Direct Volume Rendering Methods for

Cell Structures. Scanning [online]. 2012, 34(6), 367-377. DOI:

10.1002/sca.21019. ISSN 01610457

[18] ENGEL, Klaus. Real-time volume graphics. Wellesley: A.K. Peters, c2006. ISBN

1-56881-266-3.

[19] LJUNG, Patric, Jens KRÜGER, Eduard GROLLER, Markus HADWIGER,

Charles D. HANSEN a Anders YNNERMAN. State of the Art in Transfer

Functions for Direct Volume Rendering. Computer Graphics Forum [online].

2016, 35(3), 669-691. DOI: 10.1111/cgf.12934

47

9 LIST OF ATTACHEMENTS

CD.

Compressed ZIP file with implementations, datasets and example outputs.

49

APPENDIX

Fig. 22: Examples of images from dataset 1,2 and 3

Fig. 23: DATASET1: constant transparency method, parallel projection, mag=1.0,

distance=300, optical distance=4, empty spaces approximation on, transparency=99%,

threshold=30, brightness=0, contrast=1.0.

50

Fig. 24: DATASET2: constant transparency method, parallel projection, mag=1.3,

distance=300, optical distance=2, empty spaces approximation on, transparency=85%,

threshold=40, brightness=0, contrast=5.

Fig. 25: DATASET3: constant transparency method, parallel projection, mag=1.0,

distance=300, optical distance=2, empty spaces approximation on, transparency=85%,

threshold=50, brightness=0, contrast=2.0.

51

Fig. 26: a) Average ,b) maximal intensity ,c) volume rendering integral method constant

transfer function

52

Fig. 27: Volume rendering integral method with user defined transfer function

Fig. 28: a) Optical distance= 0 b) optical distance=5 with weighted average approximation

c) optical distance=5 without weighted average approximation with parallel projection

d) close-up view of c).

53

Fig. 29: a) Parallel projection b) perspective projection with optical distance= 20.

