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Abstract—This paper introduces three methods of an auto-
motive refrigeration compressor power measurement and com-
putation. All the methods are evaluated on a test bench with
convenient results. The model-based method in combination with
the condenser model and condenser fan characteristic is then
used for assembly of an optimization problem, which has been
solved to find an optimal condenser fan speed for a combination
of compressor speed and ambient temperature. This method
of condensing pressure (temperature) control can be useful to
achieve minimal power consumption of the refrigeration system
for electric vehicles and even in other application areas with
variable speed compressors and condenser fans.

Index Terms—automotive refrigeration, vapor compression re-
frigeration system, condenser fan speed control, electric compres-
sor control, effectiveness-NTU, power consumption optimization,
electric vehicle, heating, ventilation, air conditioning, HVAC,
R1234yf

I. INTRODUCTION

The coming age of electric vehicles (EV) brings requests on
energy optimal control of all the devices within the vehicle,
as all the devices are powered from high-voltage (HV) battery
and they can negatively influence the EV range. The most
significant auxiliary from the power consumption perspective
is Heating, Ventilation, Air Conditioning, and Refrigeration
(HVAC&R) system. In this paper, we propose a method of
minimization of electric compressor power consumption by
optimal control of condenser fan, more specifically - the over-
all power consumption of Air Conditioning (AC) compressor
and the condenser fan is minimized.

Vapor compression (refrigeration) system (VCS or VCRS)
energy consumption optimization is handled for several indus-
tries (building HVAC&R, supermarket, industrial refrigeration,
etc.) and it is solved by different methods. Unfortunately,
there are almost no relevant papers on automotive VCRS
optimization, as the electric compressors and variable speed
condenser fans were introduced quite recently and are usually
connected with EVs.

Extremum seeking methods for power consumption mini-
mization [1]–[3] are quite popular due to their independence
on the VCRS model. They provide good performance with
resistance to disturbances but usually require steady-state
conditions, which is not satisfied in automotive applications.

Moreover, a disturbance signal is injected into some actuator
and the oscillations might be harmful to some components.

Optimization of VCRS operation by two-state switching of
multiple condenser fans was studied in [4]. In [5] the authors
assembled the VCRS model and mentioned the reference
of condensing temperature (and thus high-side pressure) as
an ambient temperature increased by some constant. This
approach was tested in simulations [6]. A comparison of
different strategies of condenser fans was studied in [7] with
fixed head pressure reference and also with floating head
pressure setpoint.

Several methods of evaporative condenser fan control were
considered in [8] and they derived the formulae for optimal
saturated condensation temperature. For air-cooled chillers, the
optimal condensing temperature setpoint was discussed in [9]
for staged condenser fans.

II. COMPRESSOR POWER COMPUTATION

The considered high-voltage electric compressor is shown
in Fig. 1 and it is a scroll compressor with the displacement
of 33 cm3 intended for R134a or R1234yf refrigerants. It
is equipped by specifically designed power electronics with
sensor-less motor control algorithms and LIN communication
with the high-level control unit. All the software was created
by us, thus it was possible to adjust it to allow compressor
power measurements and computations.

The HVAC&R test bench is also equipped with a vari-
able speed condenser fan, which enables the optimization of
condensing pressure (temperature). The circuit is filled with
refrigerant R1234yf.

A. Motor control approach

For electric compressor with 3-phase PMS motor, we can
compute the input power as

P = uaia + ubib + uaib, (1)

where ix are measured phase currents and ux are phase
voltages. Each phase voltage is computed from the PWM duty
cycle

ux = DxUDC, (2)



Fig. 1: Automotive refrigerant compressor

where Dx ∈ 〈0, 1〉 is the duty cycle, UDC is DC bus voltage
and x ∈ {a,b,c} is the phase identifier. Comparing these
computations with a real measurement it was found that there
is some inaccuracy. Detailed analysis showed, that it is caused
by the dead-time of inverter switching elements. Thus a dead-
time compensation was introduced and utilized for power
consumption computation

ux = [Dx − c sign(ix)]UDC, (3)

where c is dead time compensation constant, which is depen-
dent on

• dead time length
• inverter timing characteristics.
The compressor shaft power can be written as

Pshaft = ωτ, (4)

where ω stands for compressor angular velocity with τ being
its torque.

B. Pressure & Temperature measurement approach

The compressor in Fig. 1 uses refrigerant for cooling the
power electronics, motor winding, and other parts. Therefore,
we can suppose that all the energy consumed by the compres-
sor (P ) is transferred into the refrigerant in the form of work
or heat. The approach will be described in the ph diagram in
Fig. 2.

The compressor input power can be computed based on
measured variables, particularly inlet and outlet pressures and
temperatures. We start from the general equation [10]

P = ṁ∆h, (5)

where ṁ is the refrigerant mass flow rate and ∆h is specific
enthalpy difference between compressor inlet and outlet. The
compressor refrigerant mass flow rate can be written as [11]

ṁ =
ω

2π
ρ1V ηvol, (6)

where ρ1 is the refrigerant volumetric mass density at the
compressor inlet, V stands for compressor displacement and
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Fig. 2: The ph diagram of the refrigeration cycle

ηvol is compressor volumetric efficiency. Specific enthalpy
difference can be expressed as

∆h = h2 − h1, (7)

where h1 and h2 are specific enthalpies at compressor inlet
and outlet respectively. As it is not possible to directly measure
the specific enthalpy, it is necessary to compute them based
on measurable variables

h1 = h(pe, Tre), (8)
h2 = h(pc, Trc), (9)

where pe and pc are evaporator and condenser pressures
respectively, Tre and Trc are refrigerant temperatures at evap-
orator outlet and condenser inlet respectively and h = h(p, T )
is a thermodynamic function returning specific enthalpy based
on refrigerant pressure and temperature. The function can be
derived from the equation of state and we used a tool CoolProp
[12] to obtain particular numeric values. Finally, we get an
equation for compressor input power as a combination of
equations above

P =
ω

2π
ρ1V ηvol [h(pc, Trc)− h(pe, Tre)] . (10)

C. Thermodynamic model-based approach

Compressor power can be also estimated from its model
considering overall efficiency

P =
Pie

ηo
, (11)

where Pie is compressor isentropic power and ηo stands for
compressor overall efficiency

ηo = ηieηmηmot, (12)

where ηie is isentropic efficiency, ηm mechanical efficiency,
and ηmot is motor efficiency (considering motor and inverter
losses). Then we can write the shaft power as

Pshaft =
Pie

ηie
= Pηmotηm. (13)



The isentropic compressor power can be written as

Pie = ṁ∆hie, (14)

where ∆hie is isentropic specific enthalpy difference of com-
pressor inlet and outlet

∆hie = h2,ie − h1, (15)

with h2,ie being the isentropic specific enthalpy at the compres-
sor outlet. Using thermodynamic functions we can express it
as

h2,ie = h(pc, s(pe, Tre)), (16)

where h = h(p, s) is a thermodynamic function returning
specific enthalpy based on pressure and specific entropy and
s = s(p, T ) is a function returning specific entropy based on
pressure and temperature. Then we can write compressor shaft
power as

Pshaft =
ω

2π
ρ1V ηvol

h(pc, s(pe, Tre))− h(pe, Tre)

ηie
. (17)

D. Combining motor and model-based approach

If we compare (4) and (17), it is evident that motor power is
dependent on motor speed and torque, which can be expressed
as

τ =
ρ1V ηvol

2πηie
[h(pc, s(pe, Tre))− h(pe, Tre)] . (18)

Under the following assumptions
• constant evaporator heat flow rate Q̇e
• constant evaporator pressure pe
• constant compressor suction line superheat
• constant compressor efficiencies ηvol, ηie, ηm and ηmot

we can quite easily analyze, which variables the torque is
dependent on. The fraction in (18) is constant (even com-
pressor inlet density due to constant evaporator pressure and
superheat), the term h(pe, Tre) is also constant and the only
variable term is h(pc, s(pe, Tre)). Under assumptions above the
specific entropy is also constant, and we get an important
finding, that torque is a function of condenser pressure

τ = f(pc), (19)

shown in Fig. 3, and subsequently

Pshaft = ωf(pc) = g(ω, pc). (20)

III. CONDENSER THERMAL FLOWS MODEL

Heat flow rate caused by transportation of the air into and
out of the condenser can be described by simplified steady-
flow thermal energy equation [13]

Q̇ = ṁaca(Tai − Tao), (21)

where ṁa is air mass flow rate influenced by condenser fan,
ca is the air specific heat capacity and Tai and Tao are the inlet
and outlet temperatures of the air respectively.

Fig. 3: Compressor torque dependency on condenser pressure

The heat flow rate between the refrigerant and air can be
expressed using Logarithmic Mean Temperature Difference
(LMTD) [13]

Q̇ = UA∆THX, (22)

where U is overall heat transfer coefficient, A is the heat
exchanger effective area and ∆THX is logarithmic temperature
difference

∆THX =
∆TA −∆TB

ln ∆TA
∆TB

=
(Tri − Tao)− (Tro − Tai)

ln (Tri−Tao)
(Tro−Tai)

, (23)

which can be for a constant temperature of one medium (Tro =
Tri = Tr) simplified to

∆THX =
Tai − Tao

ln (Tr−Tao)
(Tr−Tai)

. (24)

The second possibility of heat flow rate computation is
Effectiveness - Number of Transfer Units (ε-NTU) method
[13] based on the determination of maximal HX heat flow
rate and then computation of HX effectiveness. We can write
the dimensionless NTU coefficient as

NTU ≡ UA

Cmin
, (25)

where Cmin is defined as

Cmin ≡ min(Cc, Ch), (26)

where Cc and Ch stand for heat capacity rates of cold and hot
stream respectively and are described by

C = ṁcp. (27)

Then we express heat capacity ratio

Cr ≡
Cmin

Cmax
, (28)

and as the cp of two-phase refrigerant in the condenser is
infinite [14], the heat capacity ratio becomes Cr = 0. Then
we can use the equation

ε = 1− exp(−NTU ), (29)



Fig. 4: Condenser fan power dependency

which holds for any heat exchanger without restrictions on
flow arrangement. Then the heat flow rate of HX can be
computed by

Q̇ = εCmin(Tri − Tai) = εCmin(Tr − Tai). (30)

Both the ε and Cmin are dependent only on the air mass flow
rate ṁa.

The power consumption of the condenser fan was measured
on the test bench with the results shown in Fig. 4, which
conform the expected fan characteristics

Pfan = 27 + 55.59ṁ3
a . (31)

IV. POWER CONSUMPTION MINIMIZATION

We define the overall power consumption of the system as

Poa ≡ Pcmpr + Pfan, (32)

and we need to minimize it to achieve energy optimal opera-
tion of the VCRS system. The goal of this section is to express
the overall power consumption as a function of condenser
pressure pc and then to find an optimal condenser pressure
p∗c , for which the overall power consumption will be minimal
(under defined conditions).

Compressor power can be from (13), (20) and with substi-
tuting Pcmpr = P easily described by

Pcmpr =
Pshaft

ηmotηm
=

ωτ

ηmotηm
=
ωf(pc)

ηmotηm
(33)

and for fan power, we can write

Pfan = 27 + 55.59 ṁ3
a , (34)

but ṁa is not known. Then it is necessary to express ṁa from
(30) as a function of condenser pressure pc to enable energy
optimization. After inserting into the original equation we get

Q̇ =

[
1− exp

(
− UA

ṁacp

)]
ṁaca(Tr − Tai), (35)

from where it is unfortunately not possible to express ṁa
directly. Therefore, an ε-NTU approximation was introduced
and it summarizes the terms

ν(ṁa) =

[
1− exp

(
− UA
ṁacp

)]
ṁaca (36)

Fig. 5: ε-NTU approximation

shaped as

ν̂(ṁa) = a [1− exp (−bṁa)] , (37)

with quite good compliance shown in Fig. 5. The approx-
imation coefficients a, b are dependent on heat exchanger
properties (constants A, U ) and mass flow rate range. Using
the approximation above

Q̇ = ν̂(ṁa)(Tr − Tai)

= a [1− exp (−bṁa)] (Tr − Tai) (38)

the ṁa can be expressed as

ṁa =
ln

(
1− Q̇

a(Tr−Tin)

)
−b

. (39)

The last step is evaluating the term Tr in the equation above.
As it is considered to be a condensing temperature, which is
dependent only on refrigerant pressure in the two-phase region,
we can write

Tr = Tsat(pc), (40)

where Tsat(p) is a thermodynamic function returning saturated
temperature for defined pressure. This dependency is known
for each refrigerant (can be obtained from e.g. [12]), and we
can easily find 2nd order polynomial approximation of this
function

Tr = T̂sat(pc) = z1p
2
c + z2pc + z3, (41)

which is valid for reasonable pressure and temperature range
with coefficients z1 = −6.83× 10−12, z2 = 5.05× 10−5, and
z3 = 268.65.

Then we substitute (41) into (39), then resulting ṁa into
(34) and finally this fan power into overall power equation
(32). The arising function

Poa = l(pc, Tin, ω) (42)



Fig. 6: Optimal condenser air mass flow rate

Fig. 7: Optimal condenser refrigerant pressure

needs to be minimized for each combination of ambient
temperature Tin and compressor speed ω

min Poa(pc), (43)
subject to
pc ∈ 〈pmin, pmax〉
Tin, ω given.

We used MATLAB function fminbnd for the minimization
of overall power. The function employs golden-section search
and parabolic interpolation for finding a minimum of single-
variable function on a fixed interval. Due to high problem
complexity and non-linearity, it was necessary to properly
adjust the pressure range 〈pmin, pmax〉. The pmax was kept
constant for all iterations of the algorithm pmax = 2.5 MPa.
Assuming that condenser pressure is always equal or higher
with rising ambient temperature Tin and/or compressor speed
ω, the minimal pressure is adjusted in each optimization step
based on the previous value.

The CoolProp library [12] was used in thermodynamic
computations to obtain the refrigerant state variables and
properties.

Fig. 8: Expected optimal overall system power

Fig. 9: Automotive HVAC&R test bench

V. EXPERIMENTAL VERIFICATION

The methods of compressor power measurement and com-
putation were verified in real operation on the automotive
HVAC test bench (Fig. 9). The measurement results com-
pleted with computed values are shown in Fig. 10. The first
plot shows the pressures in the system together with the
low-pressure reference value. The second plot contains the
measured temperature of the air at the evaporator outlet and
the third plot shows compressor speed. The last plot includes
compressor input power obtained by three methods: model-
based, using pressure & temperature measurements, and by
motor control measurements.

The model-based method is based on (13) and (17) with
the constants defined in Table I. It gives results with very
good correspondence to the motor control measurements. The
pressure & temperature method use (10) and it gives divergent
values compared to measurements. There are two main reasons
for that - firstly, the method is dependent on temperature
sensors, which are mounted in (or on) aluminum pipes. Thus,
there is some time, which is needed for the pipes and sensors
to be heated up or cooled down (approx. 50 s from compressor
start). Secondly, the temperature sensor of the compressor



Fig. 10: Comparison of compressor power measurement and
computation in real operation

TABLE I: Compressor power computation constants

Constant Symbol Value
Displacement V 33 cm3

Volumetric efficiency ηvol 0.9

Isentropic efficiency ηie 0.65

Mechanical efficiency ηm 0.9

Motor efficiency ηmot 0.95

outlet is not exactly at the outlet, but in the pipe approx. 20 cm
from the compressor port. As the refrigerant temperature is
substantially higher compared to ambient temperature, there
are some thermal losses to ambient and the temperature
reading is lower. This inaccuracy could be compensated, but
the model-based approach will always be more accurate and
thus it was a preferable choice (also in optimization task).

VI. CONCLUSION

In this paper, we derived and presented three methods of
refrigerant compressor power measurement and computation.
The methods were tested in real operation and give satisfactory
results. The model-based method is then used in overall com-
pressor and fan power minimization, which was introduced as
a map of fan speed for defined compressor speed and ambient
temperature.

We made some neglections during the method derivation,
so the future improvements could focus on their minimization,
especially the condenser model could be divided into multiple

sections and some constants (like efficiencies) might become
functions of compressor speed, pressure ratio, etc.

Also, detailed verification in a climatic chamber under
whole operating conditions would be valuable for future
development.

This method could also be the baseline for future im-
provements, which could include real-time power consumption
optimization with the self-learning features.
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