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In this paper, a new realization of a current-mode first-order all-pass filter (APF) using a single 
active building block (ABB) and one grounded capacitor is presented. As the ABB, the current

backward transconductance amplifier (CBTA) is used, which is one of the most recently reported 
active elements in the literature. The theoretical results are in detail verified by numerous SPICE 
simulations using a new low-voltage implementation of CBTA. In the design, the PTM 90 nm

level-7 CMOS process BSIM3v3 parameters with ±0.45 V supply voltages were used. The proposed
resistorless CBTA-C APF provides easy electronic tuning of the pole frequency in frequency range
from 763 kHz to 17.6 MHz, which is more than one decade. Maximum power dissipation of the 

circuit is 828 μW at bias current 233 μA. Non-ideal, parasitic effects, sensitivity analyses,
temperature and noise variation, current swing capability, and Monte Carlo analysis results are also
provided. Compared to prior state-of-the-art works, the proposed CBTA-C APF has achieved the

highest Figure of Merit value, which proves its superior performance.
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1.   Introduction 

First-order all-pass filters (APFs) are very important circuits for many analog signal 

processing applications. It is known that they are with advantage used for design of high-

Q frequency-selective circuits, quadrature/multiphase oscillators, for phase equalization, 

and for frequency dependent delay design while keeping the amplitude of the output 

signal constant over the desired frequency range1. In general, the desired features for a 

current-mode (CM) APF can be the following: 
(i) low impedance character of current input terminal, which is needed for easy 

cascading, 
(ii) high output-impedance at current-mode output, which is required for direct load 

connection, 
(iii) used capacitor is grounded, which is advantageous for monolithic integration, 
(iv) no external resistor is used, i.e. circuit is resistorless, 
(v) inherent electronic tuning of pole frequency is possible, 
(vi) no passive and/or active matching constraints are required. 

The recent surge in the interest of CM signal processing has led to large number of 

realizations of CM APFs using a variety of active building blocks (ABBs)2–46. Detailed 

comparison of these hitherto published CM APFs with here proposed one is given in 

Table 1. Among these filter topologies the realizations in Refs. 2–4 are based on bipolar 

junction transistors, employ dual-output current followers (DO-CFs), or DO-CFs in 

interconnection with adjustable current amplifier (ACA), respectively. In Ref. 5 two 

NMOS transistors, both operating in saturation region, forming inverting voltage buffer is 

used. Second-generation current conveyor (CCII)6–12, second-generation current-

controlled conveyor (CCCII)13–20, dual-X second-generation multi-output current 

conveyor (DX-MOCCII)21,22, third-generation current conveyor (CCIII)23,24, gain-variable 

third-generation current conveyor (GVCCIII)25, and differential voltage current conveyor 

(DVCC)26,27 were also very popular and useful ABBs for first-order APF design in the 

past. Later on, a four terminal floating nullor (FTFN) and voltage gain-controlled 

modified current feedback amplifier (VGC-MCFOA)-based CM APFs were introduced 

in the literature28,29. Operational transconductance amplifiers (OTAs)30,31 are also useful 

ABBs for APF design due to capability of pole frequency tuning. Current-mode APF 

employing current differencing buffered amplifier (CDBA) or current operational 

amplifier (COA) were published respectively in Refs. 32 and 33. During last decade the 

current differencing transconductance amplifier (CDTA)34–39 and its modification so-

called current-differencing cascaded transconductance amplifier (CDCTA)40 have also 

received significant attention. As it is known, the input circuitry of CDBA, COA, CDTA, 

and CDCTA forms the so-called current differencing unit (CDU), which was modified in 

Ref. 41 by considering current transfer gains and intrinsic input resistances in order to 

realize a CM APF. The z-copy current inverter/follower transconductance amplifiers 

(ZC-CITAs/ZC-CFTAs), which were employed in interesting CM APFs42,43 can be 

considered as slight simplification of CDTA, if omitting of p or n stage of input circuitry 

is assumed. The CM APF employing current controlled current conveyor 
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transconductance amplifier (CCCCTA) fully enjoys the dual controllability of the used 

ABB44. The current-controllability feature of CFTA (CCCFTA) is with advantage used in 

Ref. 45. Finally, the CM APF reported in Ref. 46 employs current backward 

transconductance amplifier (CBTA), which is one of the most recently reported ABB in 

the literature.  

In addition to the given study above our investigation also shows that the proposed 

circuits in Refs. 2–46 suffer from some additional weaknesses: 
 use of BJTs in its internal structure2,13–17,19,29,30,36–38,40,43–45, which is not preferred due 

to effect of thermal voltage, 
 use of multiple current output terminal ABB (device with three or more 

outputs)4,12,19,21,22,37,38,40,43, which increases the number of transistors in structure, 
 employs excessive number of passive components (three or more)5–8,24–29,31,34,35,45, 
 two or more capacitors are required5,26, 
 capacitor is connected in series to low input-impedance terminal of ABB7,12,15,17,26,32–

35,45, and thus, their high frequency performances are limited,  
 needs differential current input source4 or two input currents29, 
 impractical CM APF realization in Refs. 17 and 45 since requiring one of the bias 

currents to be very large as compared to the other one, 
 needs precise current transfer gain matching in used ABB13. 

As conclusion, our deep literature survey available in Table 1 shows that the only 

circuits those having above listed desired features (i)–(vi) for a CM APF are available in 

Refs. 18–20, 38, 39, and 42–44. However, as our further study showed, internal structures 

of19,38,43,44 employ BJTs, which are not preferred due to effect of thermal voltage. 

Moreover, use of multiple current output terminal ABB (device with three or more 

outputs) increases the number of transistors in structure on chip19,38,43. Therefore, 

realizations18,20,39,42 are by far the most appropriate CM APFs in the literature. Adding to 

the class of these circuits, in this paper new realization of CM APF using one of the most 

recently reported ABB, namely the current backward transconductance amplifier 

(CBTA)46–54 is proposed. In 2010, the CBTA was introduced as an active component to 

provide new possibilities in the circuit synthesis. Since that, the versatility of CBTA has 

been demonstrated in various analog signal processing applications. To the best of the 

authors' knowledge the only CBTA-based CM first-order APF exists in literature Ref. 46 

so far, however, this realization is not resistorless and inherent electronic tuning of pole 

frequency is not possible due to matching constraint. Hence, circuit does not satisfy 

above listed desired features (iv)–(vi). Moreover, a new CMOS implementation of the 

CBTA using PTM 90 nm level-7 CMOS process BSIM3v3 parameters and with low 

supply voltages equal to ±0.45 V is introduced. The workability of the proposed CBTA 

CMOS structure and resistorless CBTA-C CM APF is analyzed in detail using SPICE 

software. 
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Table 1.  Comparison of various CM all-pass filters. 

Reference \ Feature (i) (ii) (iii) (iv) (v) (vi) 

Ref. 2 no yes yes yes yes yes 

Ref. 3 yes yes yes no no yes 

Ref. 4 yes yes no yes yes no 

Ref. 5 no no no no no no 

Ref. 6 no yes no no no no 

Ref. 7 no yes yes no no no 

Ref. 8 no yes no no no no 

Ref. 9 yes yes yes no no yes 

Ref. 10 yes yes yes no no yes 

Ref. 11 yes yes yes no no yes 

Ref. 12 no yes yes no no yes 

Ref. 13 yes yes yes yes yes no 

Ref. 14 in Figs. 1a,b no no no no no no 

Ref. 15 no yes yes yes yes no 

Ref. 16 no no no yes yes yes 

Ref. 17 no yes no yes yes no 

Ref. 18 yes yes yes yes yes yes 

Ref. 19 yes yes yes yes yes yes 

Ref. 20 yes yes yes yes yes yes 

Ref. 21 yes yes yes no no yes 

Ref. 22 yes yes yes no no yes 

Ref. 23 in Figs. 3b, 4b no no no no no yes 

Ref. 24 no yes no no no no 

Ref. 25 no no yes no no no 

Ref. 26 in Figs. 3 a, c, f no yes no no no no 

Ref. 27 no yes yes no no no 

Ref. 28 no no yes no no no 

Ref. 29 no yes yes no yes no 

Ref. 30 no no no yes yes yes 

Ref. 31 no yes yes no no no 

Ref. 32 no yes no no no yes 

Ref. 33 no yes no no no yes 

Ref. 34 no yes no no no yes 

Ref. 35 no yes no no no yes 

Ref. 36 no yes no yes yes yes 

Ref. 37 no yes no yes yes yes 

Ref. 38 yes yes yes yes yes yes 

Ref. 39 yes yes yes yes yes yes 

Ref. 40 yes yes yes no yes yes 

Ref. 41 no yes no yes yes yes 

Ref. 42 yes yes yes yes yes yes 

Ref. 43 yes yes yes yes yes yes 

Ref. 44 yes yes yes yes yes yes 

Ref. 45 no yes no no yes no 

Ref. 46 yes yes yes no no no 

This work yes yes yes yes yes yes 
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2.   Circuit Description 

2.1.   Description of the CBTA 

The circuit symbol of CBTA is shown in Fig. 1(a), where p and n are input terminals and 

w, z, z+ are output terminals46–54. The equivalent circuit of the CBTA is shown in 

Fig. 1(b), which contains dependent current sources at p, n, z, and z+ terminals and 

voltage source at w terminal. The terminal impedances for the ideal CBTA are infinite at 

p, n, z, and z+ terminals and zero at w terminal. Relations between the individual 

terminals of the CBTA can be described by the following hybrid matrix: 

 

 
 

 
   
   

p p p

n n n

w w w

z m m z

z m m z

0 0 0 0

0 0 0 0

.0 0 0 0

0 0 0

0 0 0

i s v

i s v

v s i

i g s g s v

i g s g s v







 

 

    
        
    
    
    
        

 (1) 

Here, p(s), n(s), and µw(s) are respectively the current and voltage gains and they 

can be expressed as αp(s) = ωp(1 − εp)/(s + ωp), αn(s) = ωn(1 − εn)/(s + ωn), 

μw(s) = ωµw(1 − εµw)/(s + ωµw) with |εp| « 1, |εn| « 1, and |εµw| « 1. In addition, 

gm(s) = goωgm(1 − εgm)/(s + ωgm), where |εgm| « 1. The go is the DC transconductance gain, 

εp and εn denote the current tracking errors, εμw denotes the voltage tracking error, εgm 

denotes the transconductance error while ωp, ωn, ωµw, ωgm denote corresponding corner 

frequencies. Note that in the ideal case, the current and voltage gains are unity i.e. 

αp(s) = αn(s) = 1, μw(s) = 1 and frequency independent. 
 

p

CBTA

w

nvn

vp

vz+

ip

in

iw

z+
iz+

z–
iz–

vz–

vw

     

 (a) (b) 

Fig. 1.  (a) Circuit symbol of CBTA, (b) equivalent circuit of the CBTA. 

The proposed low-voltage CMOS implementation of the CBTA is given in Fig. 2. 

The dimensions of the MOS transistors used in the CBTA implementation are listed in 

Table 2. In Fig. 2, transistors M1 – M14 form a current conveyor and the transistors M21 –

 M32 are used for realizing the transconductance section. In addition, transistors M15 –

 M20 are employed for biasing. Assuming that the output resistances of the transistors 

M1 – M4 being equal to ro, the resistances seen at input and output terminals of the CBTA 

at mid-frequency region can be found as follows: 
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Fig. 2.  Proposed low-voltage CMOS implementation of CBTA. 

Table 2.  Transistor dimensions of the CBTA in Fig. 2. 

PMOS Transistors W (m) / L (m) 

M3, M4 14.4 / 0.36 

M5 – M9 28.8 / 0.36 

M15 0.36 / 0.09 

M16, M17 1.8 / 0.09 

M23 – M28 5.76 / 0.18 

NMOS Transistors W (m) / L (m) 

M1, M2 7.2 / 0.36 

M10 – M14 6.66 / 0.36 

M18, M19 0.72 / 0.09 

M20 3.24 / 0.09 

M21, M22, M29 – M32 2.88 / 0.18 

 o9 o14
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o9 o14

,
r r

R
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
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 o6 o11
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,
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 


 (2d) 

 o27 o30
z

o27 o30

,
r r

R
r r

 


 (2e) 

where roi and gmi is the output resistance and transconductance of the i-th CMOS 

transistor, respectively. 

In the transconductance section we will assume that all MOS devices operate in the 

saturation region. Let us also assume that M21 and M22 are perfectly matched and the 

current mirrors have unity current gain. Then the output current io can be given by: 
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Fig. 3.  Proposed CBTA-C current-mode first-order all-pass filter. 

  o m in B in2 ,i g v I K v   (3) 

where vin is the differential input voltage (vin = vp – vn), IB is the bias current, 

K = μCOXW/2L is the transconductance parameter, μ is carrier mobility, COX is the gate-

oxide capacitance per unit area, W is the effective channel width, and L is the effective 

channel length of M21 and M22 transistors, respectively. 

2.2.   Proposed novel filter configuration 

The proposed CM CBTA-C first-order APF is shown in Fig. 3. It consists of a single 

CBTA and a grounded capacitor. Hence, the proposed circuit is desirable for monolithic 

integration. Assuming an ideal CBTA i.e. αp(s) = αn(s) = 1 and μw(s) = 1, routine circuit 

analysis yields the following transfer function (TF): 

 Bout m

in m B

2
( ) .

2

sC I KI sC g
T s

I sC g sC I K


  

 
 (4) 

From Eq. (4), the phase of the filter is found as: 

 1 1

m B

( ) 180 2 tan 180 2 tan ,
2

C C

g I K

 
   

  
             

 (5) 

hence, from the Eq. (5) it can be seen that the proposed configuration can provide phase 

shifting between 180° (at  = 0) to 0° (at  = ) by means of the transconductance, i.e. 

bias current IB of CBTA. 

Finally, the zero (z) and pole (p) frequencies from TF in (4) can be calculated as: 

 Bm
z p

2
,

I Kg

C C
     (6) 

and their sensitivities to passive element and active parameter are given as follows: 

 z, p z , p

m
1,g CS S

   
    (7) 

and are unity in relative amplitude. 
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Fig. 4.  Parasitic resistance and capacitance of the CBTA. 

2.3.   Non-ideal and parasitic effects analysis 

For a complete analysis it is important to take into account parasitic resistances and 

capacitances of the used active element shown in Fig. 4. Therefore, considering these 

non-idealities, the matrix relationship in (1) changes to a form: 
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


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   

   

     
         
    
    
     

         

 (8) 

in which: 
 the parasitic resistances Rp, Rn and parasitic capacitances Cp, Cn appear between the 

high-impedance p and n input terminals of the CBTA and ground, respectively, and 
their values for the implementation shown in Fig. 2 computed in SPICE software are 
191.504 k || 41.12 fF and 182.392 k || 8.43 pF, respectively, 

 the parasitic resistances Rz, Rz+ and parasitic capacitances Cz, Cz+ appear between 
the high-impedance z and z+ output terminals of the CBTA and ground, 
respectively, and their values are 95.75 k || 9.21 fF and 95.75 k || 25.81 fF, 
respectively, 

 the non-zero parasitic resistance Rw at output terminal w has the value 6.65 . 

Hence, for the proposed APF shown in Fig. 3 the following parasitic resistances and 

capacitances should be considered: 
 parasitic impedances at the node ① are equal to Zw = Rw and Zz = Rz || (1/sCz), 
 parasitic impedance at the node ② is Zp = Rp || (1/sCp). Note that the capacitance Cp 

can be absorbed into external capacitor C as it appears in parallel with it. In analysis 
the total capacitance at this node will be labeled as C. 

Therefore, taking into account the non-ideal current and voltage gains of the CBTA 

and simultaneously effect of aforementioned non-idealities and re-analyzing the proposed 

APF shown in Fig. 3, the ideal TF in Eq. (4) converts to: 
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 

   
z p p p n m pout

in p z w z n m p w

( ) .
1

Z Z sC g ZI
T s

I Z sC Z Z Z g Z Z

  





 

  
  

    
 (9) 

Now, the non-ideal phase response of the filter from TF (9) can be expressed as: 

 
 

 
p p p z w1 1

p n m p z n m p w

( ) 180 tan tan .
1

Z Z Z Z
C C

g Z Z g Z Z


   

  

 



   
               

 (10) 

Subsequently, it can be seen that the zero ωz and pole ωp frequencies differ and can 

be given as: 

 
p n m p

z

p p

,
g Z

Z C

 





 


 (11a) 

 
 

 
z n m p w

p

p z w

1
.

Z g Z Z

Z C Z Z








 
 

 
 (11b) 

However, note that the effect of non-ideal gains and parasitics can be minimized by: 
(i) making the αp, αn, and μw very close to unity and/or, 
(ii) providing precise design of the transconductance gm section and/or, 
(iii) reducing the non-zero parasitic impedance at output terminal w by precise design of 

the current conveyor section or by connecting to negative impedance converter such 
that Zw  0 and/or, 

(iv) choosing gm » 1/Zp and gm » 1/Zz. 

3.   Simulation Results and Performance Comparison 

To prove the theory, the performance of the proposed low-voltage CBTA implementation 

shown in Fig. 2 and new APF from Fig. 3 have been verified by SPICE simulations with 

DC power supply voltages equal to +VDD = –VSS = 0.45 V. In the design transistors were 

modeled by the Predictive Technology Model (PTM) 90 nm level-7 CMOS process 

BSIM3v3 parameters of the Nanoscale Integration and Modeling (NIMO) Group at 

Arizona State University (VTN0 = 0.2607 V, μN = 0.017999999 cm2/(V·s), 

VTP0 = 0.303 V, μP = 0.0055 cm2/(V·s), TOX = 2.5 nm)55. The dimensions of the MOS 

transistors in the CBTA structure are given in Table 2. All the simulations were provided 

by setting temperature default 27°C. 

3.1.   CBTA behavior verification 

First of all, the behavior of the CBTA was tested by AC analyses. During simulations the 

biasing current IB was set for 63 μA, which results transconductance gain gm equal to 

501.5 A/V. Due to the non-idealities of the CBTA, some discrepancies exhibit between 

theory and simulations. As a result, corner frequencies were found to be 

ωp = 3884 Mrad/s, ωn = 4212 Mrad/s, ωµw = 4751 Mrad/s, and ωgm = 7741 Mrad/s and 
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errors of these gains are εp = 0.009, εn = 0.000, εµw = 0.004, and εgm = 0.018. For low-

frequency region αp, αn, µw, and gm can be assumed to be the constants with values  

1 – εp = 0.991, 1 – εn = 1, 1 – εµw = 1.004, and 1 – εgm = –0.003, respectively, and 

go = 500 A/V. Hence, the maximum operating frequency of the CBTA is  

fmax = min{fp, fn, fμw, fgm} ≈ 618.1 MHz. 

The SPICE simulations also showed that the value of the transconductance gain gm of 

the CBTA can be varied between 38 A/V and 880 A/V by tuning the current IB 

between 3 A and 233 A, respectively. Therefore, as a consequence, the total power 

dissipation (TPD) of the CBTA changes from 221 μW to 828 μW. 

In addition, the DC analysis of the CMOS CBTA implementation given in Fig. 2 was 

also investigated. For simulating the DC transconductance transfer of iz against vp − vn 

when gm = 501.5 A/V, and DC voltage transfer of vw against vz+ were performed by 

applying DC voltage sweep between −0.45 V ≤ (vp − vn) ≤ 0.45 V to the p and n terminals 

of the CBTA. The output z terminal currents were measured while 1 TΩ resistor was 

connected to the w output of the CBTA and the output z terminals were grounded. As a 

result, the CBTA works linearly between −49 µA ≤ iz ≤ 49 µA and 

−60 mV ≤ vp − vn ≤ 60 mV. In simulation of voltage transfer of v
w against v

z+
, a DC 

voltage sweep between −0.45 V ≤ v
z+

 ≤ 0.45 V was applied to the z+ terminal of the 

CBTA. The output w terminal voltage was measured while 1 TΩ resistor was connected 

to the w output of the CBTA and the p and n terminals were grounded. As a result, the 

CBTA works linearly between −0.45 V ≤ v
w
 ≤ 0.32 V. The DC current transfer 

characteristics of ip and in against iw for the proposed CBTA were obtained by applying 

DC current sweep between −1 mA ≤ iw ≤ 1 mA to the w terminal of the CBTA. The input 

p and n terminal currents were measured while the z, p, and n terminals were connected 

to ground. As a result, the CBTA works linearly between −300 A ≤ ip ≤ 280 A and 

−700 A ≤ in ≤ 680 A. 

3.2.   Filter topology verification 

The proposed CM APF given in Fig. 3 has been analyzed using the designed CMOS 

implementation of the CBTA in SPICE software. In all simulations the value of the 

capacitor C has been selected as 7.8 pF. Note that, as it was in the Section 3 mentioned, 

the external capacitor C appears in parallel with Cp parasitic capacitance of the terminal 

p, which value is equal to 41.12 fF. Theoretically, therefore, its total value equal to 

C  7.84 pF should be taken into account. In Fig. 5 the ideal and simulated gain and 

phase responses are depicted, which are illustrating the electronic tunability of the filter. 

The pole frequency was varied for fp  {1; 2.96; 10.08} MHz via the bias current IB = {4; 

13; 63} A, respectively. The dependence of the pole frequency fp on the bias current IB 

and subsequently change of TPD are illustrated in Figs. 6 and 7, respectively. Note that in 

both simulations the bias current IB was tuned in range 3 A and 233 A which results 

easy tuning of the filter’s pole frequency in range 763 kHz to 17.6 MHz and the TPD of 

the CM APF changes in range {221  828} μW. The effect of temperature 
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Fig. 5.  Ideal and simulated gain and phase responses of the CM APF: demonstration of tunability of the fp by 
the bias current IB. 
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Fig. 6.  Tuning the pole frequency fp of the CM APF via bias current IB. 
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Fig. 7.  Total power dissipation of the CM APF during pole frequency fp tuning via bias current IB. 
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Fig. 8.  Temperature dependence of pole frequency with initial settings of bias current IB = 63 A 

(fp = 10.08 MHz). 
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Fig. 9.  Output and equivalent input noise variations vs. frequency. 

on phase response of the proposed CM APF designed for fp = 10.08 MHz (IB = 63 A) 

was examined in range T  {‒40; +100}°C in Fig. 8. Using the ONOISE and INOISE 

statements, the output and equivalent input noise variations against frequency are shown 

in Fig. 9, where at the output of the filter 20 Ω resistor was connected to simulate the 

effect of the current. The computed output/input noises at operating frequency 

(fp  10.08 MHz) were found as 641.3 pV/Hz and 31.82 pA/Hz, respectively. 

In order to illustrate the time-domain performance, the current swing capability, 

phase error of the filter, and transient analysis were evaluated as it is demonstrated in 

Fig. 10 while keeping the filter settings given above (i.e. IB = 63 A and C = 7.8 pF). 

Note that the output waveform is close to the input one. The +90° phase shift in the 

output against the input at pole frequency 10.08 MHz is illustrated by the Lissajous 

pattern shown in Fig. 11. Figure 12 shows the frequency spectrum of the output  
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Fig. 10.  Time-domain response of the proposed filter at 10.08 MHz. 
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Fig. 11.  Lissajous pattern showing +90° phase shift of output current against input current at 10.08 MHz. 
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Fig. 12.  Simulated frequency spectrum of the output. 
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Fig. 13.  THD variation of the proposed the CM APF against applied input current at 10.08 MHz. 
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Fig. 14.  Monte Carlo analysis: Simulated gain and phase response changes due to variation of the capacitor 

value. 

waveform. The total harmonic distortion (THD) variations with respect to amplitude of 

the applied sinusoidal input current at 10.08 MHz are depicted in Fig. 13. For example, 

an input with the amplitude of 40 A yields THD value of 1.66 %. 

As it is well known, since parameters of electronic devices vary due to tolerances 

incurred from manufacturing processes, obtained results can be affected. To observe 

these variations and their affect, Monte Carlo (statistical) analysis is performed for 

capacitor with 10% tolerance and 200 runs. Fig. 14 shows the simulated gain and phase 

responses of the proposed CM APF. The histogram graphics in Figs. 15 and 16 

demonstrate the variation of the gain of the APF at 10.08 MHz and the variation of the 

filter’s pole frequency, respectively. 

From simulation results it can be observed that the computed SPICE simulation 

results using the newly designed low-voltage CBTA implementation are in very good 

agreement with theory. 
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Fig. 15.  Monte Carlo analysis: Variations of the gain of the CM APF at 10.08 MHz. 
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Fig. 16.  Monte Carlo analysis: Variations of the pole frequency of the CM APF. 

3.3.   Performance comparison 

Table 3 summarizes a fair performance comparison of proposed CM APF shown in Fig. 3 

to state-of-the-art CM APFs with desired features (i)–(vi) based on relevant criterion. In 

order to provide overall performance evaluation, a numeric Figure of Merit (FoM) value 

was calculated as: 

 
 

sup

2

control bias

,
V V

FoM
nmArea V I

 
    

 (12) 
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Figure 17.  Figure of Merit: Performance comparison of the most appropriate CM APFs in the literature listed in 

Table 3. 

where Vsup stands for the power supply voltages, Area denotes APF total area, i.e. sum of 

products of the widths and lengths of each transistors in the CMOS implementation of 

APF, and V/Icontrol/bias is the number of control/bias voltage/currents, respectively. The 

calculated FoMs are listed in Table 3 and the results versus simulated maximum pole 

frequency of APF in corresponding reference are depicted in Fig. 17. Note that due to 

limited information in some of the listed references the FoM is calculated and compared 

only for CM APFs in Refs. 18, 20, and 39. Here it is worth noting that the FoM of our 

proposed circuit was 10 057, which is the highest value and improvement of about 20% 

against the highest FoM values of state-of-the-art circuits18,20 at significantly higher 

simulated fp. 

4.   Conclusion 

In this paper, the versatility of the CBTA has been demonstrated in designing a CM first-

order all-pass filter that offers advantages such as: low impedance character of input 

terminal (needed for easy cascading), high output-impedance character (required for 

direct load connection), use of grounded capacitor (desirable for monolithic integration), 

no use of external resistor, i.e. circuit is resistorless, easy electronic tuning of pole 

frequency over more than one decade by means of external bias current, no passive 

and/or active matching constraints are required, and good sensitivity behavior. The 

performance of proposed CBTA-C APF circuit was fairly compared in details with 

hitherto proposed state-of-the-art circuits having desired features (i)–(vi) based on 

relevant criterions in Table 3. As a conclusion, above listed features and its overall 

performance given in Table 3, i.e. circuit is supplied with the lowest voltage, designed at 

the highest fp, electronic tuning of fp over one decade, its total area is the smallest, 

improvement about 20% against the highest FoM value, make the here proposed CBTA-

C APF circuit by far the most appropriate CM first-order APF in the current literature. 
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