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Abstract. We present an accurate approach to compute 
the attenuation of waves, propagating in circular wave-
guides with lossy and superconducting walls. A set of 
transcendental equation is developed by matching the 
fields at the surface of the wall with the electrical proper-
ties of the wall material. The propagation constant kz is 
found by numerically solving for the root of the equation. 
The complex conductivity of the superconductor is ob-
tained from the Mattis-Bardeen equations. We have com-
pared the loss of TE11 mode computed using our technique 
with that using the perturbation and Stratton’s methods. 
The results from the three methods agree very well at 
a reasonable range of frequencies above the cutoff. The 
curves, however, deviate below cutoff and at millimeter 
wave frequencies. We attribute the discrepancies to the 
dispersive effect and the presence of the longitudinal fields 
in a lossy waveguide. At frequencies below the gap, the 
superconducting waveguide exhibits lossless transmission 
behavior. Above the gap frequency, Cooper-pair breaking 
becomes dominant and the loss increases significantly. 

Keywords 
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1. Introduction 
The rigorous formulation developed by Stratton [1] 

has been widely used to analyze the propagation of waves 
in circular waveguides [2] – [6]. In Stratton’s approach, 
a circular cylinder of radius a is assumed to be embedded 
in an infinite homogeneous medium. Matching the 
tangential fields of the two mediums at the boundary of a 
yields a transcendental equation which allows exact 
computation of the complex propagation constant of the 
waveguide. Nevertheless, due to the difficulty in matching 
the boundary conditions in Cartesian coordinates, this 

approach fails to be implemented in the case of rectangular 
waveguides [7], [8].  

Due to its simplicity and analytical solution, the 
approximate perturbation method, has generally been 
employed to analyze wave propagation in imperfectly con-
ducting [9] – [12] and superconducting [13] waveguides. 
In this method, the fields’ expressions are derived by as-
suming the wall to be of infinite conductivity. This allows 
the solution to be separated into pure TE and TM modes 
[12]. For a waveguide with finite loss, however, a superpo-
sition of both TE and TM modes is necessary to satisfy the 
boundary conditions [14]. To calculate the attenuation, 
ohmic losses at the walls are assumed due to small fields’ 
penetration into the wall surfaces. As shown in [14], when 
the operating frequency f approaches cutoff fc, the attenua-
tion obtained using such method diverges to infinity. This 
phenomenon which only exists in lossless waveguides is 
clearly inadequate for surfaces with finite conductivity and 
superconductivity. This is because, in contrast with a per-
fect conductor, field penetration occurs at both lossy and 
superconducting walls. 

In order to account for the field penetration, an alter-
native boundary condition based on the penetration depth 
of the Meissner effect has been suggested to study the 
wave properties for superconducting waveguides [15] – 
[19]. In the work of these authors, the boundary condition 
for the longitudinal magnetic field Hz of a TE mode is 
given by,  
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where an is a normal unit vector and λL, known as the 
London penetration depth, is a measure of the distance of 
magnetic field penetration into the superconductor. 
An important implication of this theoretical study is that 
the dominant mode for a rectangular waveguide is found to 
have switched from TE10 to TE11; while that for a circular 
waveguide has switched from TE11 to TE01. Yassin et al. 
has performed an experimental validation on the above 
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theory using a superconducting circular waveguide [20]. 
The experimental result, however, shows that the work in 
[15] – [19] turned out to be invalid. The mode order in 
a superconducting waveguide remains the same as those 
found in a perfectly conducting waveguide. 

Circular and rectangular waveguides have been 
widely applied in receivers of radio telescope [21] – [24]. 
In [25], we have developed and discussed a novel tech-
nique to compute the propagation constant of waves in 
rectangular waveguides. Here, we shall extend further the 
approach in [25] to the case of lossy and superconducting 
circular waveguides. In our method, the solution for the 
attenuation constant is found by solving the transcendental 
equation derived from using the electrical properties of the 
wall material expressed as surface impedance. In our re-
sults, we will compare and discuss the loss obtained using 
our method with those using the perturbation and Stratton’s 
methods.  

2. Fields in a Circular Waveguide 
The longitudinal electric and magnetic fields Ez and 

Hz, respectively, propagating in a circular waveguide, as 
shown in Fig. 1, can be derived by solving Helmholtz ho-
mogeneous equation. Using the method of separation of 
variables [11], we obtain the following set of field equa-
tions: 

 nhrJCH nnz sin)(' , (2) 

 nhrJCE nnz cos)(   (3) 

where Cn and Cn’ denote the coefficients of the longitudi-

nal fields, 22
zkkh  , k is the wavenumber in free 

space, kz the propagation constant, r the radial distance, 
Jn(hr) is called the Bessel function of the first kind, Jn’(hr) 
is its derivative, and n is the order of the Bessel function. 
All field components consist of the wave factor in the form 
of exp[j(ωt − kzz)], where t represents the time and ω the 
angular frequency. The wave factor is, thus, omitted in the 
following derivations.  

The propagation constant kz is a complex variable 
which constitutes a phase constant βz and an attenuation 
constant αz, as shown in (4) below: 

 zzz jk   .  (4) 

Substituting (2) and (3) into Maxwell’s source-free 
curl equations and expressing the transverse field compo-
nents in terms of Ez and Hz [11], we obtain: 






   nhrJhCjnhrJC
r

jnk

h
E nnnn

z cos)(''sin)(
1
2

(5) 





   nhrJhCjnhrJC

r

jnk

h
H nnnn

z cos)('cos)('
1

2
 

(6) 

 
Fig. 1. A circular waveguide. 

3. Constitutive Relations for TE and 
TM modes 
At the wall, the tangential electric and magnetic 

fields, i.e. Et and Ht, respectively, are related through 
a surface impedance Zs by [11], [26]: 

 Et = −Zs(an × Ht).  (7) 

Zs can be expressed in terms of the electrical 
properties of the wall material:  

 
w
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where μw and εw are the permeability and permittivity of the 
wall material, respectively. εw is complex and is given as 
[11]:  

 

 jw    (9) 

where σ is the conductivity of the wall. Due to the exis-
tence of the energy gap 2∆(T) for a superconductor, σ is 
complex and frequency dependent:  

 21  j .  (10) 

The equations for the complex conductivity have been 
developed by Mattis and Bardeen from the microscopic 
analysis of Bardeen-Cooper-Schrieffer (BCS) theory [27], 
[28], [33]:  
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where ћ is the reduced Planck’s constant, σn the normal 
conductivity, and ∆ = ∆(T) the energy-gap parameter. The 
function,  
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gives the Fermi-Dirac statistics and k is the Boltzmann’s 
constant. The first integral in (11) describes the effect of 
the thermally excited quasiparticles. The second integral 
denotes the generation of quasiparticles by fields with 
frequencies f corresponding to energies above the gap 
energy. Thus, the second integral is zero for ћω < 2∆. 
Since σ2 indicates the contribution due to the Cooper pairs, 
the lower integration limit in (12) becomes −∆ when 
ћω > 2∆. ∆ depends on temperature and is obtained from 
the relation [28]:  
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 , and γE = 1.781 is the 

Euler’s constant. 

At the boundary of the wall with radius r = a, 
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into (7), we obtain:  
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Solving the determinants of the coefficients Cn and 
Cn’ in (15) and (16) results in the following transcendental 
equations:  
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Fig. 2. Attenuation of TE11 mode above cutoff. The solid line 

was calculated using our method, dotted line using 
Stratton’s method, and the dashed line using the 
perturbation method. 
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Fig. 3. Attenuation of TE11 mode at the vicinity of cutoff. The 

solid line was calculated using our method, dotted line 
using Stratton’s method, and the dashed line using the 
perturbation method.  

The propagation constant kz can be computed by 
applying a root-searching algorithm such as the Powell 
Hybrid algorithm in [29] to solve for the root of (17a) for 
TE modes. The attenuation constant αz can then be 
obtained from kz by extracting the imaginary part of (4). It 
is to be noted that, since TE and TM modes are determined 
by the roots of Jn(ha)’/Jn(ha) = 0 and Jn(ha)/Jn(ha)’ = 0, 
respectively [1], an alternate form of the equation is 
required for TM modes: 
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4. Results and Discussion 
The attenuation constant for the dominant TE11 wave 

propagating in a copper circular waveguide with 
a = 8.1 mm are shown in Figs. 2 to 4. We can see from Fig. 
2 that the attenuation curves plotted using our method 
agrees closely with those from the perturbation and Strat-
ton’s method at a reasonable range of frequencies f above 
the cutoff fc. There are, however, two regions where our 
curves are found to differ significantly with that obtained 
using the other two methods. The curves deviate at fre-
quencies immediately below fc and above millimeter wave 
frequencies. As can be seen in Fig. 3, when f approaches fc, 
the attenuation given by the perturbation method diverges 
to infinity, with a singularity at f = fc. On the other hand, as 
f decreases below fc, the attenuation computed using our 
method and Stratton’s method are in close agreement. Both 
curves diverge continuously to a more highly attenuating 
mode. As the frequency decreases further, the attenuation 
rises to such high values that signals propagation become 
almost impossible. Clearly, it is more realistic to expect 
losses to be high but finite at frequencies below cutoff, 
rather than diverging to infinity. Abe and Yamaguchi [6] 
had performed an experimental validation for the loss of 
waves below cutoff. The attenuation curves shown in Abe-
Yamaguchi’s measurement were high but finite as well, 
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which confirms the validity of Stratton’s and our results. 
The inaccuracy in the perturbation method at cutoff is due 
to the fact that the fields’ equations are assumed to be the 
same as those in a lossless waveguide.  

As depicted in Figs. 2 and 4, when f increases above 
approximately 250 GHz, the attenuation obtained using our 
method increases beyond that predicted by the perturbation 
method. We attribute the differences to the fact that at 
extremely high frequencies, the field in a lossy waveguide 
can no longer be approximated to those derived from 
a perfectly conducting waveguide. At such high frequen-
cies, the wave propagating in the waveguide is a hybrid of 
TE and TM modes and the presence of Ez can no longer be 
neglected. According to the theoretical and experimental 
validation carried out by Imbriale et al. in [34], the cross 
product terms between the different modes which co-exist 
at the same time, give rise to additional dissipation of loss. 
The mode coupling effect results in higher loss than the 
propagation of a single mode alone. It is interesting to see 
that, in this range, the attenuation computed using Strat-
ton’s equation is even lower than that from the perturbation 
method. It is worthwhile noting that, Yassin et al. had 
computed the loss using Stratton’s equation in [2] and had 
obtained a similar result as in Fig. 4 as well. For the case of 
dielectric or lossy conducting wall, the fields penetrating 
into the wall must be evanescent. Stratton had applied 
Hankel function of the first kind and its derivative – i.e. 
Hn(ha) and Hn(ha)’, to represent the elementary fields 
penetrating into the wall material. When performing 
a numerical computation for Stratton’s equation using 
a Fortran compiler, the problem that we encountered very 
often was that Hn(ha) and Hn(ha)’ dropped below the 
minimum permissible value for floating point variables in 
the compiler (the size of a double precision is about 8 
bytes). This results in failure during code compilation. To 
solve this problem, we have thus approximated 
Hn(ha)’/Hn(ha) ≈ 1 when both Hn(ha) and Hn(ha)’ decrease 
below 1.0 × 10−300. Hence, we attribute the discrepancies 
between Stratton’s and our methods at frequencies below 
cutoff and above millimeter frequencies as due to the ap-
proximation imposed to Hn(ha)’/Hn(ha) when numerically 
solving Stratton’s equation. 
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Fig. 4. Attenuation of TE11 mode at millimetre wave 

frequencies. The solid line was calculated using our 
method, dotted line using Stratton’s method, and the 
dashed line using the perturbation method. 

0 500 1000 1500 2000
0

0.05

0.1

0.15

Frequency GHz

A
tte

nu
at

io
n 

N
p/

m

 
Fig. 5. Attenuation for TE11 mode in a Nb circular waveguide 

at T = 4.2 K (solid lines) and room temperature 
(dashed lines). 
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Fig. 6. The normalized complex conductivity of niobium at 

4.2 K, computed using Mattis and Bardeen equation. 

Since quasiparticle is generated as the magnitude ћω 
of the quantum energy exceeds the energy gap 2∆, a super-
conductor loses its superconducting behavior as the oper-
ating frequency f exceeds its gap frequency fg of ∆/(ћπ). 
Due to its high gap frequency of about 700 GHz at 4.2 K, 
Niobium (Nb) has generally been employed as the super-
conducting material for the detection of millimeter and 
sub-millimeter waves in superconductor-insulator-super-
conductor (SIS) receivers [30] – [32]. In our analysis of 
superconducting waveguides, we have, thus computed the 
attenuation of TE11 waves in a Nb circular waveguide with 
a = 8.1 mm. Fig. 5 shows a comparison of attenuation in 
Nb waveguide during normal state at room temperature and 
superconducting state at T = 4.2 K. Below the gap fre-
quency fg, the superconducting waveguide behaves exactly 
like a perfectly conducting waveguide. The attenuation 
diverges to infinity at frequency f = fc. Above cutoff, the 
superconducting waveguide exhibits lossless attenuation. 
To explain this phenomenon, we have computed the com-
plex conductivity of the superconducting Nb at 4.2 K using 
Mattis-Bardeen equation in (11) and (12). As can be seen 
in Fig. 6, σ1 which indicates the effect of the quasiparticles 
is negligible at frequencies below fg. As the frequency 
exceeds fg, σ2 decreases gradually toward zero while σ1 
approaches the value of σn, implying that Cooper-pair 
breaking takes place above fg. With the increase of qua-
siparticles, we can thus, expect the random collision of 
quasiparticles with the lattice structure becomes more fre-
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σ1/σn   

σ/
σ n
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quent, resulting in higher conduction loss at frequencies 
above fg.   

In fact, we can observe from Fig. 5 that the loss of the 
superconducting waveguide operating above fg increases 
gradually and eventually surpasses the loss of the wave-
guide operating at room temperature. Duzer-Turner in [33] 
has derived the surface resistance of a superconductor 
using the two-fluid model, as given in (18) below:  
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where nn is the number density of the quasiparticles. As 
compared to the value of Rs for normal conductors which 

could be simplified from (8) and (9) as 


2

, we observe 

that the surface resistance Rs for superconductors increases 
as the square of the frequency, while Rs for normal con-
ductors only increases proportional to the square root. 
Since power loss is directly proportional to the surface 
resistance Rs of the wall, we can, thus, attribute the higher 
loss above fg as due to the fast increase of Rs in supercon-
ducting waveguides.  

5. Conclusion 
As a conclusion, we have presented an analysis on 

wave propagation in both normal and superconducting 
circular waveguides. The complex conductivity of a super-
conductor is computed using Mattis and Bardeen equation, 
developed from the BCS theory. A set of transcendental 
equation is derived to compute the propagation constant of 
circular waveguides by matching the tangential fields with 
the surface impedance at the boundary of the walls.  

We have compared the loss of a lossy circular 
waveguide computed using Stratton’s exact equation, the 
approximate perturbation method, and our method with the 
experimental measurement. At frequencies f below cutoff 
fc, the attenuation curves obtained from both our equation 
and Stratton’s equation tally with the S21 parameter from 
the measurement. As f increases at a reasonable range 
above fc,  the attenuation computed using the three methods 
agree very well. Nevertheless, as f approaches millimeter 
wave frequencies, we observe that the loss obtained using 
our method is higher than those from the perturbation 
method. Since our method takes into account the co-exis-
tence of both TE and TM modes, we attribute the higher 
loss as due to the presence of both longitudinal electric and 
magnetic and electric fields. We also find that at such high 
frequencies, the loss obtained using Stratton’s equation 
actually turns out to be lower than the perturbation method. 
We attribute such discrepancies as due to the approxima-
tion made to avoid reaching the limitation of the floating 
point value in the compiler when computing Hn(ha) and 
Hn(ha)’. 

By incorporating the values of the complex conduc-
tivities into the transcendental equations, we obtained re-
sults which indicate that the superconducting waveguide is 
lossless below the gap frequency fg. Above fg, however, 
Cooper-pairs are broken into quasiparticles resulting in an 
increase of ohmic losses in the waveguide.  
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