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Abstract—In this article, novel approach in implementing finite
control set predictive control is introduced. Algorithm is imple-
mented using general-purpose computing on graphics processing
unit. Predictions are computed using parallel threads on the GPU.
Optimal switching state is then selected in dependence on the
cost function given by angular speed error and constraints on
the current. The algorithm is tested in the PIL simulation using
Simulink and Jetson Nano. The ability of the algorithm to ensure
the reference tracking and keeping the current within its limits
are discussed.

Index Terms—finite control set model predictive control, per-
manent magnet synchronous motor, general-purpose computing,
graphics processing unit

I. INTRODUCTION

Model predictive control (MPC) of the permanent magnet
synchronous motor (PMSM) is a very popular topic in the field
of industrial control. Predictive control offers an easy way of
implementation of nonlinearities and constraints. On the other
hand, it poses a challenge because of the need for the short
sampling time.

Predictive control can be separated into two groups [1].
The first of them is continuous set (CS) MPC. Within this
approach, continuous optimization is used. That means the
speed of the search for the optima and its accuracy is heavily
dependent on the used solver. Research in this field is focusing
on the acceleration of the optimization [2]. In the field of
drive control CS-MPC is used to calculate the exact value
of the voltage which is then modulated by the pulse-width
modulation (PWM) [3], [4].

In the finite control set (FCS) model predictive control, the
part of modulation is skipped. The control algorithm directly
computes the optimal switching state of the inverter [5]. This
can be applicable on the PMSM with 2-level voltage source
inverter (VSI) [6]–[8], matrix inverters [9] or the multi-level
inverters [10].

The approach of the finite control set is not dependent on
the optimization solver. In its nature it is a very straight-
forward process and offers an easy way to include nonlinear
constraints. On the other hand, the number of combinations
grows exponentially with the length of the prediction horizon.

That makes the problem unsolvable on the CPU in real-time,
which is necessary for the control of PMSM. This leads to the
implementation of algorithms of FCS-NMPC on the digital
signal processors or the field-programmable gate arrays [11].

Graphics processing units offer a huge amount of possible
parallel threads and are usually used to accelerate the creating
of an image for an output device. Nowadays, GPUs are used to
general-purpose calculations, i.e. neural networks [12]. If the
problem can be parallelized, the GPU offers a bigger capability
in computation than the CPU. In the model predictive control
GPU can be used as an accelerator for the model evaluation
[13].

In this article, native parallelism of the possible switching
states combinations is used and implemented on the GPU. This
enables the obtaining of optimal switching state combination
in a short time without the need for a reduction of combination
tree. The proposed algorithm is tested on the simulation with
the 2-level 3-phase voltage source inverter.

The goal of this article is to evaluate the possibility of
using GPU-based computation of the optimal switching state
in the implementation of the finite control set model predictive
control of the fast system as permanent magnet synchronous
motor.

II. ANALYSIS

A. Plant

Continuous-time model of permanent magnet synchronous
motor in the dq reference frame is
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where
id, iq are stator current components in dq frame,



ud, uq are stator voltage components in dq frame,
ωm is rotor mechanical angular speed,
ϑm is rotor mechanical angle,
Tl is load torque,
Pp is number of pole pairs,
R is stator winding resistance,
Ld, Lq are rotor inductance components,
ΨPM is permanent magnet flux,
J is the moment of inertia.
Stator voltage components ud, uq can be derived from phase

voltages ua, ub, uc using Clarke and Park transformation
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where ϑe is rotor electrical angle.
For the proper computation of state trajectories by the pre-

dictive controller, a discrete-time model is needed. Assuming
that the sampling period Ts is much smaller than the electrical
time constant, a continuous-time model can be rewritten as
discrete-time using the Euler method
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Phase voltages ua(k), ub(k), uc(k) are generated by
VSI. Every VSI has finite set of possible switching
states s(k) ∈ S based on its architecture. Thus, the
set of phase voltages up(k) = [ua(k) ub(k) uc(k)]T

(input) is also finite. Set of future states
x(k + 1) = [id(k + 1) iq(k + 1) ωm(k + 1)]T can be
computed from the previous values of states and input and
therefore is finite.

B. Controller

One of the basic demands on the controller is to ensure
tracking the reference signal. In the case of speed control,
demand on tracking the reference signal ωm,r can be written
as limt→∞ ‖ωm,r − ωm‖ < ε, where ε ∈ R is small.

Another common and important requirement is to work
within constraints of states and inputs. In the case of drive
control, the maximal value of stator current is rated current
IR. This constraint can be written as√

i2d + i2q ≤ IR. (4)

Other demands can be put on controller, such as field
weakening for reaching angular speeds higher than the rated
one.

III. CONTROL ALGORITHM

In this section, three main parts of the control algorithm are
described: prediction, cost function evaluation and switching
state selection.

1) Prediction: Prediction is made across all possible com-
binations of the VSI. The number of combinations is based
on the architecture of VSI and the length of the prediction
horizon N . For the two-level three-phase VSI there are (23)N

possible combinations. A number of the combination in binary
represents whether the phase is switched on or off, e.g. 5 - 101
- C-on B-off A-on. The next three bits represent a step on the
prediction horizon.

Binary values are then used to represent switching in the
model. Model (3) with respect to (2) is evaluated across the
whole prediction horizon.

The choice of N is affected by two things. As was shown,
a number of combinations grows exponentially with N . Thus,
the maximal value is limited by computational speed. The
lower limit of the N is given by the controlled system.

2) Cost function evaluation: To get the best possible
combination it is necessary to measure its performance on
the prediction horizon. Based on the demands put on the
controller, the specific cost function is evaluated. In this case,
the cost function has three parts.

The first part is dealing with the reference tracking. The
controller has to minimize the speed error. Hence, the cost of
the tracking error cTE is

cTE(k) =

N∑
i=1

wTE(ωm,r(k + i)− ωm(k + i))2, (5)

where wTE is a weighting coefficient of tracking error cost.
In standard field-oriented control id has zero reference. In

predictive control this can be represented as cost of id:

cid(k) =

N∑
i=1

wid(ıd(k + i))2, (6)

where wid is a weighting coefficient of id cost.
Introduced algorithm does not use any optimization ap-

proach in finding the best combination. Therefore, it is nec-
essary to somehow represent constraints put on the control
law. The simplest way to do it is by representing it as the
part of the cost function. The simplest way would be branch
with two values - zero, when the value is within its limits,



and ideally infinity, when the value exceeds them. During
implementation, this approach was tested, but it led to reduced
computing efficiency due to the stalls.

To achieve better computing efficiency constraint (4) was
represented as the barrier function [14]

cIC(k) =

N∑
i=1

− log
(
i2d(k + i) + i2q(k + i)− I2R

)
wIC , (7)

where wIC is a weighting coefficient of the cost of exceeding
current constraints.

The cost function for every possible combination is then
given by the sum of all parts

CJ(k) = cTE + cid + cIC , (8)

where J is the index of combination.

3) Switching state selection: Given values of the cost
function, the combination with the lowest value is selected.
Proper selection is heavily affected by the choice of weighting
coefficients. As the binary value of index describes used com-
bination, switching state s(k) can be found as the argument
of the minima of the finite set of cost function values

s(k) = argmin
J
{CJ(k) | J ∈ S}. (9)

In the case of the same value of the cost function, the
combination with lower index is preferred, therefore the states
with all phases turned off is preferred to state with all phases
turned on.

IV. SIMULATION RESULTS

This section covers the testing of the proposed algorithm.
Firstly, the implementation of the algorithm on the platform
Jetson Nano is presented. Also, the limitations of the platform
are described. Secondly, the results of the simulation with the
Simscape model of PMSM are presented.

A. Implementation

The algorithm can be separated into two parts: CPU part
and GPU part. CPU part covers data transfer and preparation,
for example, initial Clarke and Park transformation. GPU part
deals with finding the best switching state.

Every combination can be computed separately. Thus, the
problem of searching for the optimal combination is parallel
by its nature. GPU computing is based on performing a large
amount of the same mathematical functions on different data
parallelly in separate threads. Drawing on this information,
prediction and cost function evaluation for every combination
are computed separately. Finding minima is also performed on
the GPU but across all threads.

The number of called threads is limited by the hardware.
For the best performance, it is necessary to have the number
of possible combinations within this limit. Rule of thumb
says that for every CUDA core there are 16 threads available.
Maxwell GPU included in Jetson Nano has 128 CUDA cores.
This means there are 2048 threads available. Using calculation

for the combinations of 2-level VSI, it is possible to have the
prediction horizon with length N = 3.

The computation time of the algorithm was influenced by
the platform on which it was implemented. The maximal time
required by the control algorithm itself was around 15 µs, but
the memory manipulation and running APIs needed another
50 µs. This resulted in a sampling period of 100 µs.

B. Simulation

For the testing of the proposed algorithm PIL simulation
was created. Its topology is in the Figure 1. For the commu-
nication between Jetson Nano and the Simscape model was
used UDP protocol.

Data sent from the simulation (marked xm in the figure)
are processed by the CPU and sent to the GPU. The control
algorithm is performed in the GPU. By this, the optimal
switching state is found and its code is sent in the form of
the number to the CPU. CPU decodes the switching state and
sends it to the simulation.
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Fig. 1. Simulation topology

Parameters of the motor are shown in the Table I. Table II
shows the parameters of the inverter and the parameters of the
controller are shown in the Table III.

1) Reference tracking: First of all, the ability to ensure
reference tracking was tested. This test was performed on the
reference signal composed of the ramp which slope was larger
then maximal torque generated by the motor. This style of
ramp was preferred to reference step because steps are not
usually used in practical applications. The ramp rises until
rated angular speed is reached. After that, the reversibility of
the algorithm is tested by slowing motor down and changing
sense of the rotation. Finally, reference is restored to 0 rad s−1.

The results of the experiment are shown in the Figure 2. As
it was expected motor was not able to track the initial ramp of
the reference. After that, all demands were met: the controlled
plant was able to keep rated speed and then to reverse.

Currents during the reference tracking experiment are
shown in the Figure 3. Mean value of the quadrature
component of the current during the initial ramp of the
reference was 8.9364 A. Generated torque was about 89.4 %
of the rated torque. The important part is whether the rated
current was exceeded by the value of current or not. This



TABLE I
PARAMETERS OF PMSM

Parameter Value
Rs 0.822 Ω
Ld 0.016 H
Lq 0.024 H
ΨPM 0.097 × 10−3 Wb
Pp 5
J 0.870 × 10−3 kg m2

ωr 150 rad s−1

TR 7.275 N m
IR 10 A

TABLE II
PARAMETERS OF THE INVERTER

Parameter Value
Type 2-level VSI
DC-BUS 200 V

TABLE III
PARAMETERS OF THE CONTROLLER

Parameter Value
wTE 3.2 × 107

wid 2.5
wIC 30
N 3
Ts 100 µs
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Fig. 2. Results of the reference tracking experiment; black - reference, red -
measured speed.

can be seen in the Figure 4. Little overshoot occurred during
the settling of the speed on its rated value. Rated current was
exceeded by 1 % of its value, which can be acceptable.

2) Change of the load torque: This experiment tests
whether the controller is able to compensate one of the most
common disturbances - change of the load torque. While the
motor was rotating by steady angular speed 100 rad s−1, two
changes of the load torque were applied. First, the value of
the load torque was changed to 2 N m. After the stabilization
of the angular speed, load torque was changed to −2 N m.
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Fig. 3. Currents during reference tracking experiment; blue - id, red - iq .
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Fig. 4. Current in dq reference frame

In the Figure 5 are the results shown. The first change,
occurred in t = 2 s resulted in undershoot lesser than 1 %
and was compensated after 20 ms. The second change led
to the oscillations with the biggest deviation of 2 % from
the reference. These oscillations were caused by the absolute
difference in the load torque, which was 4 N m. This can
be seen in the Figure 6. The value of the current iq had to
perform step change and after that, the oscillations occurred.
When the oscillations stopped, settling of the measured angular
speed was similar to the one in the first part of the experiment.
Also, it can be seen current did not exceed its limit.

V. CONCLUSION

This paper proposed a novel approach to finite control set
model predictive control. This approach is based on searching
for the optimal switching state of the three-phase two-level
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Fig. 6. Currents during load torque experiment; blue - id, red - iq .

voltage source inverter. The optimum is found using general-
purpose computing on the GPU by computing each possible
combination for a given prediction horizon. Based on the value
of the cost function, the optimal switching state is chosen.

The proposed algorithm was tested using PIL simulation
with Simscape model for the simulation of the inverter and
PMSM and the embedded device Jetson Nano for the execu-
tion of the control algorithm. Limitations of the used hardware
were mentioned. The sampling period was chosen accordingly
to them.

The simulation proved that the controlled plant was able to
track the reference of the angular speed. Also, the controller
was able to ensure compensation of the disturbance in the form
of the load torque. Results are discussed, especially whether
the limits of the current were met or not.

During the writing of this article, the algorithm is being
implemented on the real physical system. Further research will
contain experimental results of testing introduced algorithm on
this physical system.
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