

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ
ÚSTAV MIKROELEKTRONIKY

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
DEPARTMENT OF MICROELECTRONICS

RESIDUE NUMBER SYSTEM BASED BUILDING
BLOCKS FOR APPLICATIONS IN DIGITAL SIGNAL
PROCESSING

DIZERTAČNÍ PRÁCE
DOCTORAL THESIS

AUTOR PRÁCE Ing. DINA YOUNES
AUTHOR

BRNO 2013

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH
TECHNOLOGIÍ
ÚSTAV MIKROELEKTRONIKY

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
DEPARTMENT OF MICROELECTRONICS

RESIDUE NUMBER SYSTEM BASED BUILDING
BLOCKS FOR APPLICATIONS IN DIGITAL SIGNAL
PROCESSING

VYUŽITÍ SYSTÉMU ZBYTKOVÝCH TŘÍD PRO ZPRACOVÁNÍ DIGITÁLNÍCH SIGNÁLŮ

DIZERTAČNÍ PRÁCE
DOCTORAL THESIS

AUTOR PRÁCE Ing. DINA YOUNES
AUTHOR

VEDOUCÍ PRÁCE doc. Ing. PAVEL ŠTEFFAN, Ph.D.
SUPERVISOR

BRNO 2013

Abstract

This doctoral thesis deals with designing residue number system based building blocks

to enhance the performance of digital signal processing applications.

The residue number system (RNS) is a non-weighted number system that provides

carry-free, parallel, high speed, secure and fault tolerant arithmetic operations. These features

make it very attractive to be used in high-performance and fault tolerant digital signal

processing (DSP) applications.

A typical RNS system consists of three main components; the first one is the binary to

residue converter that computes the RNS equivalent of the inputs represented in the binary

number system. The second component in this system is parallel residue arithmetic units that

perform arithmetic operations on the operands already represented in RNS. The last

component is the residue to binary converter, which converts the outputs back into their

binary representation.

The main aim of this thesis was to propose novel structures of the basic components of

this system in order to be later used as fundamental units in DSP applications.

This thesis encloses improving and designing novel structures of these components,

simulating and verifying their efficiency via FPGA implementation. In addition to suggesting

novel structures of basic RNS components, a detailed study on different moduli sets that

compares and determines the most efficient one for different dynamic range requirements is

also presented. One of the main outcomes of this thesis is concluding and verifying the main

condition that should be met when choosing a moduli set, in order to improve the timing

performance of a DSP application. An RNS-based image processing application is also

proposed. Its efficiency, in terms of timing performance and power consumption, is proved

via comparing it with a binary-based one. Finally, the main considerations that should be

taken into account when choosing to use the binary number system or RNS are also discussed

in details.

Keywords

Residue number system, digital signal processing, modular arithmetic, moduli set, dynamic

range, binary to RNS converter, RNS to binary converter, RNS-based application, parallel

processing, power reduced DSP application, FPGA implementation.

Abstrakt

Předkládaná disertační práce se zabývá návrhem základních bloků v systému

zbytkových tříd pro zvýšení výkonu aplikací určených pro digitální zpracování signálů (DSP).

Systém zbytkových tříd (RNS) je neváhová číselná soustava, jež umožňuje provádět

paralelizovatelné, vysokorychlostní, bezpečné a proti chybám odolné aritmetické operace,

které jsou zpracovávány bez přenosu mezi řády. Tyto vlastnosti jej činí značně perspektivním

pro použití v DSP aplikacích náročných na výpočetní výkon a odolných proti chybám.

Typický RNS systém se skládá ze tří hlavních částí: převodníku z binárního kódu do

RNS, který počítá ekvivalent vstupních binárních hodnot v systému zbytkových tříd, dále jsou

to paralelně řazené RNS aritmetické jednotky, které provádějí aritmetické operace s operandy

již převedenými do RNS. Poslední část pak tvoří převodník z RNS do binárního kódu, který

převádí výsledek zpět do výchozího binárního kódu.

Hlavním cílem této disertační práce bylo navrhnout nové struktury základních bloků

výše zmiňovaného systému zbytkových tříd, které mohou být využity v aplikacích DSP.

Tato disertační práce předkládá zlepšení a návrhy nových struktur komponent RNS,

simulaci a také ověření jejich funkčnosti prostřednictvím implementace v obvodech FPGA.

Kromě návrhů nové struktury základních komponentů RNS je prezentován také podrobný

výzkum různých sad modulů, který je srovnává a determinuje nejefektivnější sadu pro různé

dynamické rozsahy. Dalším z klíčových přínosů disertační práce je objevení a ověření

podmínky určující výběr optimální sady modulů, která umožňuje zvýšit výkonnost aplikací

DSP. Dále byla navržena aplikace pro zpracování obrazu využívající RNS, která má vůči

klasické binární implementanci nižší spotřebu a vyšší maximální pracovní frekvenci. V závěru

práce byla vyhodnocena hlavní kritéria při rozhodování, zda je vhodnější pro danou aplikaci

využít binární číselnou soustavu nebo RNS.

Klíčová slova

Systém zbytkových tříd, digitální zpracování signálu, modulární aritmetika, sada modulů,

dynamický rozsah, převodník z binární soustavy do RNS, převodník z RNS do binární

soustavy, aplikace RNS, paralelní výpočty, aplikace DSP s nízkou spotřebou, implementace

do FPGA.

YOUNES, D. Residue number system based building blocks for applications in digital signal

processing. Brno: Brno University of Technology, Faculty of Electrical Engineering and

Communication, Department of Microelectronics, 2013, 106 p. Supervised by doc. Ing. Pavel

Šteffan, Ph.D.

Declaration

I declare that I have elaborated my doctoral thesis on the theme of “Residue number

system based building blocks for applications in digital signal processing” independently,

under the supervision of the doctoral thesis supervisor and with the use of technical literature

and other sources of information which are all quoted in the thesis and detailed in the list of

literature at the end of the thesis.

As the author of the doctoral thesis I furthermore declare that, concerning the creation of

this doctoral thesis, I have not infringed any copyright. In particular, I have not unlawfully

encroached on anyone’s personal copyright and I am fully aware of the consequences in the

case of breaking Regulation S 11 and the following of the Copyright Act No 121/2000 Vol.,

including the possible consequences of criminal law resulted from Regulation S 152 of

Criminal Act No 140/1961 Vol.

Brno ……………………… ………………………

 (author’s signature)

Acknowledgment

This doctoral thesis would not have been possible without the advice, guidance and help

of the kind people around me who encouraged and supported me during this work.

First, I would like to express my deep gratitude to my advisor doc. Ing. Pavel Šteffan,

Ph.D. for his support, guidance and help during the past four years I worked and studied at the

Department of Microelectronics, Brno University of Technology.

I am very thankful to prof. Ing. Vladislav Musil, CSc. head of the Department of

Microelectronics for his priceless advices, suggestions and continuous assistance during my

work on Ph.D. thesis.

I would like to thank all other members of the Department of Microelectronics, who

assisted me with advice or comment, to all my colleagues.

Finally, my great thanks belong to my parents, sister and husband who always believed

in me and have always been my biggest supporter.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 8 -

Table of Contents

LIST OF ABBREVIATIONS .. 10

LIST OF FIGURES .. 11

LIST OF TABLES ... 13

1 INTRODUCTION ... 16

2 STATE OF THE ART .. 19

2.1 MODULI SET SELECTION .. 19
2.2 RNS CONVERTERS .. 21

2.2.1 Binary to residue converters .. 21
2.2.2 Residue to binary converters ... 23

2.3 RESIDUE ARITHMETIC UNITS ... 25
2.3.1 Modular addition .. 25
2.3.2 Modular subtraction ... 27
2.3.3 Modular multiplication .. 28
2.3.4 Complex operations in the RNS (overflow detection, sign detection and
residue comparison) .. 29

2.4 RNS APPLICATIONS ... 31

3 AIMS OF DISSERTATION .. 34

4 DISSERTATION RESULTS .. 35

4.1 THE MOST EFFICIENT MODULI SET FOR EACH DYNAMIC RANGE 35
4.1.1 Time and hardware requirements of residue arithmetic units and reverse
converters based on different moduli sets ... 36
4.1.2 The most efficient set for each dynamic range requirement 38

4.2 PROPOSED FORWARD CONVERTER .. 42
4.3 PROPOSED RESIDUE ARITHMETIC UNITS ... 45

4.3.1 Proposed modular adders ... 45
4.3.2 Proposed modular subtractor .. 51
4.3.3 Proposed modular multipliers .. 51

4.4 PROPOSED REVERSE CONVERTERS... 55
4.4.1 Comparison between the new CRT-I and MRC 55
4.4.2 Proposed algorithm for residue to binary conversion 60

4.5 PROPOSED RESIDUE COMPARATOR ... 66
4.6 PROPOSED DESIGNS FOR OVERFLOW AND SIGN DETECTION AND CORRECTION IN

BOTH SIGNED AND UNSIGNED RNS SYSTEMS ... 68
4.6.1 Proposed component for overflow detection and correction in unsigned
RNS 68
4.6.2 Proposed component for overflow and sign detection and correction in
signed RNS ... 70
4.6.3 Evaluating the proposed overflow and sign detection and correction
designs .. 72

4.7 PROPOSED RNS-BASED APPLICATION ... 74
4.7.1 The proposed RNS-based image processing application 74

4.7.2 The moduli set effect on the output of image processing application 76

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 9 -

4.7.3 Performance evaluation and comparison .. 79

4.8 WHEN TO USE THE RNS (BINARY VS. RNS) ... 80
4.8.1 The effect of the critical modulo within a moduli set 81
4.8.2 When is RNS superior than binary number system 84

5 CONCLUSIONS .. 91

5.1 FINAL REMARKS ... 91

BIBLIOGRAPHY ... 93

AUTHOR’S PUBLICATIONS .. 99

6 APPENDIX .. 100

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 10 -

List of Abbreviations

BAU binary arithmetic unit

BNS binary number system

CRT Chinese remainder theorem

CPA carry propagate adder

CSA carry save adder

CSA-EAC carry save adder with end around carry

DR dynamic range

DSP digital signal processing

EAC end around carry

FA full adder

FC forward converter (binary to residue converter)

FIR filter finite impulse response filter

FPGA field programmable gate array

GCD greatest common divisor

HA half adder

IIR filter infinite impulse response filter

LUT look-up table

MRC mixed radix conversion

MSB most significant bit

RAM random access memory

RAU residue arithmetic unit

RC reverse converter (residue to binary converter)

RNS residue number system

ROM read only memory

RRNS redundant residue number system

VLSI very large scale integration

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 11 -

List of Figures

Fig. ‎1.1: The architecture of the residue number system (RNS) .. 17

Fig. ‎2.1: RNS forward converter for the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1} [1] 22

Fig. ‎2.2: The structure of general modulo adder [22] .. 26

Fig. ‎2.3: General structures of modular adders based on the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1} [1],

 [26] ... 27

Fig. ‎2.4: The structure of general modular subtractor [1], [2] ... 28

Fig. ‎2.5: The structure of general modulo multiplier [1] ... 29

Fig. ‎4.1: The delay of each basic component based on the moduli sets for DR = 12 bits

(medium DR) ... 38

Fig. ‎4.2: The delay of each basic component based on the moduli sets for DR = 24 bits (large

DR) ... 39

Fig. ‎4.3: The delay of each basic component based on the moduli sets for DR = 60 bits (very

large DR) .. 40

Fig. ‎4.4: Modulo (2
n
 – 1) channel of the binary to residue converter 42

Fig. ‎4.5: Proposed component for computing a residue with respect to modulo (2
n
 + 1)

channel of the binary to residue converter ... 43

Fig. ‎4.6: Proposed modulo (2
n
 – 1) adder – based on prefix carry-out computation [78] 46

Fig. ‎4.7: Improved structure of the proposed modulo (2
n
 + 1) adder – that uses n-bit

components [79] .. 48

Fig. ‎4.8: Proposed modulo (2
n
 + 1) adder - based on the prefix computation [78] 49

Fig. ‎4.9: Improved structure of proposed modulo (2
n
 + 1) subtractor 51

Fig. ‎4.10: Proposed modulo (2
n
 – 1) multiplier – based on multiplication-then-reduction

approach ... 52

Fig. ‎4.11: Proposed modulo (2
n
 – 1) multiplier – based on interleaving multiplication and

reduction approach ... 53

Fig. ‎4.12: Proposed modulo (2
n
 + 1) multiplier [80] ... 54

Fig. ‎4.13: Proposed structure of reverse converter - based on the new CRT-I [83] 56

Fig. ‎4.14: Proposed structure of reverse converter - based on the MRC [83].......................... 58

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 12 -

Fig. ‎4.15: The structure of the reverse converter based on the proposed algorithm [86] 63

Fig. ‎4.16: The structure of the residue comparator based on the proposed algorithm [86] 66

Fig. ‎4.17: The internal structure of the proposed overflow detection & correction component

for unsigned numbers [82] ... 70

Fig. ‎4.18: The internal structure of the sign and overflow detection & correction component

for signed numbers [82] ... 72

Fig. ‎4.19: The structure of the proposed RNS-based image-processing application [84] 75

Fig. ‎4.20: The Output images after applying edge detection and sharpening filters, 80

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 13 -

List of Tables

Tab. ‎2.1: The most recently published moduli sets ... 20

Tab. ‎4.1: The most efficient moduli sets regarding reverse converters for each dynamic range

category .. 37

Tab. ‎4.2: The most efficient moduli sets regarding RAUs for each dynamic range category 37

Tab. ‎4.3: Comparison between best moduli sets based on (D × C) [75] and timing

performance [76] .. 41

Tab. ‎4.4: Comparison between the proposed modulo (2
n
 – 1) adder with its counterpart (f) in

 [26] in terms of critical path delay [ns] .. 47

Tab. ‎4.5: Comparison between the proposed modulo (2
n
 – 1) adder with its counterpart (f) in

 [26] in terms of area consumption [slices] ... 47

Tab. ‎4.6: Comparison between the proposed modulo (2
n
 + 1) adder with its counterpart (k) in

 [26] in terms of critical path delay [ns] .. 50

Tab. ‎4.7: Comparison between the proposed modulo (2
n
 + 1) adder with its counterpart (k) in

 [26] in terms of area consumption [slices] ... 50

Tab. ‎4.8: Time and area improvements of multiplier’s structure Fig. 4.11 over Fig. 4.10 53

Tab. ‎4.9: Comparison between the proposed multiplier and its counterpart in terms of critical

path delay [ns] .. 54

Tab. ‎4.10: Comparison between the new CRT-I and MRC-based converters in terms of pad-

to-pad delay [ns] .. 59

Tab. ‎4.11: Comparison between the new CRT-I and MRC-based converters in terms of area

consumption [slices] .. 59

Tab. ‎4.12: The Groups within the dynamic range M of the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1} ... 60

Tab. ‎4.13: Comparison between reverse converters for different dynamic range requirements

 ... 64

Tab. ‎4.14: Comparison between proposed reverse converter and pure-ROM based one....... 65

Tab. ‎4.15: Comparison between different residue comparators for different dynamic range

requirements ... 67

Tab. ‎4.16: Performance comparison between the proposed designs and the analogous ones . 73

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 14 -

Tab. ‎4.17: Comparison between binary and RNS-based image processing application that

applies spatial filters on a gray-scale image .. 79

Tab. ‎4.18: A comparison between binary arithmetic unit and parallel RAUs (in terms of

timing performance) based on moduli set {2
n
 – 1, 2

n
 + 1, 2

2n
 + 1} [9], with DR = 4n bit 83

Tab. ‎4.19: Moduli sets that result in applications with worse timing performance than binary-

based ones .. 84

Tab. ‎4.20: The least numbers of iterated additions and multiplications required to achieve

better timing performance of the RNS-based application that uses moduli set {2
n
 – 1, 2

n
,

2
n
 + 1} .. 86

Tab. ‎4.21: The least numbers of iterated additions and multiplications required to achieve

better timing performance of the RNS based on Virtex-4 implementation 87

Tab. ‎4.22: The maximum frequency of applications performing 10 iterated additions and 10

iterated multiplications using the RNS and BNS ... 88

Tab. ‎4.23: Power consumption at 100 MHz running application performing 10 iterated

multiplications using the RNS and BNS .. 89

Tab. ‎4.24: Hardware requirements for implementing applications performing 10 iterated

multiplications using the RNS and BNS on Virtex-4 XC4VSX25 FPGA 89

Tab. ‎4.25: The least numbers of iterated additions and multiplications required to achieve

better timing performance of the RNS-based application that uses moduli set {2
n
 – 1, 2

n
,

2
n
 + 1} .. 90

Tab. ‎6.1: Delay and hardware complexity of different components using unit gate model .. 100

Tab. ‎6.2: Comparison between reverse converters, modular adders and modular multipliers

for systems based on sets that provide DR = 3n .. 101

Tab. ‎6.3: Comparison between reverse converters, modular adders and modular multipliers

for systems based on sets that provide DR = 4n .. 101

Tab. ‎6.4: Comparison between reverse converters, modular adders and modular multipliers

for systems based on sets that provide DR = 5n .. 102

Tab. ‎6.5: Comparison between reverse converters, modular adders and modular multipliers

for systems based on sets that provide DR = 6n .. 102

Tab. ‎6.6: The maximum frequency and power consumption of application performing a

number of iterated additions using the RNS and BNS for DR = 12 bits (implemented on

Virtex-4 XC4VSX25 FPGA) ... 103

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 15 -

Tab. ‎6.7: The maximum frequency and power consumption of application performing a

number of iterated additions using the RNS and BNS for DR = 24 bits (implemented on

Virtex-4 XC4VSX25 FPGA) ... 103

Tab. ‎6.8: The maximum frequency and power consumption of application performing a

number of iterated additions using the RNS and BNS for DR = 33 bits (implemented on

Virtex-4 XC4VSX25 FPGA) ... 104

Tab. ‎6.9: The maximum frequency and power consumption of application performing a

number of iterated additions using the RNS and BNS for DR = 48 bits (implemented on

Virtex-4 XC4VSX25 FPGA) ... 104

Tab. ‎6.10: The maximum frequency and power consumption of application performing a

number of iterated multiplications using the RNS and BNS for DR = 12 bits

(implemented on Virtex-4 XC4VSX25 FPGA) ... 105

Tab. ‎6.11: The maximum frequency and power consumption of application performing a

number of iterated multiplications using the RNS and BNS for DR = 24 bits

(implemented on Virtex-4 XC4VSX25 FPGA) ... 105

Tab. ‎6.12: The maximum frequency and power consumption of application performing a

number of iterated multiplications using the RNS and BNS for DR = 33 bits

(implemented on Virtex-4 XC4VSX25 FPGA) ... 106

Tab. ‎6.13: The maximum frequency and power consumption of application performing a

number of iterated multiplications using the RNS and BNS for DR = 48 bits

(implemented on Virtex-4 XC4VSX25 FPGA) ... 106

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 16 -

1 Introduction

This thesis is concerned with an unconventional non-weighted number system that has

gained a great scientific interest; the residue number system (RNS). Designing new and more

efficient RNS based building blocks that improve digital signal processing (DSP)

applications’ performance is the main aim of this thesis.

Since the whole work will be devoted on the RNS, enclosing a brief introduction about

this number system will be beneficial.

The RNS is a very old number system. It was found 1500 years ago by a Chinese scholar

Sun Tzu. Since the last five decades, RNS’s features have been rediscovered and thus the

interest in this system has been renewed. The researchers have used the RNS in order to

benefit from its features in designing high-speed and fault-tolerance applications.

The fundamental idea of the RNS is based on uniquely representing large binary numbers

using a set of smaller residues, which results in carry-free, high-speed and parallel arithmetic

 [1].

This system is based on modulus operation, where the divider is called modulo and the

remainder of the division operation is called residue. The basic notation in RNS is,

mod ; 0   
i

i i i i im
x X m x x m (1.1)

Each integer in RNS is represented by a set of residues corresponding to a specified

moduli set. The main condition is that the moduli within the moduli set should be relatively

prime,

  
1 2

1 2, , , ; (,) 1 
n

RNS

n i jm m m
X x x x GCD m m (1.2)

The RNS uniquely represents any integer X that locates in its dynamic range M, which is

the product of the moduli within the moduli set.

1


n

i

i

M m (1.3)

Both signed and unsigned integers can be represented in the RNS. For unsigned RNS, the

range of the representable integers is,

0  X M (1.4)

For signed RNS, the range of representable integers is partitioned into two equal

intervals,

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 17 -

0 / 2

/ 2

    

   

X M for positive numbers

M X M for negative numbers
 (1.5)

In principle, any interval of M consecutive integers can be uniquely represented in the

RNS. However, the standard conventions on representable integer ranges in the RNS are

illustrated in equations (1.4) and (1.5).

The principal aspect that distinguishes the RNS from other number systems is that the

standard arithmetic operations; addition, subtraction and multiplication are easily

implemented, whereas operations such as division, root, comparison, scaling and overflow

and sign detection are more complicated. Therefore, the RNS is extremely useful in

applications that require a large number of addition and multiplication, and a minimum

number of comparisons, divisions and scaling. In other words, the RNS is preferable in

applications in which additions and multiplications are critical. Such applications are DSP,

image processing, speech processing, cryptography and transforms [2].

The main RNS advantage is the absence of carry propagation between digits, which

results in high-speed arithmetic needed in embedded processors. Another important feature of

RNS is the digits independence, so an error in a digit does not propagate to other digits, which

results in no error propagation, hence providing fault-tolerance systems. In addition, the RNS

can be very efficient in complex-number arithmetic, because it simplifies and reduces the

number of multiplications needed. All these features increase the scientific tendency toward

the RNS especially for DSP applications. However, the RNS is still not popular in general-

purpose processors, due the aforementioned difficulties.

Operands Results
Forward

Converter

 RAU mod 1m

 RAU mod 2m

 RAU mod nm

Reverse
Converter

Fig. ‎1.1: The architecture of the residue number system (RNS)

The basic RNS processor’s architecture is shown in Fig. 1.1. It consists of three main

components; a forward converter (binary to residue converter), that converts the binary

number to n equivalent RNS residues, corresponding to the n moduli. The n residues are then

processed using n parallel residue arithmetic units (RAUs); each of them corresponds to one

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 18 -

modulo. The n outputs of these units represented in RNS are then converted back into their

binary equivalent, by utilizing the reverse converter (residue to binary converter).

The structure of this desecration is organized as follows; Chapter 2 presents a brief

survey about the most recently achievements in the RNS, concerning different proposed

moduli sets that provide different dynamic ranges, the common means and structures to

perform forward and reverse conversion, general structures of residue arithmetic units and

applications where using the RNS is advantageous. Then, the main aims and purposes of this

dissertation are stated in Chapter 3. Chapter 4 is dedicated to present the dissertation results

including the proposed RNS components, proposed RNS-based applications, comparisons

between RNS and binary-based applications, and the cases when RNS should be used.

Moreover, some widely accepted concepts are proven wrong. Finally, the conclusions,

outcomes and the final remarks of this dissertation are illustrated in Chapter 5.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 19 -

2 State of the art

This chapter presents a summary of the fundamental principles of the RNS; RNS’s

components, their basics and the most commonly used designs. The most recent work and

researches are also presented in this chapter. Each component in the RNS will be separately

discussed, in order to provide a brief overview and state the recent achievements in its field.

The interest in RNS arithmetic has started since 1950’s [1], [2]. The first hardware based

on the RNS was built in 1967. The work in this field continued and many improvements in all

areas of the RNS have arisen, in order to enhance its features, resolve its related problems and

find suitable applications that benefit from RNS’s features. Most of the early designs of RNS

were based on read-only memories (ROM). However, the great advance in VLSI (very large

scale integration) technology paved the way for new approaches in designing RNS systems.

New trends to design non-ROM based RNS have appeared. Subsequently, much work

has been devoted for special moduli sets. Excellent results in terms of computational speed

have been achieved in 2000 [2].

The most important issues that must be taking into account when designing an RNS

system are, a proper moduli set selection, forward conversion, residue arithmetic units and

reverse conversion. A brief of each of these issues and its recent achievements are separately

discussed in the following sections.

2.1 Moduli set selection

Choosing a proper modulo set is an essential issue for building an efficient RNS with a

sufficient dynamic range (DR). The number, form and value of the moduli affect the dynamic

range, timing performance and hardware complexity of an RNS-based application [3].

The moduli set in the RNS can be either arbitrary or special. In principal, special moduli

sets were suggested in order to simplify the implementation of arithmetic operations. This

invariably means that arithmetic on residue digits should not deviate too far from

conventional arithmetic, which is just arithmetic modulo a power of two [1]. On the other

hand, arithmetic circuits based on arbitrary moduli sets are much more complex and time

consuming. These sets are utilized in cases when using special moduli sets imposes some

constraints.

The most famous moduli set is {2
n
 – 1, 2

n
, 2

n
 + 1} [4]. This set has been known as a

means of simplifying the calculations necessary to implement the reverse converter (RC).

However, this set has modulo (2
n
 + 1) channel that represents the bottleneck of the system. Its

arithmetic circuits suffer from the longest delay among all three channels.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 20 -

In general, arithmetic circuits modulo (2
k
 – 1) are more efficient than those modulo (2

k
 +

1), therefore, it is better to reduce the number of moduli of the form (2
k
 + 1) [5]. Thus, in

order to simplify the complexity caused by modulo (2
n
 + 1) in the set {2

n
 – 1, 2

n
, 2

n
 + 1} [4],

new moduli sets {2
n–1

 – 1, 2
n
 – 1, 2

n
} [6] and {2

n
 – 1, 2

n
, 2

n+1
 – 1} [7], that substitute this

modulo with another of the form (2
k
 – 1), have been suggested. These three sets have a 3n-bit

DR, which is sufficient for applications that require medium DRs (less than 22 bits).

However, many DSP applications require larger DRs, therefore, new moduli sets {2
n
 – 1,

2
n
, 2

2n+1
 – 1} [8] and {2

n
 – 1, 2

n
 + 1, 2

2n
 + 1} [9] that provide 4n-bit DR and {2

n
, 2

2n
 – 1, 2

2n
 +

1} [10] that provides 5n-bit DR, have been suggested. Although the DR is larger, the delay of

the RAUs based on these sets has considerably increased, due to utilizing moduli with greater

magnitudes. In order to eliminate this drawback and maintain the large DR, sets of four and

five moduli have been suggested, such as {2
n
 – 1, 2

n
, 2

n
 + 1, 2

n+1
 – 1} [11]-I, {2

n
 – 1, 2

n
, 2

n
 +

1, 2
n+1

 + 1} [11]-II, {2
n
 – 1, 2

n
, 2

n
 + 1, 2

2n
 + 1} [12], {2

n
 – 1, 2

n
, 2

n
 + 1, 2

2n+1
 – 1} [13]-I, {2

n
 –

1, 2
n
, 2

n
 + 1, 2

n
 – 2

(n+1)/2
 + 1, 2

n
 + 2

(n+1)/2
 + 1} [14], {2

n
 – 1, 2

n
 + 1, 2

2n
 – 2, 2

2n+1
 – 3} [15], {2

n

– 1, 2
2n

, 2
n
 + 1, 2

2n
 + 1} [13]-II, {2

n
 – 1, 2

n
, 2

n
 + 1, 2

n–1
 – 1, 2

n+1
 + 1} [16], {2

n
, 2

n/2
 – 1, 2

n/2
 +

1, 2
n
 + 1, 2

2n–1
 – 1} [17], {2

n/2
 – 1, 2

n/2
 + 1, 2

n
 + 1, 2

2n+1
 – 1} [18], {2

n
 + 1, 2

n
 – 1, 2

2n
, 2

2n+1
 –

1} [19] and {2
2n+1

, 2
2n

 + 1, 2
n
 + 1, 2

n
 – 1} [20]. Each of these sets has its own advantages and

disadvantages. Some of them offer higher DRs than others, while others have more

parallelism. Some of them concentrated on designing efficient RCs, while others on efficient

RAUs.

Tab. 2.1 illustrates the most recently published moduli sets, including the dynamic ranges

they provide and possible n values that can be used in these sets.

Tab. ‎2.1: The most recently published moduli sets

Number of moduli Modulo set Dynamic range n odd/even

Three moduli sets

{2
n
 – 1, 2

n
, 2

n
 + 1} [4] 3n any

{2
n–1

 – 1, 2
n
 – 1, 2

n
} [6] 3n – 1 any

{2
n
 – 1, 2

n
, 2

n+1
 – 1} [7] 3n + 1 any

{2
n
 – 1, 2

n
, 2

2n+1
 – 1} [8] 4n + 1 any

{2
n
 – 1, 2

n
 + 1, 2

2n
 + 1} [9] 4n any

{2
n
, 2

2n
 – 1, 2

2n
 + 1} [10] 5n even

Four moduli sets {2
n
 – 1, 2

n
, 2

n
 + 1, 2

n+1
 – 1} [11]-I 4n + 1 even

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 21 -

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

n+1
 + 1} [11]-II 4n + 1 odd

{2
n/2

 – 1, 2
n/2

 + 1, 2
n
 + 1, 2

2n+1
 – 1} [18] 4n + 1 even

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

2n
 + 1} [12] 5n any

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

2n+1
 – 1} [13]-I 5n + 1 any

{2
n
 – 1, 2

2n
, 2

n
 + 1, 2

2n
 + 1} [13]-II 6n any

{2
n
 – 1, 2

n
 + 1, 2

2n
 – 2, 2

2n+1
 – 3} [15] 6n + 1 any

{2
n
 + 1, 2

n
 – 1, 2

2n
, 2

2n+1
 – 1} [19] 6n + 1 any

{2
2n+1

, 2
2n

 + 1, 2
n
 + 1, 2

n
 – 1} [20] 6n + 1 any

Five moduli

sets

{2
n
, 2

n/2
 – 1, 2

n/2
 + 1, 2

n
 + 1, 2

2n–1
 – 1} [17] 5n – 1 even

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

n
 – 2

(n+1)/2
 + 1,

2
n
 + 2

(n+1)/2
 + 1} [14]

5n odd

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

n–1
 – 1, 2

n+1
 + 1} [16] 5n even

2.2 RNS Converters

Every RNS system involves forward and reverse converters that convert weighted

numbers into their equivalent RNS representation and vice versa, respectively.

The structures of these converters can be memory-based, conventional-based or mix of

both. The choice is actually determined by the dynamic range required for the application

being designed. For applications with small dynamic ranges, such as digital image processing

where the range of pixel values is [0,255], the memory-based converters are the most

efficient. Contrary, for applications with large dynamic ranges (greater than 22 bits), such as

cryptography and some FIR filters, the combinational structure of the converters is preferred.

The next two sections illustrate the converters based on the combinational structure.

2.2.1 Binary to residue converters

The structure of the binary to residue converter (forward converter) is rather simple.

Hence, little work was devoted to this component [21].

In order to illustrate the forward conversion process, forward conversion equations

corresponding to the special moduli set {2
n
 – 1, 2

n
, 2

n
 + 1} will be stated [1], [2]. Actually, by

modifying k, these equations can be applied with any modulo of the form (2
k
 ± 1) within the

sets presented in Tab. 2.1.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 22 -

Assuming X is a 3n-bit integer. X can be written as follows,

2

3 1 3 2 1 0 2 1 2 3() 2 2     n n

n n n nX b b b b b B B B (2.1)

where, b3n-1 … b0 are the binary digits (bits) of X. B1, B2, B3 are blocks, each of them contains

n bits.

ADD
 mod (2 1)n

SUB
 mod (2 1)n

3B

2B
1B

  2

1 2 32 2n nX B B B
3n bit

ADD
 mod (2 1)n

1B

ADD
 mod (2 1)n

3B


1 2 1nx X


3 2 1nx X

B3

2 2nx X

Fig. ‎2.1: RNS forward converter for the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1} [1]

The RNS representation of X according to the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1},

2

1 1 2 3 1 2 32 1 2 1 2 12 1
2 2

  
      n n nn

n nx X B B B B B B (2.2)

2

2 1 2 3 32 2 22
2 2    n n nn

n nx X B B B B (2.3)

2

3 1 2 3 1 2 32 1 2 1 2 12 1
2 2

  
      n n nn

n nx X B B B B B B (2.4)

Equations (2.2), (2.3) and (2.4) are extracted based on the following,

2 12 1 2 1

22

2 12 1 2 1

2 2 1 1 1

2 0

2 2 1 1 1

nn n

nn

nn n

n n

n

n n

 

 

   



    

 (2.5)

According to equations (2.2), (2.3) and (2.4), the general structure of the forward

converter for the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1} is shown in Fig. 2.1 [1],

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 23 -

2.2.2 Residue to binary converters

Unlike forward converters, residue to binary converters (reverse converters) gained much

more interest due to their complexity. This component is considered the most time consuming

component in the whole RNS system. It is also used for performing difficult RNS operations

(division, scaling, comparison, overflow and sign detection). Researchers continuously try to

reduce the delay of the reverse converters, due to the reason that having a slow reverse

converter may counteract the speed gain of the residue arithmetic unit, hence, ruining the

whole advantages of using the RNS.

Reverse conversion algorithms are based on the Chinese remainder theorem (CRT),

mixed-radix conversion (MRC) and new Chinese remainder theorems (new CRTs). Every

algorithm has its own advantages and disadvantages. The decision to use any of them is based

on the used moduli set, the application being designed and the design’s requirements (time,

area, power). All reverse conversion methods depend on computing multiplicative inverses.

The multiplicative inverse x
-1

 of residue x relative to modulo m is defined as follows,

1 11 ; 0 ,    

m
x x x x m (2.6)

It is clear that finding x
-1

 is not a simple task. However, using special moduli sets can

make the computation of multiplicative inverses easier.

According to the CRT, a weighted number X can be calculated from its residues (x1,

x2,…, xn) by the following equation [1], [2],

1

 
i

n

i i im
i M

X x N M (2.7)

where, 1 2    nM m m m , /i iM M m and 1

i
i i m

N M  is the multiplicative inverse of

Mi relative to modulo mi.

The CRT-based converter can be implemented in parallel. However, it needs a large

modular adder, which can be very difficult for hardware implementation. Reverse converters

based on the CRT were proposed in [4], [6], [7], [10] and [14].

By using the MRC, a residue number (x1, x2,…, xn) can be converted back into its

weighted equivalent X by,

1

3 2 1 2 1 1

1

...




    
n

n i

i

X v m v m m v m v (2.8)

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 24 -

where,

1 1v x (2.9)

2
2

1

2 2 1 1()   
m

m

v x v m (2.10)

3 3

3

1 1

3 3 1 1 2 2(())     
m m

m

v x v m v m (2.11)

As illustrated in equation (2.8), the MRC does not need any special modular adder.

However, it is a sequential algorithm, which makes it not suitable for systems with more than

four moduli within the set [7], [8]. To overcome such a case (more than four moduli), a two-

level structure consisting of the MRC and one of the CRTs is proposed in [11], [16], [17].

The new CRT-I is a modification of the original CRT, where the size of the final modular

adder is reduced by one modulo. Using this algorithm, a residue number (x1, x2,…, xn) can be

converted back into its weighted equivalent X by,

2 3
1 1 1 2 1 2 2 3 2 1 2 3 1 1() () ()          

n
n n n n m m m

X x m k x x k m x x k m m m x x (2.12)

where,

2 3

1 1 1 
nm m m

k m (2.13)

3

2 1 2 1  
nm m

k m m (2.14)

 1 1 2 1 1     
n

n n m
k m m m (2.15)

As can be noticed in equation (2.12), the final modular adder is reduced by one modulo.

This can bring a great benefit when the first modulo is of the 2
k
 form, and the multiplication

of the rest moduli is of the (2
k
 – 1) form. Such reverse converters are reported in [9], [12].

The new CRT-II even further reduces the size of the final modular adder. A residue

number (x1, x2,…, xn) can be converted back into its weighted equivalent X by the new CRT-II

by,

3 4

2

4

1 2 1

1 1 2 2 1

3 3 3 4 3

()

()

()

m m

m

m

X Z m m k Y Z

Z x m k x x

Y x m k x x

  

  

  

 (2.16)

where,
3 4 2 4

1 1 2 2 1 3 31, 1, 1
m m m m

k m m k m k m  

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 25 -

This algorithm is very efficient. It is used with sets that have four or more moduli.

Reverse converters based on the new CRT-II are presented in [13], [15].

2.3 Residue Arithmetic Units

The RNS contains a number of residue arithmetic units corresponding to the number of

moduli. These RAUs are totally independent and perform arithmetic operations in parallel.

As aforementioned before, addition, subtraction and multiplication are easy operations in

the RNS (RNS-friendly operations). On the other hand, division, scaling, comparison,

overflow and sign detection are complex and preferred to be avoided as much as possible.

The RNS friendly operations are carried out by individually performing that operation on

each residue corresponding to the moduli. Thus, no carry is propagated from one residue to

another. This leads to parallel arithmetic operations, reduced carry propagation length in

adders and smaller sizes of multipliers, hence, providing considerably reduced-delay and area

applications.

 
1 2

1 2 1 2

1 1 2 2

1 2

(, , ,) , (, , ,)

, , , ; (, ,)

(, , ,)

 

     



n

n n

n nm m m

n

X x x x Y y y y

Z X Y x y x y x y

Z z z z

 (2.17)

The structure of the RAU is based on one of the following three methods; a pure memory

structure, a combinational structure or a mix of both [1], [2], [22]. The first approach is

realized by using ROMs [23]. The main drawback of this approach is the exponential growth

of the memory size for large moduli. Therefore, this approach is suitable only for small

moduli. The second approach depends on pure combinational structure. This approach is

suitable for large moduli [24]. A RAU based on the third approach, that uses both memory

and combinational circuits, is presented in [25].

2.3.1 Modular addition

Modular addition is a fundamental operation in the RNS. It is used in almost every part of

the RNS (forward converter, reverse converter, modular multipliers, modular subtractors and

modular adders themselves). Therefore, designing efficient modular adders has gained a wide

interest. The primary equation for performing general modular addition, which was hardware-

realized in [22], is defined by,

; 0

;m

x y if x y m
x y

x y m if x y m

   
  

   
 (2.18)

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 26 -

Assuming that the width of modulo m is n bits, the structure of the general modular adder

is shown in Fig. 2.2 [22]. It consists of two n-bit adders, an OR gate and a multiplexer.

ADD

n bit

ADD

n bit
Cout

Cout

MUX
01

2 – m
n

x y

 
m

z x y

Fig. ‎2.2: The structure of general modulo adder [22]

As stated above, using special moduli sets can considerably simplify the realization of

arithmetic circuits. Regarding the most famous moduli set {2
n
 – 1, 2

n
, 2

n
 + 1}, three modular

adders are specially designed corresponding to each modulo.

A modulo (2
n
) adder can be simply realized using an n-bit binary adder, with ignored

carry-out. A modulo (2
n
 – 1) adder, can also be simply realized using an n-bit binary adder

with EAC (end around carry) [26].

However, modulo (2
n
 + 1) adder is considered to be more complex, due to the (n + 1)-bit

operands and results. It represents the bottleneck of the system. Its arithmetic circuits suffer

from the longest delay among all three channels. Therefore, many researchers have focused

on this type of modular adders. Diminished-one number system has been used in [27], [28]. In

this number system, (n + 1)-bit operands are represented using just n bits, which results in

speeding-up the execution time. However, this speed-up is at the cost of more area

consumption occupied by converters to/from the diminished-one representation and special

treatment required for operands equal to zero [29]. A quite interest publication [26] has

illustrated different structures of modular adders for both general and special moduli sets. In

this publication, both standard binary and diminished-one representation for modulo (2
n

+ 1)

adders have been used.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 27 -

Much investigation and research was devoted in order to improve timing performance of

modular adders. One of the suggested means is by utilizing faster binary adders, such as

parallel prefix adders [28], [29] and [30].

In principal, the general structures of modular adders based on the moduli set {2
n
 – 1, 2

n
,

2
n
 + 1} are illustrated in Fig. 2.3 [1], [26]. These structures have been utilized during the

study on different moduli sets, which is presented in Section 4.1.

ADD

n bit

ADD

n bit
coutcout

cin 1

01
MUX


 

2 1nz x y

x y

ADD

n bit

 
2nz x y

cout

x y

MUX
01

2 – 1
n

x y


 

2 1nz x y

ADD

(n+1) bit
cout

ADD

(n+1) bit
cout

Fig. ‎2.3: General structures of modular adders based on the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1} [1], [26]

2.3.2 Modular subtraction

RNS subtraction is an operation greatly used in many fields of DSP, such as, the mean

error estimation, mean square error estimation and calculation of sum of absolute differences

 [1], [2]. Since modulo arithmetic is also frequently used in these types of applications,

efficient modulo subtraction circuits are welcome. However, modular subtraction can be

considered as a special case of modular addition, where an additive inverse is used. It is

defined as follows,

m m mm m

y y m y x y x y        (2.19)

Assuming the width of modulo m is n bits and according to equation (2.19), a general

modulo subtractor can be designed using an n-bit subtractor followed by a general modulo m

adder. The structure of this subtractor is illustrated in Fig. 2.4 [1], [2].

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 28 -

Very little work was dedicated for studying and designing modular subtractors.

According to Property 1, a modulo (2
n
 – 1) subtractor can be simply realized using modulo

(2
n
 – 1) adder and a few inverters.

Property 1: The residue of a negative residue number (–x) in modulo (2
n
 – 1) is the one’s

complement of x, where 0 ≤ x < 2
n
 – 1.

Therefore, most studies were dedicated for designing efficient modulo (2
n
 + 1)

subtractors, such as [31], [32]. The authors of [31] presented novel architectures of modulo

(2
n
 + 1) subtractors, which are efficient in terms of delay and area using both normal and

diminished-one number representation. Moreover, zero handling was also taken into account

and a special unit that treats the operands equal to zero was designed.

ADD mod m

SUB
n bit

m

x

y

 
m

z x y

y

Fig. ‎2.4: The structure of general modular subtractor [1], [2]

2.3.3 Modular multiplication

Modular multiplication is a very important operation in the RNS. It is used in many

applications such as FIR (finite impulse response) filters, Fourier transforms and digital image

processing [1], [2]. The speed gain of modular multipliers is indeed the most attractive aspect

for using RNS-based DSP applications.

There are two general methods for performing modular multiplication [33]; the first

method depends on multiplication then reduction with regard to modulo. This method

requires a large space to store the product of the multiplication in order to perform the

reduction process thereafter [33]. The basic structure of the modular multiplier based on this

method consists of a binary multiplier followed by a reduction unit. This reduction unit can be

further simplified in case of using the special moduli sets. This approach has been utilized in

 [34], [35]. An example of this method is shown in Fig. 2.5. The structure of this multiplier is

based on the product-partitioning approach presented in [1].

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 29 -

Multiplier

X Y

n-bit

2n-bit

Multiple

Modulo (m)
Adder

n-bit

n-bit

cU

L n-bitU

 
m

z x y

Fig. ‎2.5: The structure of general modulo multiplier [1]

The second approach is based on interleaving multiplication and reduction. Many

publications used this approach. A modular multiplier based on the Montgomery reduction

algorithm was presented in [36]. In this structure, the reduction is performed at each iteration

step of the multiplication process. Montgomery reduction algorithm is efficient for very large

dynamic ranges; where the width of modulo is several hundred bits. Another efficient

hardware implementation method for multiplying integers – Wallace tree – was used in RNS

multipliers for both moduli (2
n
 – 1, 2

n
 + 1) [37], [38]. Two RNS multipliers for moduli (2

n
 –

1, 2
n
 + 1) based on modified Booth were published in [39], [40]. According to the authors,

these modular multipliers offer fast and completely regular structures, because the modified

Booth algorithm reduces the number of partial products to about half of that of the Booth

algorithm. An RNS multiplier that depends only on binary adders has been published in [41].

This multiplier is an improved design of [42], whose architecture is almost exclusively

composed of full and half adders.

2.3.4 Complex operations in the RNS (overflow detection, sign detection and
residue comparison)

As aforementioned before operations as division, overflow detection, sign detection and

magnitude comparison are problematic and very complex in the RNS. In some cases, some of

these operations are essential and cannot be avoided. Hence, a number of methods for solving

these problems have been suggested. A survey of the methods for overflow detection, sign

detection and magnitude comparison is briefly presented below.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 30 -

In principle, the general way to detect overflow in the RNS is via comparing the result of

addition with one of the addends. Suppose two integers x, y. These two integers are being

added modulo m. If x ≥ 0 and y < m [1], [2],

1 ;

0 ;

m
if x y x

Overflow
otherwise

  
 


 (2.20)

One of the fastest and most efficient ways to detect overflow in the RNS is via parity

checking [2], [43], [44]. It indicates whether an integer is even or odd. However, this

technique can only be used with odd dynamic ranges. Suppose two integers x and y have the

same parity,

1 ;

0 ;

m
if x y is odd

Overflow
otherwise

 
 


 (2.21)

 Contrary, if x and y have different parity,

1 ;

0 ;

m
if x y is even

Overflow
otherwise

 
 


 (2.22)

The parity checking technique is one of the best and fastest proposed methods to detect

overflow in the RNS. It depends on look-up tables (LUTs) or on an extra modulo (a redundant

modulo). However, this technique can only be used with moduli sets that have just odd

members, i.e. odd dynamic range, which is not suitable for many moduli sets that uses 2
n
 as

one of its moduli, especially the most famous moduli set {2
n
 – 1, 2

n
, 2

n
 + 1}. RNSs with even

dynamic ranges have more attractive features than those with odd ones. Due to the reason,

that using 2
n
 modulo greatly simplifies and reduces the delay and complexity of the residue

arithmetic operations and the residue-to-binary conversion. Thus, overflow detection in the

RNS with even dynamic range is a very important issue.

On the other hand, according to equation (1.5) for signed RNS, the general way for sign

detection in the RNS is via comparing the numbers, after reverse converting them back to the

weighted form, with half of the dynamic range [1], [2].

Concerning magnitude comparison in the RNS, many comparators based on residue to

binary converters were proposed. In principal, the straightforward way to compare two

residue numbers in the RNS is to reverse convert them into weighted representation and then

carry out a conventional comparison [1]. However, this method is costly; therefore, many

approaches were suggested in order to perform comparison on the residue numbers [45], [48].

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 31 -

One of the first suggested approaches is based on a diagonal function that is defined as

the sum of suitable quotients of the number named as SUM of Quotients Technique (SQT)

 [45]. This approach uses an extra modulo that is inserted in the used set of moduli. Another

residue comparator, based on the new CRT-II, was suggested in [46]. Contrary to the

previous comparator, this one does not use any extra modulo and provides smaller modulo

operation. One of the simplest ways to perform residue comparison is based on the new CRT-

I [4]. This approach utilizes two parallel binary comparators of 2n bits and n bits. A residue

comparison algorithm based on the CRT for general moduli sets was suggested in [47]. In this

paper, an efficient ROM-free residue comparator for {2
n
 – 1, 2

n
, 2

n
 + 1} was also presented.

According to the authors, this comparator is faster and reduces the hardware close to the half

of the one based on the new CRT-I [4]. In [48], [49], efficient methods based on the parity

checking technique were proposed. However, these methods can only be used with odd

moduli sets. Thus, they cannot be used in an RNS based on {2
n
 – 1, 2

n
, 2

n
 + 1}.

2.4 RNS Applications

Due to the carry-free, residue independence and parallelism features of the RNS, it has

been intensively used in many fields, such as digital signal processing, digital filtering, digital

communications, cryptography, error detection and correction [1], [2]. Moreover, new trends

to use the RNS in low-power design have also arisen. In principal, this system is of great

benefit in areas where addition, subtraction and multiplication are dominant and division,

comparison, overflow and sign detection are minor. Hence, the RNS has become a tough

candidate for high-performance, fault tolerant and secure DSP applications.

One of the main fields for RNS-based applications is finite impulse response (FIR) filters

 [50]- [55]. In [50], the authors explore the design workspace of FIR filters with respect to

structure, characteristics and number of taps. According to the authors, the proposed RNS-

based filter operates at the same throughput as binary filters and has smaller area and power

consumption, when the number of taps is larger than 16. In [51], a FIR filer was implemented

using the RNS based on any number of moduli of the form {2
n
 – 1, 2

n
, 2

n
 + 1}. As reported in

this paper, the proposed filter provides a significant overall area-delay product gain ranged

from 35% to 60% for a 16-tap filter with dynamic range from 20 to 40 bits. A very interesting

and detailed FIR filter performance analysis between RNS and binary is presented in [52].

According to this study, the RNS-based FIR filter is more than 3 times faster and consumes

only about 60% of the area of binary-based FIR, when the number of taps is larger than 32.

Furthermore, a number of attempts to design RNS-based infinite impulse response (IIR)

filters have been also arisen [56], [57]. However, the results were not impressive as in FIR

filters.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 32 -

Trends to use the RNS for reducing power consumption have also appeared [50], [53]-

 [55]. In principal, the power dissipation is reduced due to the parallelism feature in the RNS.

Since the filtering process is divided into a number of smaller word-length filters that operate

in parallel, hence, these smaller computation units require lower supply voltage for specific

frequency. One of the most efficient low-power RNS-based FIR filters is presented in [54].

This filter showed static power dissipation reduction of 50% and total power reduction of

40% compared to the binary filters. However, the dynamic range in this filter was limited to

20 bits only and the reduced power consumption was achieved for more than 15 taps.

Digital image processing is another field for benefiting of the RNS’s features. Many

researches were dedicated for exploiting the RNS features for enhancing digital image

processing applications [58]- [62]. One of the first papers that suggested using the RNS in

image processing are [58], [59]. However, the main concentration of these papers was on the

security aspect rather than benefiting from the parallelism feature of the RNS. An RNS based

application for filtering digital images was presented in [60]. The filtering is done in both

spatial and frequency domains. Since pixel values have the range [0, 255], the authors

suggested using the moduli set {5, 7, 8} as it provides a dynamic range [0, 279], which they

considered to be enough for image filtering applications. However, during my study, I have

found out that this is not true. An example that clarifies this confusion is presented in Section

 4.7.2. In [61], [62], similar structures for edge detection and spatial filtering were also

introduced.

In addition, error detection and correction applications greatly benefit from the RNS’s

features [63], [64]. Due to the carry-free and the lack of weighted significance of residue

digits properties, an error in a digit does not propagate, hence, does not affect other digits.

One of the suggested methods for detecting and correcting errors is via the redundant RNS

(RRNs) [63]. This system uses redundant moduli, thus, errors can be precisely detected and

corrected. In this system, the dynamic range is divided into two intervals; the legitimate range

and illegitimate range. A single-digit error is detected if the binary result after reverse

conversion belongs to the illegitimate range. In order to detect a single-digit error, a single

redundant modulo is sufficient. On the other hand, in order to detect and correct a single-digit

error, at least two redundant moduli should be utilized. In [64], a new technique for error

detection and correction has been proposed. Contrary to [63], the proposed technique is based

on dividing the legitimate range into two subsets; legitimate subset and illegitimate subset.

Moreover, architecture of a FIR filter with error detection and correction capabilities has been

also presented in that paper.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 33 -

The RNS has also been used in communication for many purposes, such as parallel

transmitting a set of orthogonal signals [65] and direct sequence spread spectrum [66].

Furthermore, cryptography is another area where RNS can be efficiently used. The major

usage of the RNS is with RSA (Rivest, Shamir and Adleman) algorithm [67].

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 34 -

3 Aims of Dissertation

The main objective of this thesis is, designing, simulation and FPGA implementation of

RNS based building blocks for applications in the field of DSP (binary-to-residue converter,

residue-to-binary converter, residue adder and residue multiplier).

Since the RNS results in carry free arithmetic operations and supports high-speed

concurrent computations, it will be useful to use RNS-based building blocks for DSP

applications.

Therefore, the main objective of this thesis is improving these building blocks by

developing new algorithms and improving existing ones. Hence, the aims of this thesis can be

categorized as follows,

Studying different moduli sets, analyzing the relation between moduli number and the

dynamic range it provides, and evaluating the most efficient ones for different applications

with different dynamic range requirements.

Improving and designing novel RNS converters including both forward and reverse

converters. However, the main focus will be concentrated on the reverse converters, since

they are the most time and hardware consuming components in the RNS. Comparing ROM-

based structures with combinational ones and analyzing the most suitable converters for

different applications based on FPGA implementation.

Improving and designing novel structures of residue arithmetic units including

modular adders, modular subtractors and modular multipliers with respect to different moduli

sets.

Suggesting solutions to simplify RNS difficult operations needed in some DSP

applications; such as comparison, overflow and sign detection.

Comparing RNS-based applications with binary-based ones and analyzing the cases

when using the RNS will be the most efficient.

Verifying the functionality and efficiency of the proposed designs and comparing

them against other published ones based on FPGA implementation.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 35 -

4 Dissertation Results

This part of the thesis is devoted for presenting the proposed work, findings and results of

the doctoral dissertation. In addition to the proposed designs, comparisons of known

structures with their analyzing and evaluations are also presented in this Chapter.

Before beginning, aspects that have been taken into account during my research are

presented below.

Blocks within the proposed designs have been described using VHDL. ROMs and RAMs

have been designed using Xilinx core generator v. 13.4. The proposed designs were simulated

using Xilinx ModelSim tool and implemented on different FPGA boards. The maximum

frequencies and power consumptions were calculated using Xilinx Timing Analyzer and

XPower Analyzer tools v. 13.4. The hardware consumptions are the ones shown in the post

place and route reports in Xilinx ISE v. 13.4. The design main goal and strategy was mostly

set to “balanced”. The individual cases, when other strategies were adopted, are specifically

mentioned.

Most of the designs were implemented on FPGA boards. However, for the sake of a fair

comparison, the unit gate model was sometimes adopted [75], [76], [81] and [82]. Thus, the

considerations that have been taken into account concerning the unit gate model are illustrated

in the appendix in Tab. 6.1.

4.1 The most efficient moduli set for each dynamic range

In this section, a study on the effect of the moduli number in a moduli set on the overall

speed of the RNS is presented. Choosing a proper moduli set greatly affects the performance

of the whole system. The widely known issue is that as the number of moduli increases the

speed of the residue arithmetic units increases, whereas the residue-to-binary converters

become slower and more complex. It is a double-edged sword, since the greater this number

is, the faster residue arithmetic units are and more complex and difficult reverse converters to

design. Thus, I carried out a detailed study on different moduli sets with different moduli

numbers and different dynamic ranges, and compared timing performance of systems based

on them in order to determine the moduli number effect on the overall RNS timing

performance and find out the most efficient set for each dynamic range. Timing performance

of the reverse converters and residue arithmetic units based on three precise DRs, (12 bits

(medium DR), 24 bits (large DR) and 60 bits (very large DR)) is compared, and the most

efficient and inefficient set for each DR is evaluated. For the sake of a fair comparison, the

unit gate model is adopted. Furthermore, I have used same basic blocks among all designs

(e.g. adders and multipliers).

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 36 -

As aforementioned in Section 2.1, many moduli sets were suggested in order to enhance

the dynamic range, timing performance and hardware complexity of the residue arithmetic

units and reverse converters within the RNS. Generally, the main concentration of

publications that introduced these sets was only on the reverse converters rather than the

overall performance of the system based on these sets. Thus, I have observed a lack to a

detailed comparative study that fairly compares these sets, in terms of DR, number of moduli,

time and hardware requirements for implementing reverse converters and residue arithmetic

units based on them.

The study has been published in an international conference in Dubai, UAE [75] and an

extended version of it has been published in the international journal of Emerging Trends in

Computing and Information Sciences [76]. The first paper [75] presents a detailed comparison

between different moduli sets based on (delay × complexity) ratio for each component

according to three precise DRs (12 bits, 24 bits and 60 bits), i.e. the main concentration of the

study is on systems whose main goal and strategy are set to “balanced”. Whereas, the second

one [76] compares different moduli sets based on the delay of each component. Hence, it

presents the moduli number effect on the timing performance of the overall system, i.e. the

main concentration of the study is on systems whose main goal and strategy are set to “timing

performance”.

4.1.1 Time and hardware requirements of residue arithmetic units and reverse
converters based on different moduli sets

In the appendix in Tab. 6.2, Tab. 6.3, Tab. 6.4 and Tab. 6.5, different moduli sets, the

delay and hardware complexity of the RAUs and reverse converters based on them are

illustrated. In these tables, different moduli sets, are categorized according to the dynamic

range they provide (3n, 4n, 5n and 6n) bits. Each of these sets, its DR, the possible n values

that can be used in this set, the number of its moduli, the critical channel that presents the

longest delay, time and hardware requirements for implementing reverse converters, modular

adders and modular multipliers are described in details. The values of the least delays and

hardware requirements are bold and underlined in order to highlight them.

These tables show that modular adders and multipliers with respect to modulo (2
k
 + 1)

have longer delays than those based on modulo (2
k
 – 1). For example, the unit gate delays of

modulo (2
n
 + 1) adder and multiplier are less than those of modulo (2

n+1
 – 1), even though,

modulo (2
n+1

 – 1) has a greater amplitude than that of (2
n
 + 1).

Tab. 4.1 and Tab. 4.2 summarize the reuslts illustrated in Tab. 6.2 - Tab. 6.5 and present

only the most efficient sets with respect to the reverse converters and RAUs for each dynamic

range category. The efficiency of these sets has been estimated based on (delay × complexity)

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 37 -

ratio. It is clear from Tab. 4.1, that the most efficient reverse converters in each DR category

are based on the moduli sets whose members can be combined in such a way to produce a

final modulo of the form (2
k
 – 1). Hence, the structure of the reverse converter based on one

of the new CRTs becomes rather simple. Regarding the residue arithmetic units, the moduli

sets of more members are more efficient, as shown in Tab. 4.2. However, evaluating the

performance of these components altogether and comparing these sets for three precise

dynamic ranges are presented in details in Section 4.1.2.

Tab. ‎4.1: The most efficient moduli sets regarding reverse converters for each dynamic range category

Dynamic

range
Moduli set

Moduli

RC

Delay Complexity

3n {2
n
 – 1, 2

n
, 2

n
 + 1} [4] 3 16n + 8 31n + 13

4n {2
n
 – 1, 2

n
 + 1, 2

2n
 + 1} [9] 3 32n + 8 62n + 8

5n {2
n
, 2

2n
 – 1, 2

2n
 + 1} [10] 3 32n + 4 44n + 8

6n

{2
n
 – 1, 2

2n
, 2

n
 + 1,

2
2n

 + 1} [13]-II
4 32n + 12 88n + 24

Tab. ‎4.2: The most efficient moduli sets regarding RAUs for each dynamic range category

Dynamic

range
Moduli set

Moduli

Critical

channel

Modular adders Modular multipliers

Delay Complexity Delay Complexity

3n – 1
{2

n–1
 – 1, 2

n
 – 1,

2
n
} [6]

3 (2
n
 – 1) 8n 21n – 7 16n – 7

24n
2
 – 35n

+ 12

4n + 1
{2

n
 – 1, 2

n
, 2

n
 + 1,

2
n+1

 – 1} [11]-I
4 (2

n
 + 1) 8n + 11 45n + 25

16n +

12

32n
2
 + 19n

+ 19

5n

{2
n
 – 1, 2

n
, 2

n
 + 1,

2
n–1

 – 1, 2
n+1

 + 1}

 [16]

5 (2
n+1

 + 1) 8n + 19 62n + 36
16n +

28

40n
2
 + 25n

+ 72

6n + 1
{2

n
 + 1, 2

n
 – 1,

2
2n

, 2
2n+1

 – 1} [19]
4 (2

2n+1
 – 1) 16n + 8 52n + 25 32n + 9

80n
2
 + 20n

+ 19

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 38 -

4.1.2 The most efficient set for each dynamic range requirement

In order to find out the effect of moduli number on the system’s performance and

determine the most efficient set for each DR, I have calculated the delay of each component

based on each of the studied sets for three precise DRs: medium (12 bits), large (24 bits) and

very large (60 bits), as illustrated in Fig. 4.1, Fig. 4.2 and Fig. 4.3, respectively.

In each set, n has been chosen in order to provide the required DR. For example, for DR

= 12 bits, n was (4, 3, 3, 2) for sets with DR (3n, 4n, 5n, 6n). However, in some cases there

was some inconsistency (e.g. for sets with DR = 5n, n = 3 provides a DR greater than the

required 12 bits). Nevertheless, as mentioned in [76], I have dealt with this issue and

estimated the approximate delay for the required DR.

Not all sets are illustrated in the graphs, due to the reason that some of these sets can only

be used with even values of n ([10], [11]-I, [16], [17] and [18]) or odd values of n ([11]-II and

 [14]), which does not fit the chosen value of n in order to acquire the required DR.

Fig. 4.1 shows the delays of the reverse converters, modular adders and modular

multipliers based on each of the sets [4], [6] – [9], [11] – [15], [19] and [20], for DR = 12 bits

(medium DR). In order to acquire this DR, n was chosen (4, 3, 3, 2) for sets with DR (3n, 4n,

5n, 6n), respectively.

Fig. ‎4.1: The delay of each basic component based on the moduli sets for DR = 12 bits (medium DR)

As illustrated in Fig. 4.1, the adder with least delay was the one based on the five-moduli

set {2
n
 – 1, 2

n
, 2

n
 + 1, 2

n
 – 2

(n+1)/2
 + 1, 2

n
 + 2

(n+1)/2
 + 1} [14]. However, the unexpected thing

was that the second fastest adder is the one based on the three-moduli set {2
n–1

 – 1, 2
n
 – 1, 2

n
}

0

50

100

150

200

D
e
la

y
[u

n
it
 g

a
te

 m
o
d
e
l]

ADD

MUL

RC

3-moduli sets 4-moduli sets 5-moduli set

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 39 -

 [6]. The fastest multipliers were the ones based on the three-moduli set {2
n–1

 – 1, 2
n
 – 1, 2

n
}

 [6] and four-moduli set {2
2n+1

, 2
2n

 + 1, 2
n
 + 1, 2

n
 – 1} [20]. Whereas, the slowest ones were

based on the three-moduli set {2
n
 – 1, 2

n
 + 1, 2

2n
 + 1} [9] and the four-moduli set {2

n
 – 1, 2

n
 +

1, 2
2n

 – 2, 2
2n+1

 – 3} [15]. Concerning the reverse converters, the fastest one is {2
n
 – 1, 2

n
,

2
n+1

 – 1} [7] and the slowest one is based on the four-moduli set {2
n
 – 1, 2

n
, 2

n
 + 1, 2

n+1
 + 1}

 [11]-II.

Considering the delay of the three components, it is obvious that the three-moduli set {2
n

– 1, 2
n
, 2

n+1
 – 1} [7] and the four-moduli set {2

2n+1
, 2

2n
 + 1, 2

n
 + 1, 2

n
 – 1} [20] are the most

efficient, since the components based on these sets have relatively small delays. Thus, for DR

= 12 bits, we see that the number of moduli does not affect the overall speed of the system.

Fig. 4.2 shows the delays of the RCs, modular adders and multipliers based on each of the

sets [4], [6] – [9], [11] – [15] and [18] – [20], for DR = 24 bits (large DR). In order to acquire

this DR, n was chosen (8, 6, 5, 4) for sets with DR (3n, 4n, 5n, 6n), respectively.

Fig. 4.2 shows that the delay trends of the basic components are similar to those in DR =

12 bits. The fastest adder is the one based on the five-moduli set {2
n
 – 1, 2

n
, 2

n
 + 1, 2

n
 –

2
(n+1)/2

 + 1, 2
n
 + 2

(n+1)/2
 + 1} [14]. The four-moduli set {2

n
 – 1, 2

n
, 2

n
 + 1, 2

n+1
 – 1} [11]-I has

the fastest multiplier and one of the best adders. However, its RC is the worst. The fastest RC

is the one based on the three-moduli set {2
n
 – 1, 2

n
, 2

n+1
 – 1} [7].

Fig. ‎4.2: The delay of each basic component based on the moduli sets for DR = 24 bits (large DR)

Considering the delay of the three components, we can say that the most efficient moduli

sets for this DR = 24 bits are the three-moduli sets {2
n
 – 1, 2

n
, 2

n
 + 1} [4] and {2

n
 – 1, 2

n
, 2

n+1

– 1} [7], and the four-moduli sets {2
n
 – 1, 2

2n
, 2

n
 + 1, 2

2n
 + 1} [13]-II and {2

2n+1
, 2

2n
 + 1, 2

n
 +

0

100

200

300

D
e
la

y
[u

n
it
 g

a
te

 m
o
d
e
l]

ADD

MUL

RC

3-moduli sets 4-moduli sets 5-moduli set

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 40 -

1, 2
n
 – 1} [20], since the three components based on these sets have relatively small delays.

Again, it is clear that five-moduli set {2
n
 – 1, 2

n
, 2

n
 + 1, 2

n
 – 2

(n+1)/2
 + 1, 2

n
 + 2

(n+1)/2
 + 1} does

not show impressive timing performance.

Fig. 4.3 shows the delays of the RCs, modular adders and multipliers based on each of the

sets [4], [6] – [13], [15] – [17], [19] and [20], for DR = 60 bits (very large DR). In order to

acquire this DR, n was chosen (20, 15, 12, 10) for sets with DR (3n, 4n, 5n, 6n), respectively.

Fig. 4.3 shows that the fastest adder and multiplier are the ones based on the five-moduli

set {2
n
 – 1, 2

n
, 2

n
 + 1, 2

n–1
 – 1, 2

n+1
 + 1} [16]. However, their RC is the slowest one. The

fastest RC is the one based on the three-moduli set {2
n
 – 1, 2

n
, 2

n+1
 – 1} [7]. This set also has

rather fast adder and multiplier.

Fig. ‎4.3: The delay of each basic component based on the moduli sets for DR = 60 bits (very large DR)

Considering the delay of the three components, we can say that the most efficient moduli

sets for this DR = 60 bits are the three-moduli sets {2
n
 – 1, 2

n
, 2

n
 + 1} [4] and {2

n
 – 1, 2

n
, 2

n+1

– 1} [7], and the four-moduli sets {2
n
 – 1, 2

2n
, 2

n
 + 1, 2

2n
 + 1} [13]-II and {2

2n+1
, 2

2n
 + 1, 2

n
 +

1, 2
n
 – 1} [20], as the components based on these sets have relatively small delays.

Since the most competent sets are not the five-moduli ones for all three DRs and the three

moduli sets [4] and [7] showed the best timing performance concerning all the three

components, we conclude that the number of moduli does not affect that much the overall

delay of the system considering all its components. There is no point for choosing a five-

moduli set if the overall timing performance will be worse than that based on three or four-

moduli sets.

0

200

400

600

800

1 000

D
e
la

y
[u

n
it
 g

a
te

 m
o
d
e
l]

ADD

MUL

RC

3-moduli sets 4-moduli sets 5-moduli set

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 41 -

A comparison between the most efficient sets for different dynamic ranges based on

timing performance [76] and delay × complexity ratio [75] is illustrated in Tab. 4.3. In [75],

the most efficient set for medium DR, in terms of (delay × complexity) ratio, is the three-

moduli set [6]. Whereas in [76], the most efficient set for the same DR, in terms of timing

performance, is the three-moduli set [7]. Regarding the large dynamic range, the most

efficient set in [75] is the four-moduli set [11]-I, whereas, it is the three-moduli set [7] in [76].

In a similar manner, the most competent set with the relatively best (D × C) ratios for very

large DR was the four moduli set [13]-II. In [76], the most efficient set for the same DR is

again the three-moduli sets [7].

It is obvious that five-moduli sets were not mentioned in the above comparison. These

sets show better timing performance in medium and large DRs than that in very large DR.

Although their RAUs were of the best ones for the very large DR, their RCs were the worst.

According to this research, the unexpected issue I have ascertained is that five-moduli sets do

not show any superiority over other sets taking into account the three components of RNS

(modular adders, modular multipliers and RCs).

Tab. ‎4.3: Comparison between best moduli sets based on (D × C) [75] and timing performance [76]

Dynamic

range

Best moduli sets based on (D × C) ratio

 [75]

Best moduli sets based on timing

performance [76]

moduli set moduli # moduli set moduli #

Medium

(12 bits)
{2

n–1
 – 1, 2

n
 – 1, 2

n
} [6] 3 {2

n
 – 1, 2

n
, 2

n+1
 – 1} [7] 3

Large

(24 bits)

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

n+1
 – 1} [11]-

I
4 {2

n
 – 1, 2

n
, 2

n+1
 – 1} [7] 3

Very large

(60 bits)

{2
n
 – 1, 2

2n
, 2

n
 + 1, 2

2n
 + 1}

 [13]-II
4 {2

n
 – 1, 2

n
, 2

n+1
 – 1} [7] 3

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 42 -

4.2 Proposed forward converter

Due to the fact that binary to residue converters are rather simple, little work has been

dedicated to enhance their performance. Since my research dealt with special moduli sets

rather than general moduli sets, the utilized components to obtain residues with respect to the

moduli set {2
n
 – 1, 2

n
, 2

n
 + 1} are presented in this section.

Since the majority of moduli, within the moduli sets aforementioned in Section 4.1, have

one of the following forms (2
k
 – 1), (2

k
) or (2

k
 + 1), thus, the illustrated forward converters

can be used to obtain the RNS representation with respect to any of those sets.

The most straightforward residue to obtain is the one with respect to modulo 2
n
.

According to equation (2.3), this residue represents the least n bits of the binary number.

Thus, no adders or any logical components are needed.

However, according to equation (2.2), computing a residue with respect to modulo (2
n
 –

1), demands two consecutive modulo (2
n
 – 1) adders, as illustrated in Fig. 2.1. Instead of

using this structure, a carry save adder with end around carry (CSA-EAC) followed by a carry

propagate adder with end around carry (CPA-EAC) can perfectly fulfill the task. This

structure is shown in Fig. 4.4.

CSA-EAC
n bit

1B
2B3B

CPA-EAC
n bit


1 2 1nx X

Fig. ‎4.4: Modulo (2
n
 – 1) channel of the binary to residue converter

The most difficult residue to obtain is the one with respect to (2
n
 + 1) modulo. According

to equation (2.4), this one requires a modulo (2
n
 + 1) subtractor followed by a modulo (2

n
 + 1)

adder, as illustrated in Fig. 2.1. This structure is rather complicated, since both components

are complex and time consuming.

As stated in Section 2.2.1,

2

3 1 2 3 1 2 32 1 2 1 2 12 1
2 2

  
      n n nn

n nx X B B B B B B (4.1)

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 43 -

According to equation (2.19), 2 2 1nB


 can be rewritten as follows,

2 22 1 2 1
2 1n n

nB B
 

    (4.2)

Based on the two’s complement properties,

2 2 22 1 2 1 2 1
2 1 2 1 1 2 2

n n n

n n nB B B
  

         (4.3)

where, 2B refers to the one’s complement of 2B .

Hence, the structure of the component that computes the residue with respect to modulo

(2
n
 + 1) can be realized using two parallel binary adders followed by a modulo (2

n
 + 1) adder.

The structure is shown in Fig. 4.5.

Since the adder that adds 2"100 010" B has one constant operand, this structure can

be further simplified. According to the full adder equations for obtaining the sum and carry-

out,

, () () ()sum a b cin cout a b b cin a cin         (4.4)

where, a, b, cin, sum and cout refer to the two addends, carry-in, sum of the two addends and

carry-out, respectively. The width of each of these operands is 1 bit. (, ,)   refer to the

logical gates, XOR, AND, OR, respectively.

ADD
n bit

1B
3B

ADD
(n + 1) bit

1

"10 010"

n bit

2'0 '& B

ADD mod
(2 1)n


3 2 1nx X

&cout sumsum

(n +1) bit

Fig. ‎4.5: Proposed component for computing a residue with respect to modulo (2
n
 + 1) channel of the binary

to residue converter

By replacing each bit of the second addend by its corresponding of "100 010" ,

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 44 -

2 2'0 '& "10 010" '1'& "10 010"B B   (4.5)

0 2,0 0

1 2,1 1 2,1

2, 1 2, 1

1

, 0

,

, ; [2, 1]

, 1

i i i i i i

n n n

sum B cout

sum B cout B

sum B cout cout B cout i n

sum cout cout

 



 

 

     

 

 (4.6)

where,
2,iB refers to the i

th
 bit of 2B .

From equations (4.6), it is obvious that the (n + 1) full adders can be replaced by (n – 2)

half adders. However, this simplification does not reduce the delay (due to the second adder

that adds B1 + B3), but the overall hardware complexity decreases.

The proposed forward converter along with pure ROM-based one has been implemented

on Virtex-4 XC4VSX25 FPGA. The proposed design was implemented for different dynamic

range requirements (12 bits, 15 bits, 24 bits and 33 bits). Timing performance of the

proposed design was very impressive. The maximum frequency of this converter was (353.4

MHz, 292.8 MHz, 275.8 MHz and 231.3 MHz) for (n = 4, 5, 8 and 11), respectively.

A ROM-based converter was also implemented on Virtex-4 FPGA. However, due to the

lack of the integrated BRAM count, this converter could only be implemented for two

dynamic ranges (12 bits and 15 bits). The maximum frequency of this design was (383.4 MHz

and 258.1 MHz) for (n = 4 and 5), respectively. However, the unexpected issue that has been

observed is, that timing performance of the combinational converter for dynamic range = 15

bits is better than the ROM-based one by 13.4%.

Therefore, for large dynamic range requirements, ROM-based converters are not efficient

to be implemented (at least on this FPGA device), due to the lack of the integrated BRAM

count. Moreover, using external ROMs is not preferable, since they are considerably slower

than the built-in ones.

Thus, for applications that require small dynamic ranges, e.g. digital image processing,

ROM-based converters are sufficient and are able to provide better performance than

combinational ones. However, for applications that require larger dynamic ranges,

combinational forward converters are preferable to be used.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 45 -

4.3 Proposed residue arithmetic units

The proposed residue arithmetic units including modular adders, modular subtractors and

modular multipliers are introduced in this section. All proposed designs can be used with any

modulo of the form (2
k
 ± 1), hence, they can be used with majority of the moduli sets

mentioned in Section 4.1. The proposed designs that deal with complex operations in the RNS

are stated after the reverse conversion section, since these operations are partially based on

this process. The proposed designs have been published in different international conferences

and journals [77] – [80].

4.3.1 Proposed modular adders

This section contains the proposed structures of modular adders. Three modular adders

were proposed; two of them are specified for modulo (2
n
 + 1), and one for modulo (2

n
 – 1).

Modulo (2
n
) adders, as mentioned before, have the simplest structures. They can be

realized using an n-bit binary adder with ignored carry-out. Therefore, my research is focused

on modulo (2
n
 ± 1) adders.

Modulo (2n – 1) adder

Majority of the published structures of modulo (2
n
 – 1) adder perform addition first, and

then apply the necessary correction, in order to get the correct result that corresponds to this

modulo. The standard structure of this adder depends on two binary adders and a multiplexer.

However, the proposed modular adder employs the prefix adders’ concept in order to pre-

calculate the carry-out needed for the correction process. Hence, this proposed adder uses

only one binary adder and a prefix carry-out computation unit. That is why it is considered

more time/area efficient. This design has been published in an international conference in

Brno [77] and an extended version has been published in ElectroScope journal [78].

Assuming x and y are two modulo (2
n
 – 1) residues of n bits. Their modulo (2

n
 – 1)

addition is defined by,

2 1

2 1 1 2

1 2 1 1 2
n

n n

n n

x y if x y x y
x y

x y if x y x y


        
  

        
 (4.7)

Therefore, if the carry-out of (x + y + 1) is computed in advance, then this carry-out can

be fed into a binary adder in order to compute the correct result.

The prefix carry computation depends on carry generating and propagating signals

denoted as G, P respectively.

() () () , () () () g i x i and y i p i x i xor y i (4.8)

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 46 -

1

(1) () () (1) () (1) (2) ...

() (1) (1) (0)

() (1) (2) (1) (0) 

           

     

       

c i g i p i g i p i p i g i

p i p i p g

p i p i p i p p C

 (4.9)

where, x(i), y(i) is the i
th

 bit of the n-bit residues x, y, respectively. C–1 is the carry-in, c(i) is

the carry from the i
th

 to the (i + 1)
th

 bit, and (+, •) refer to the logical operators: inclusive OR,

AND, respectively.

By using equations (4.8) and (4.9), the carry-out can be calculated as follows,

1 00

1

1 1 1

() () ()




     

   
      

   
  

n

k n i k i n

Cout p i g k p i C (4.10)

where, (Σ, Π) refer to a sequence of logical operators: inclusive OR, AND, respectively. g, p

are carry generate and carry propagate signals, respectively, computed by equation (4.8).

C–1 = 1. The proposed adder’s structure is illustrated in Fig. 4.6. In this figure, thick lines refer

to n-bit buses, while thin lines refer to 1 bit.

As illustrated in Fig. 4.6, this design contains only one binary adder and a carry-out

computation unit, instead of two adders and a multiplexer as stated in [26]. This decreases

time and area consumptions in the FPGA, especially when using a carry propagate adder

(CPA), due to its features when implemented on FPGAs. The FPGA has dedicated carry

ripple logic built-in FPGA [69].

xy
00

xy
11

xy
22

xy
n-1n-1

Carry-out

Computation Unit
1 Cout Cin

Sum

n-bit

x y

CPA

n-bit
x

y
i

i

g p
i i

n-bit

Fig. ‎4.6: Proposed modulo (2
n
 – 1) adder – based on prefix carry-out computation [78]

The proposed adder was compared with an already published design [26], which was

denoted as (f). The choice of this adder (f) has been done based on its superiority over other

adders stated in [26]. Both adders were implemented on Spartan-3 xc3s200 FPGA. According

to the implementation results stated in Tab. 4.4 and Tab. 4.5, the proposed adder has proven

its superiority, with savings up to (14.7%, 14.3%) in time, area consumptions, respectively.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 47 -

Tab. ‎4.4: Comparison between the proposed modulo (2
n
 – 1) adder with its counterpart (f) in [26] in terms of

critical path delay [ns]

n Dynamic range Proposed (f) in [26] Improvements%

4 12 bits (medium DR) 10.5 12.2 13.9%

8 24 bits (large DR) 15.4 17.5 12%

16 48 bits (very large DR) 23.2 27.2 14.7%

Tab. ‎4.5: Comparison between the proposed modulo (2
n
 – 1) adder with its counterpart (f) in [26] in terms of

area consumption [slices]

n Dynamic range Proposed (f) in [26] Savings %

4 12 bits (medium DR) 6 7 14.3%

8 24 bits (large DR) 13 15 13.3%

16 48 bits (very large DR) 29 31 6.5%

Modulo (2n + 1) adder

It is well known, that modulo (2
n
 + 1) channel is the most time consuming among all

other moduli channels, due to the (n + 1)-bit operands and results that this channel deals with.

That is why; the major part of my research on residue arithmetic units was concentrated on

modulo (2
n
 + 1) arithmetic.

Two different architectures of modulo (2
n
 + 1) adder were designed. Both adders use

normal binary representation instead of diminished-one representation that has two main

problems: difficulties in zero representation, and the necessity to converters that convert

from/to diminished-one representation. Therefore, I have focused on acquiring the benefits of

both representations, i.e. how to speed up the computation process and not face the difficulties

in diminished-one representation.

Simple modulo (2
n
 + 1) adder - by using only n-bit circuits

The structure of this adder is an improved version of that published in an international

conference in Brno [79]. The feature of this design is the usage of only n-bit circuits instead

of (n + 1)-bit. In other words, this design uses normal binary representation and at the same

time utilizes just n-bit circuits, thus, it has the benefits of the two representation methods

simultaneously.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 48 -

Assuming x and y are two modulo (2
n
 + 1) residues; ((n + 1)-bit numbers). Modulo (2

n
 +

1) addition of them is defined as,

2 1

2 1

2 1 2 1
n

n

n n

x y if x y
x y

x y if x y


    
  

     
 (4.11)

The structure of this adder encloses an n-bit binary adder, an n-bit binary subtractor and a

multiplexer. The output is obtained by separately processing the first n bits and the MSBs of

the operands. The structure of this adder is illustrated in Fig. 4.7. Again, thick lines refer to n-

bit buses, whereas thin lines refer to 1 bit.

This adder was compared with the second proposed modulo (2
n

+ 1) adder – based on

prefix carry computation. This comparison is stated at the end of the next section.

CPA

(n bit)

1 0()

n bit

nx x





1 0()n

n bit

y y


ny
nx

cout

SUB

(n bit)0

sum1sum1

n bit

n bit

MUX

sum2

sum1

sum2
0

cout



(n+1) bit

(n+1) bit

2 1nx y



(n+1) bit

Fig. ‎4.7: Improved structure of the proposed modulo (2
n
 + 1) adder – that uses n-bit components [79]

Modulo (2
n
 + 1) adder – based on prefix carry computation

Contrary to the previously proposed modulo (2
n
 + 1) adder, this one consists of (n + 1)-

bit circuits. However, it utilizes the concept of prefix carry computation used in parallel prefix

adders in order to speed-up the computation process. This modular adder has been published

in an international conference in Brno [77] and an extended version has been published in

ElectroScope journal [78]. This adder depends on prefix carry computation, in order to

compute the n
th

 bit (MSB) of (x + y – 1).

From equation (4.11),

2 1

2 1 1 2

2 1 2 1 1 2
n

n n

n n n

x y if x y x y
x y

x y if x y x y


        
  

         
 (4.12)

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 49 -

As can be seen in equation (4.12), the structure of the proposed adder depends on the

prefix carry computation, in order to compute the n
th

 bit (MSB; most significant bit) of (x + y

– 1). This bit cannot be computed the same way as in the proposed modulo (2
n
 – 1) adder,

since the operands (inputs) here are represented using (n + 1) bits, therefore the carry-out

from the (n – 1)
th

 bit to the n
th

 bit will not be sufficient. MSB of the sum of (x + y – 1) can be

calculated as follows,

() () (1)    thMSB n bit x n y n c n (4.13)

where, x(n), y(n) represent the n
th

 bit of x, y, respectively.  refers to the logical operator

XOR. c(n – 1) is the carry from the (n – 1)
th

 bit to the n
th

 bit, and can be computed by equation

(4.9).

x

y
i

i

g p
i i

x y

CSA

MSB
Computation Unit

Partial sum Partial carry

1
pc

1
ps

0
pc

0
ps

n
ps

n
pc

CPA

Partial sum Partial carry

Sum

x
i

x
i

y
i

y
i

i
pc

i
ps

(n+1)-bit

(n+1)-bit

(n+1)-bit

(n+1)-bit

(n+1)-bit

(n+1)-bit

CinMSB

(11 1) 1 

Fig. ‎4.8: Proposed modulo (2
n
 + 1) adder - based on the prefix computation [78]

The structure of the proposed adder is illustrated in Fig. 4.8. It consists of a CSA that has

a delay equal to that of a half-adder (HA) instead of a full-adder (FA), a prefix computation

unit of MSB and a CPA. As mentioned before, the CPA was chosen due to its features when

implemented on Spartan-3 FPGA. Hence, the main concept of this adder is based on the

prefix computation of the MSB of (x + y – 1), and then applying the necessary correction.

This correction is represented in applying the correct carry-in into the CPA.

To prove the efficiency of this adder, it was compared with another already published

one, which was published in [26] and denoted as (k). This Modular adder (k) was chosen due

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 50 -

to its superiority over other modular adders stated in [26]. However, this adder produces an

increased-by-one result. Therefore, an additional component has been added, in order to make

it produce the correct sum.

Both adders were implemented on Spartan-3 xc3s200 FPGA. The implementation results

showed savings up to (37.5%, 13.3%) in time, area consumptions, respectively. These

savings, as well as the detailed consumptions for different values of n are illustrated in Tab.

 4.6 and Tab. 4.7.

Tab. ‎4.6: Comparison between the proposed modulo (2
n
 + 1) adder with its counterpart (k) in [26] in terms of

critical path delay [ns]

n Dynamic range Proposed
(k) in [26] Improvements%

x + y + 1 x + y x + y + 1 x + y

4 12 bits (medium DR) 14.4 13.5 15.5 - 7.1%

8 24 bits (large DR) 15.7 24.3 25.1 35.4% 37.5%

16 48 bits (very large DR) 25.8 39.6 40.9 34.9% 36.9%

Tab. ‎4.7: Comparison between the proposed modulo (2
n
 + 1) adder with its counterpart (k) in [26] in terms of

area consumption [slices]

n Dynamic range Proposed
(k) in [26] Savings %

x + y + 1 x + y x + y + 1 x + y

4 12 bits (medium DR) 13 8 15 - 13.3%

8 24 bits (large DR) 24 16 26 - 7.7%

16 48 bits (very large DR) 50 32 51 - 1.2%

Concerning comparing the two proposed modulo (2
n
 + 1) adders; the one that uses n-bit

components [79] with the one based on the prefix computation [78]. The implementation

results showed that [79] is superior in terms of area consumption, whereas [78] is superior in

terms of time consumption (due to the usage of a CSA that has a delay equal to that of a HA,

and the usage of a prefix carry computation). However, both proposed adders have better

performance than that of adder (k) in [26] in terms of time and area consumptions.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 51 -

4.3.2 Proposed modular subtractor

This section introduces the proposed structure of a modulo (2
n
 + 1) subtractor. As

aforementioned in Section 2.3.2, a modulo (2
n
 – 1) subtractor can be simply realized using a

modulo (2
n
 – 1) adder and a few inverters. Therefore, only a modulo (2

n
 + 1) subtractor has

been proposed. It has been published in an international conference in St. Maarten, the

Netherlands Antilles [80]. However, the presented structure is further improved than the one

stated in [80]. This subtractor was intentionally designed to be used in the proposed modulo

(2
n
 + 1) multiplier, which has been published in the same paper [80], as will be described

later.

Assuming x and y are two modulo (2
n
 + 1) residues; ((n + 1)-bit numbers). Modulo (2

n
 +

1) subtraction of them is defined by,

2 1

0

2 1 0
n n

x y if x y
x y

x y if x y

  
  

    
 (4.14)

The structure of the improved modular subtractor consists of an (n + 1)-bit binary

subtractor followed by an (n + 1)-bit binary adder, as shown in Fig. 4.9. The output “Bout”

refers to the borrow-out, that indicates whether the difference is less than zero or not. In case

of a negative result (Bout = 1), modulo (2
n
 + 1) should be added back, in order to correct the

result. This subtractor has been efficiently utilized in the proposed modulo (2
n
 + 1) multiplier.

SUB

(n + 1)
bit

ADD

(n + 1)
bit

x

y

(n + 1) bit

0

(n + 1) bit
(n + 1) bit

2 1nx y




Bout

Fig. ‎4.9: Improved structure of proposed modulo (2
n
 + 1) subtractor

4.3.3 Proposed modular multipliers

The proposed structures of modulo (2
n
 ± 1) multipliers are presented in this section. The

first part contains a comparison between two structures of a modulo (2
n
 – 1) multiplier. Each

of these structures belongs to a different category of modular multipliers, mentioned in

Section 2.3.3. The second part illustrates the proposed modulo (2
n
 + 1) multiplier that uses the

above mentioned modulo (2
n
 + 1) subtractor as a fundamental component.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 52 -

Modulo (2n – 1) multipliers

A modulo (2
n
 – 1) multiplier can be designed according to the following equations,

2 1 1 2 1

2 1 2 1
0 02 1 2 1

2 2 2 2n n

n n

n n n
i i n i n

i i i

i i i n

z x y z z z
  



 
   

       (4.15)

2 12 1

2 nn

nz a b a b


     (4.16)

This means that this modular multiplier consists of an n-bit binary multiplier followed by

a modulo (2
n
 – 1) adder. The structure of this multiplier is illustrated in Fig. 4.10.

 MUL
 (n bit)

x

y

0

1n

z

z 

2 1

n

n

z

z 

ADD mod

(2 1)n

2 1nx y



n bit

Fig. ‎4.10: Proposed modulo (2
n
 – 1) multiplier – based on multiplication-then-reduction approach

This multiplier belongs to the multiplication-then-reduction category mentioned in

Section 2.3.3. However, such a multiplier is quite expensive comparing to the one based on

Property 2.

Property 2: The multiplication of a residue number x by 2
P
 in modulo (2

n
 − 1) is carried out

by P bit circular left shift, where P is a natural number [71].

According to the above property and assuming x and y are two modulo (2
n
 – 1) residues

(n-bit numbers). Their modulo (2
n
 – 1) multiplication can be written as follows,

1

1 0 1 0 1 02 1 2 1
0 2 1

1 0 0 2 0 1 1 0 1 1 1 2 1

() () () (2)

() () ()

n n

n

n

n
P

n n n P

P

n n n n n

x y x x y y x x y

x x y x x x y x x x y



   
 

     

     

      


 (4.17)

Thus, the structure of this multiplier consists of a rotation unit, a Wallace tree adder to

perform multi-operand addition and a modulo (2
n
 – 1) adder. This structure is shown in Fig.

 4.11. Contrary to the previous design, this one belongs to the interleaving multiplication and

reduction category.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 53 -

0x1x1nx 

0y

0Operand

1nx 0x2nx 

1y

1Operand

1x1nx 0x
1ny 

1nOperand 

Wallace tree adder

Rotation
Unit

Adder mod

2 1nx y




n bit

n bit

  

(2 1)n

Fig. ‎4.11: Proposed modulo (2
n
 – 1) multiplier – based on interleaving multiplication and reduction approach

Tab. 4.8 illustrates time and area improvements when using the structure shown in Fig.

 4.11 over the one shown in Fig. 4.10. It is obvious that the second structure shows better

timing performance as the dynamic range increases, whereas, area saving gradually decreases.

Therefore, for systems with very large dynamic ranges (more than 60 bits) and whose main

goal and strategy is “area reduction”, the structure shown in Fig. 4.10 is more effective.

Tab. ‎4.8: Time and area improvements of multiplier’s structure Fig. 4.11 over Fig. 4.10

Dynamic range Time improvements % Area improvements %

12 bits, n = 4 28.1% 10.7%

21 bits, n = 7 30.5% 5.8%

30 bits, n = 10 34% 3.9%

60 bits, n = 20 39.6% 1.9%

Modulo (2n + 1) multiplier

This modulo (2
n

+ 1) multiplier has been published along with the previous modular

subtractor in [80]. Its structure is based on the multiplication-then-reduction approach

mentioned in Section 2.3.3.

Assuming x and y are two modulo (2
n
 + 1) residues; ((n + 1)-bit numbers). Their modulo

(2
n
 + 1) multiplication is defined by,

2 1 2

2 1
0 0 2 1

2 2 2 2
n

n

n n n
i i n i n

i i i

i i i n

z x y z z z





   

       (4.18)

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 54 -

2 12 1

2 nn

nz a b a b


     (4.19)

Equation (4.19) was obtained by splitting the product of x × y into two parts a and b, and

then applying equation (2.5), that converts (+ 2
n

· b) into (– b).

The necessity to a modulo (2
n
 + 1) subtractor is clear in equation (4.19). This step

performs the reduction process according to modulo (2
n
 + 1). The structure of the proposed

multiplier is illustrated in Fig. 4.12.

 MUL

 (n+1)
 bit

x

y

0

1n

z

z 

2

n

n

z

z

SUB
mod

(2 1)n

2 1nx y



(n + 1) bit 0

Fig. ‎4.12: Proposed modulo (2
n
 + 1) multiplier [80]

The proposed multiplier was compared with an already published modulo (2
n
 + 1)

multiplier [70]. This multiplier was realized using modulo-reduced partial products, a modulo

CSA and a modulo CPA. However, the operands and results in this structure are presented

using n bits only, where the value 0 is not used, and the value 2
n
 is presented as “00..0” [70].

Both multipliers were implemented on Spartan-3 FPGA. The implementation results along

with the comparison are illustrated in Tab. 4.9.

Tab. ‎4.9: Comparison between the proposed multiplier and its counterpart in terms of critical path delay [ns]

n Dynamic range Proposed multiplier [80] [70] Improvements %

4 12 bits 18.3 25 26.8%

8 24 bits 27.5 31 11.3%

11 33 bits 34.9 36 3.1%

12 36 bits 36.8 36.2 -

14 42 bits 43.7 40.6 -

The results showed time saving up to 26.8% for medium dynamic range = 12 bits.

However, the proposed design shows better timing performance than its counterpart for

dynamic range up to 33 bits. The reason is that, for DR ≥ 36 bits, the delay of the binary

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 55 -

multiplier considerably increases, hence the overall delay of the whole design does. However,

for systems with dynamic rages less than 36 bits, the proposed modular multiplier is superior

over [70].

4.4 Proposed Reverse converters

This section is dedicated for presenting my work on residue to binary converters. It is

divided into two subsections; the first one presents a comparison between two well-known

algorithms for residue to binary conversion based on the moduli set {2
n
 – 1, 2

n
, 2

n
 +1}. The

comparison is based on FPGA implementation of these two algorithms.

The second part presents a novel algorithm for reverse conversion in the RNS and

proposes an efficient reverse converter based on it. This algorithm is dedicated for the moduli

set {2
n
 – 1, 2

n
, 2

n
 + 1}.

4.4.1 Comparison between the new CRT-I and MRC

This section presents a comparison between two well-known algorithms for residue-to-

binary conversion, namely the new CRT-I and MRC. The comparison is done in order to

highlight the differences between the two algorithms when implemented on FPGA. Both

converters are dedicated for the special moduli set (2
n
 – 1, 2

n
, 2

n
 + 1). The comparison was

carried out in terms of delay and area consumptions on Spartan-3 FPGA. This study has been

published in the Electronics journal [83].

The two proposed structures of the reverse converters use Property 1 and Property 2

mentioned in Section 2.3.2 and Section 4.3.3, respectively. By using these two properties, the

necessity to multiplication during the reverse conversion process was eliminated.

Proposed structure of residue to binary converter based on the new CRT-I

The new CRT-I is a parallel algorithm, but it requires a special modular adder (a rather

large one), in order to compute the equivalent binary number. The following equations

illustrate how the multiplication was eliminated and converted into addition. The moduli set

that has been used for this converter is ordered as follows,

1 2 32 , 2 1 , 2 1    n n nm m m (4.20)

Based on equations (2.13) and (2.14) in Section 2.2.2, the multiplicative inverses k1, k2

are computed as follows,

21 12 1
2 1 2

n

n nk k


    (4.21)

1

2 22 1
2 (2 1) 1 2

n

n n nk k 


      (4.22)

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 56 -

CSA-EAC
2n bit

CBA

CSA-EAC
2n bit

D

ADD
 mod 2(2 1)n

2 1 0(, ,)nE E E

2

1 0 2 1 1 1, 1 1,0(, , , , , ,) & (, ,)

n bit n bit

n n n n nE E E E E x x   

X

3n bit

Fig. ‎4.13: Proposed structure of reverse converter - based on the new CRT-I [83]

By substituting equations (4.20), (4.21) and (4.22) into the main CRT-I equation (2.12),

the equivalent binary number X is computed as follows,

2

1

1 2 1 3 3 2

2 1

2 2 (2 2 2)

n

n n n n

C B DA

X x x x x x x



       (4.23)

By splitting equation (4.23) and according to Property 1 and Property 2,

3 3 3 32 &

 

  n

n bit n bit

A x x x x (4.24)

2 2

2

1 1 12 1 2 1
1

2 1

2 0...0& &0 1...1& &1n n

nn bit n bit

B x x x
 

  

    (4.25)

2

1 1

0...0&
 


n bit n bit

C x (4.26)

2 21 0 2 12 1 2 1
2 ,..., , ,...,

n n

n

n n nD C C C C C  
    (4.27)

   E A B C D (4.28)

By substituting equation (4.28) in (4.23),

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 57 -

2

1

1 2 1
2 2

n

n nX x E


    (4.29)

Again, according to Property 2,

2

1

1 0 2 1 12 1

2

2 , ,..., , ,...,
n

n

n n n n

n bit

Z E E E E E E

  
   (4.30)

3

1

2

&

n bit

n bi n bit

X Z x (4.31)

According to the above equations, the reverse converter based on new CRT-I requires

two (2n-bit) CSA-EACs and a modulo (2
2n

 – 1) adder. This modular adder has the same

structure as that of the modulo (2
n
 – 1) adder, but it uses 2n-bit circuits instead of n-bit.

Utilizing CSAs results in better timing performance of the design. The structure of this

converter is illustrated in Fig. 4.13.

Proposed structure of residue to binary converter based on the MRC

This section illustrates the second reverse converter based on the MRC algorithm. This

method does not require any special large modular adders, as in the previous converter. The

same modular adders, which are used in the arithmetic unit, are utilized in this converter.

The below equations are extracted from the MRC main equation, stated in Section 2.2.2.

The utilized moduli set for this converter is ordered as follows,

 1 2 32 1, 2 , 2 1    n n nm m m (4.32)

The order of the moduli within the set is important, since a proper order of the moduli can

considerably simplify the multiplicative inverses needed for the reverse conversion process.

These multiplicative inverses are computed as follows,

2

1 1

1 2
(2 1) 1

n

n

m
m     (4.33)

1

3

1 1

1
2 1

(2 1) 2
n

n n

m
m

 


   (4.34)

3

1 1

2 2 1
(2) 1

n

n

m
m  


  (4.35)

The above three equations proved the fact that, a proper ordering of the moduli results in

an essential simplification of the multiplicative inverses. Two of the three multiplicative

inverses are equal to 1.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 58 -

2x

ADD
 mod (2 1)n

1x

SUB
n bit

1x3x

ADD
 mod (2 1)n

0 1 2 1(, , ,...,)n nk k k k 
2v

1 0(,...,)nk k

2 2&v v 1x

ADD
2n bit

ADD
3n bit

3 3& & 0 0
n bit

v v3v

2v

X

Fig. ‎4.14: Proposed structure of reverse converter - based on the MRC [83]

By substituting equations (4.33), (4.34) and (4.35) into (2.10), (2.11), and by utilizing

Property 1,

 2 2 1 2 12 2
() 1 n nv x x x x     (4.36)

 1

3 3 1 2
2 1

() 2
n

nv x x v


    (4.37)

Hence,

21

3 2 12 (2 1) (2 1)       n n n

tt

X v v v (4.38)

 1 2 1X t t v   (4.39)

 1 3 3 3 32 (2) & &0..0


    n n

n bit

t v v v v (4.40)

 2 2 2 2 22 0..0& &


   n

n bit

t v v v v (4.41)

 1 2 1 1 2 1     X t t v t t x (4.42)

As inferred from the above equations, the multipliers were eliminated and replaced by

concatenations. The structure of this converter is illustrated in Fig. 4.14.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 59 -

Comparison between the new CRT-I and MRC converters - based on FPGA
implementation

The two converters were implemented on Spartan-3 xc3s200 FPGA. The implementation

results have proven the theoretical considerations, that the new CRT-I is a parallel algorithm,

but has more area consumption due to the usage of two 2n-bit CSAs and a large modular

adder (modulo (2
2n

 – 1) adder). Although the MRC is a sequential algorithm, it does not

require any special large modular adders, which results in less area consumption but longer

delay.

Time and area consumptions, for various dynamic range requirements, are stated in Tab.

 4.10 and Tab. 4.11 for the new CRT-I and MRC-based converters, respectively.

Tab. ‎4.10: Comparison between the new CRT-I and MRC-based converters in terms of pad-to-pad delay [ns]

Dynamic range 12 bits 24 bits 48 bits 60 bits

Based on the new CRT-I 6.9 7.1 9.7 9.1

Based on the MRC 11.5 13.2 16.8 17.1

Time improvements % (new CRT-I has shorter
delay than MRC by)

40% 46.2% 42.3% 46.8%

Tab. ‎4.11: Comparison between the new CRT-I and MRC-based converters in terms of area consumption

[slices]

Dynamic range 12 bits 24 bits 48 bits 60 bits

Based on the new CRT-I 67 129 253 315

Based on the MRC 30 56 108 134

Area improvements % (MRC has less hardware
complexity than new CRT-I by)

55.2% 56.6% 57.3% 57.5%

Both converters were designed based on pure combinational structures, thus, timing

performance is illustrated using pad-to-pad delay. Tab. 4.10 shows that the new CRT-I has

shorter pad-to-pad delays than those of the MRC. The difference between the two algorithms

gradually increases as the dynamic range increases. Time saving percentage of the new CRT-I

over the MRC has a maximum value for the very large dynamic range (60 bits).

In a similar manner, Tab. 4.11 shows that the MRC has considerably less hardware

complexity than that of the new CRT-I. The difference between hardware complexity of the

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 60 -

new CRT-I and MRC gradually increases as the dynamic range increases. This difference

achieves its greatest value (57.5 %) for the very large dynamic range (60 bits).

Based on these percentages shown in Tab. 4.10 and Tab. 4.11, we conclude that the MRC

is preferred over the new CRT-I for designs with balanced and minimum-area strategies.

Whereas, new CRT-I should be used for designs that have critical timing requirements.

4.4.2 Proposed algorithm for residue to binary conversion

In this section, a novel algorithm for reverse conversion based on the moduli set {2
n
 – 1,

2
n
, 2

n
 + 1} is presented. The majority of papers regarding reverse converters are principally

based on one of the widespread algorithms; the MRC, the CRT or the new CRTs. The

proposed algorithm is simpler and does not require multiplicative inverses neither

multiplication. A paper, which presents the proposed algorithm, a reverse converter and a

residue comparator based on it, is still under review in IEICE Electronics Express journal.

Proposed algorithm for reverse conversion

This section presents the proposed algorithm for performing residue to binary conversion.

This algorithm does not need any multiplicative inverses neither multiplication processes.

These calculations always have been the main obstacles in the reverse conversion methods.

The proposed algorithm is based on the fact that, the numbers within the dynamic range [0, M

– 1] can be divided into (2
2n

 – 1) groups.

Suppose, x1, x2 and x3 are the residues of the binary number X corresponding to the

moduli set {2
n
 – 1, 2

n
, 2

n
 + 1}. According to Tab. 4.12, the numbers within the dynamic range

[0, M – 1] are divided into (2
2n

 – 1) groups.

Tab. ‎4.12: The Groups within the dynamic range M of the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1}

X 1 2 1nx 2 2nx 3 2 1nx

0

2 1n 

 2 2 1
0 nx


 2 2nx 2 2 1

0 nx




2

(2 2) 1

n

n 

 2 2 1
1 nx


 2 2nx 2 2 1

1 nx




Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 61 -

(2 2)

(3 2) 1

n

n



 

 2 2 1
2 nx


 2 2nx 2 2 1

2 nx




2

2

(2 2) 2

((2 1) 2) 1

n n

n n

 

  

2

2 2 1
(2 2)

n

nx


 
2 2nx

2

2 2 1
(2 2)

n

nx


 

It is obvious, that residues x1, x3 corresponding to moduli (2
n
 – 1), (2

n
 + 1), respectively,

can be directly computed using x2 and the group that the binary number X belongs to.

According to Tab. 4.12, x1 and x3 can be computed as follows,

2

1 2 2 1
; [0,2 2]n

nx x G G


    (4.43)

2

3 2 2 1
; [0,2 2]n

nx x G G


    (4.44)

where, G is the group number that the binary number X belongs to.

Afterwards, G will be used in order to acquire the binary number X from its residues x1,

x2 and x3. From equations (4.43), (4.44) and congruence properties,

1 22 1 2 1n ng x x
 
  (4.45)

2 32 1 2 1n ng x x
 
  (4.46)

where,  
2 1 2 1

,n ng g
 

 are the residues of G corresponding to moduli (2
n
 – 1, 2

n
 + 1),

respectively.

Since moduli in equations (4.45) and (4.46) are different, the obtained results

 
2 1 2 1

,n ng g
 

 might be different, too. Therefore, the following step should be repeated in

order to acquire the correct group number.

1 22 1 2 1
(2 1) (2 1)n n

n ng k g k
 
     (4.47)

where, 1 2, 0,1,k k  .

The binary number X can be now easily computed using the group number G and x2,

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 62 -

22nX G x   (4.48)

Example: Consider n = 3, thus, the moduli set is {7, 8, 9}. The dynamic range of this

system is [0, 503]. The number of groups whining this dynamic range is 63, which is [0, 62].

Consider the following RNS number should be converted into its binary equivalent (x1,

x2, x3) = (0, 1, 2).

According to equations (4.45) and (4.46),

1 22 1 2 1 7
0 1 6n ng x x

 
    

2 32 1 2 1 9
1 2 8n ng x x

 
    

Since  
2 1 2 1

,n ng g
 

 are different, equation (4.47) should be repeated until we obtain

the correct G.

1 28, 6 62k k G   

Hence, the binary equivalent of (0, 1, 2) is,

62 8 1 497X    

Proposed residue to binary converter based on the proposed algorithm

Generally, the structure of this converter is rather simple; it consists of two parallel

modular subtractors followed by a binary (n + 1)-bit subtractor, a 2n-bit binary adder and a

read only memory (ROM). The proposed structure is illustrated in Fig. 4.15.

The step that computes G should be repeated many times in order to acquire the correct

values of k1 and k2, thus obtaining the correct G. In order to get rid of this recurrence step that

may consume much time, a ROM was used. This ROM contains the correct value of k2,

according to the values of  
2 1 2 1

,n ng g
 

. The values range of
2 1ng


and
2 1ng


 are [0, 2
n

– 2] and [0, 2
n
], respectively. Thus, the values range of  

2 1 2 1n ng g
 
 is [–2

n
, 2

n
 – 2],

which can be represented using (n + 1) bits. The width of k2 is n bits. Thus, the ROM size is

(2
n+1

 × n) bits.

According to equations (4.47) and (4.48),

2 2 22 1 2 1
(2 1) &n n

nG g k g k k
 

     (4.49)

2 22 &nX G x G x    (4.50)

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 63 -

According to Property 1 stated in Section 2.3.2, a modulo (2
n
 – 1) subtractor can be easily

implemented using a modulo (2
n
 – 1) adder and n invertors. On the other hand, the structure

of the modulo (2
n
 + 1) subtractor is the same illustrated in Fig. 4.9. It consists of an (n + 1)-bit

subtractor followed by an (n + 1)-bit adder.

SUB
 mod

2x

(2 1)n

3x1x

SUB
 mod (2 1)n

2x

SUB

(n + 1) bit

ROM
 1(2)n n

2k

ADD

2n bit

2 1ng
 2 2&k k

2&G X G x 

2 1ng
2 1ng



Fig. ‎4.15: The structure of the reverse converter based on the proposed algorithm [86]

The proposed reverse converter was implemented on Virtex-4 XC4VSX25 FPGA. The

ROM containing k2 values was designed as a single port ROM using Xilinx core generator

v.13.4. The proposed design was implemented for different dynamic range requirements, 12

bits, 15 bits (medium dynamic range), 24 bits and 33 bits (large dynamic range), 45 bits and

48 bits (very large dynamic range). The proposed design could not be implemented for

dynamic ranges greater than 48 bits, due to the BRAM limitation built-in Virtex-4

XC4VSX25, where the maximum RAM size is 2304 Kb.

A comparison between the proposed reverse converter and another one based on the new

CRT-I [4] has been carried out. The implementation results are illustrated in Tab. 4.13. The

superiority of the proposed reverse converter timing performance is clear. It can operate at

higher frequencies up to 78.5% than the one based on the new CRT-I [4]. Concerning the area

consumption, the savings are not very impressive. The total number of the 4-input look-up

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 64 -

tables (4-LUTs) used in the proposed converter is less for the dynamic ranges up to 33 bits.

However, this number considerably increases for the very large dynamic ranges. Furthermore,

the proposed design uses a number of BRAMS of 18 Kb. Nevertheless, the speed gain makes

the proposed converter very attractive for further enhancements and improvements.

The speed gain of the proposed reverse converter is about 23.4% for medium dynamic

ranges. Then, it extensively increases to 78.5% for DR = 24 bits. This gain afterwards begins

to gradually decrease until it reaches a break point (DR = 45 bits), where the speed gain

becomes 0.2%. For DR = 48 bits, timing performance of the proposed reverse converter

becomes worse than the new CRT-I based one [4]. However, according to my researches

stated in [75] and [76], the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1} is not efficient to be used in

applications that require very large dynamic ranges.

Tab. ‎4.13: Comparison between reverse converters for different dynamic range requirements

Dynamic range

New CRT-I [4] Proposed converter
Time

improving

%
Max. freq.

[MHz]
4-LUTs

BRAMs

[18 Kb]

Max. freq.

[MHz]
 4-LUTs

BRAMs

[18 Kb]

n = 4, DR = 12 bits

(medium DR)
241.6 54 - 296.1 47 1 22.6%

n = 5, DR = 15 bits

(medium DR)
232.7 74 - 288.8 50 1 24.1%

n = 8, DR = 24 bits

(large DR)
156.8 86 - 279.9 78 1 78.5%

n = 11, DR = 33

bits (large DR)
148.9 118 - 257.3 105 3 72.8%

n = 15, DR = 45

bits (very large DR)
136.3 132 - 136.5 322 56 0.2%

n = 16, DR = 48

bits (very large DR)
118.2 173 - 107.3 530 120 -

Moreover, the proposed reverse converter has been also compared with pure ROM-based

reverse converter. Since the least n bits of the binary X is obtained by appending 2 2nx to the

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 65 -

2n-bit operand, the size of this ROM-based reverse converter can be reduced from (2
3n+1

 × 3n)

bits to (2
3n+1

 × 2n) bits.

In a similar manner, this reverse converter has been implemented on Virtex-4

XC4VSX25 FPGA. This converter could only be implemented for DR = 12 bits and 15 bits,

due to the limitations of BRAMs built-in this device. Therefore, it is obvious that the

application fields of this type of reverse converters are very limited. The implementation

results and comparison between the proposed reverse converter and pure R0M-based one are

illustrated in Tab. 4.14.

Tab. ‎4.14: Comparison between proposed reverse converter and pure-ROM based one

Dynamic range

Pure ROM-based converter Proposed converter

Time

improving

%
Max. freq.

[MHz]
4-LUTs

BRAMs

[18 Kb]

Max.

freq.

[MHz]

 4-LUTs
BRAMs

[18 Kb]

n = 4, DR = 12

bits (medium DR)
401.3 - 6 296.1 47 1 -

n = 5, DR = 15

bits (medium DR)
189.4 - 36 288.8 50 1 52.5%

n = 8, DR = 24

bits (large DR)

could not be

implemented
- - 279.9 78 1 -

For DR = 12 bits, the maximum frequency is 401.3 MHz. It is obvious that this converter

is abundantly faster than the proposed one. However, DR = 15 bits, the maximum frequency

of this converter considerably decreases (the proposed converter becomes faster by 52.5%).

Hence, the above discussion leads to the fact that the proposed reverse converter is more

efficient than both pure ROM-based and pure combinatorial ones. The main drawback of pure

ROM-based converters is their size, whereas pure combinatorial converters suffer from poor

timing performance comparing to the proposed one. However, for very large dynamic ranges

(larger than 48 bits), these converters are more efficient.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 66 -

4.5 Proposed residue comparator

The proposed algorithm for reverse conversion has been also used to compare residue

numbers in their RNS representation. According to equation (4.50), in order to compare two

RNS numbers (x1, x2, x3), (y1, y2, y3), the following values should be compared, (Gx and Gy)

and (x2 and y2). This comparison is done using binary comparators of 2n bits and n bits.

However, since G is the sum of k2&k2 and
2 1ng


 , the 2n-bit binary comparator is split

into two parallel binary comparators of n bits and (n + 1) bits. The proposed structure of the

residue comparator based on the proposed algorithm is shown in Fig. 4.16.

It is obvious that, the proposed residue comparator has the same structure as that of the

proposed reverse converter except the 2n-bit adder that computes G.

For the sake of fair comparison, a part of the internal structure of the residue comparator

(the binary comparators, multiplexers and a 3-to-1 AND gate) was designed in a same manner

as the one in [47].

Comparator

n bit

Comparator

(n +1) bit

Comparator

n bit

2,Xk

2,Yk

2 1nXg


2 1nYg


2x

2y

2E

1E

3E

1C

2C

3C

MUX

MUX

2E

1E

C

1E
2E

3E
E

Fig. ‎4.16: The structure of the residue comparator based on the proposed algorithm [86]

The proposed residue comparator was implemented on Virtex-4 XC4VSX25 FPGA for

different dynamic range requirements, 12 bits (medium dynamic range), 24 bits, 33 bits and

39 bits (large dynamic ranges) and 48 bits (very large dynamic range). Similarly to the reverse

converter proposed in Section 4.4.2, the proposed comparator could not be implemented for

dynamic ranges greater than 48 bits, due to the BRAM limitation built-in Virtex-4

XC4VSX25, where the maximum RAM size is 2304 Kb.

The structure of the proposed comparator is very similar to the one of the proposed

reverse converter shown in Fig. 4.15. The only differences are the ROMs and the final 2n-bit

adder. The ROMs, containing k2 of the comparable numbers X and Y, were designed as dual

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 67 -

port ROMs and the final 2n-bit adder was omitted. Tab. 4.15 shows the implementation

results of the proposed residue comparator and its counterparts [4], [47] for different dynamic

range requirements.

According to Tab. 4.15, the residue comparator [47] can operate at higher frequencies

than the one based on the reverse converter [4]. However, [4] utilizes less LUTs than [47].

Thus, comparator [47] can be considered as more time efficient, whereas, the one based on [4]

can be considered as more area efficient.

Since the proposed comparator has a very similar structure to the one of the proposed

converter and since this converter has been already compared with [4] in the previous section,

thus, timing improving percentages of the proposed design have been computed in association

with [47] only. The speed gain of the proposed comparator is about 9% for DR = 12 bits.

Then, it extensively increases to 42.4% for DR = 33 bits. This gain afterwards begins to

gradually decrease until it reaches a break point (DR = 39 bits), where the speed gain

becomes 0.2%. From DR = 42 bits and larger, timing performance of the proposed reverse

converter becomes worse than that of [47]. Hence, the proposed comparator is efficient for

dynamic ranges up to 39 bits, whereas the proposed reverse converter based on the same

algorithm is efficient for dynamic ranges up to 45 bits.

As stated in the previous section, the implementation results show that the proposed

comparator is not suitable to be used in RNSs that provide very large dynamic ranges. Again,

we can overlook this fact since the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1} is not efficient to be used in

applications that require very large dynamic ranges [75], [76].

Tab. ‎4.15: Comparison between different residue comparators for different dynamic range requirements

Dynamic range

New CRT-I based

comparator [4]
 [47] Proposed comparator Time

improving %

proposed vs.

 [47]
Max. freq.

[MHz]
4-LUTs

Max. freq.

[MHz]
4-LUTs

Max. freq.

[MHz]
4-LUTs

BRAMs

[18 Kb]

n = 4, DR = 12 bit 226.2 132 269.8 137 294.1 107 1 9%

n = 8, DR = 24 bit 160.4 222 184.9 232 259.5 178 1 40.4%

n = 11, DR = 33 bit 141.8 304 166.4 339 236.9 238 3 42.4%

n = 13, DR = 39 bit 126.2 308 159.8 337 160.1 366 12 0.2%

n = 16, DR = 48 bit 128.9 443 137.1 446 98.8 1114 120 -

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 68 -

4.6 Proposed designs for overflow and sign detection and correction in both
signed and unsigned RNS systems

This section presents two universal efficient approaches for overflow and sign detection

and correction after adding of two numbers in unsigned and signed RNS. Both methods are

designed to be used in systems based on the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1} that provides an

even dynamic range. The importance of overflow detection in such systems has been already

described in Section 2.3.4.

Moreover, by applying a tiny modification, these designs can be used in any system that

has (2
n
) as one of its moduli (i.e. has an even dynamic range). The proposed methods depend

on a simple structure that provides fast and accurate detection and correction of the sign and

overflow. The proposed designs are published in international conferences in Brno [81] and

Seville, Spain [82].

4.6.1 Proposed component for overflow detection and correction in unsigned
RNS

As aforementioned in Section 2.3.4, the general way to detect overflow is via comparing

the sum with one of the addends, i.e. If X ≥ 0 and Y < M then (X + Y) mod M causes overflow

if and only if the sum is less than X.

The proposed method also depends on comparison; however, it compares each of the

addends with half of the RNS dynamic range (M/2).

To detect overflow during the addition of two addends X and Y in unsigned RNS based

on the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1}, a single bit, that indicates to which half of the dynamic

range M that addend belongs, is used. Based on this bit, the following three cases should be

considered.

 The overflow will definitely occur if both of the addends are equal or greater than

the half of dynamic range M/2.

 No overflow will definitely occur if both of the addends are less than M/2.

 If just one of the addends is equal to or greater than M/2, then the overflow

prediction becomes complex and requires further processing and evaluation of the

sum Z.

The magnitude evaluation of the addends (X and Y) is represented by a single bit

(evlt_bit).

0 ; / 2

_
1 ; / 2

X

X M
evlt bit

X M


 


 (4.51)

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 69 -

The processing of evlt_bit of the two addends results in the three following cases,

0 ; _ _ 0

1 ; _ _ 1

' ' ; _ _ 1

X Y

X Y

X Y

evlt bit evlt bit

overflow evlt bit evlt bit

u evlt bit evlt bit

 


 
  

 (4.52)

where, ‘u’ indicates the undetermined case of overflow occurrence and (, ,)  refer to the

logical gates (OR, AND, XOR), respectively.

In order to solve the undetermined case ‘u’, evlt_bit of the binary sum Z should be

calculated by equation (4.51). Then the overflow can be indeed detected,

0 ; ' ' & _ 1

1 ; ' ' & _ 0

Z

Z

u evlt bit
overflow

u evlt bit


 


 (4.53)

Fig. 4.17 shows the structure of the proposed design that detects the overflow in unsigned

RNS based on {2
n
 – 1, 2

n
, 2

n
 + 1}. The magnitude evaluation of the addends and their sum,

based on equation (4.51), is realized by a 2n-input AND gate and a 2-input OR gate. The

magnitude evaluation unit is shown in Fig. 4.17 (a).

The overflow detection unit, based on equations (4.52) and (4.53), is realized by a 2:1

multiplexer and a XOR gate. This unit is shown in Fig. 4.17 (b)

The last component of the proposed design is the overflow correction unit, which is

shown in Fig. 4.17 (c). This unit adds back M to the sum Z in order to correct the overflow

and obtain the final accurate result. The adder that performs the final addition can be of any

type, according to the design’s goal and strategy.

Example: Consider n = 3, thus the moduli set {7, 8, 9}, M = 504. In case of unsigned

RNS, the dynamic range of representable numbers is [0, 503]. The two numbers to be added

are X = 210, Y = 360.

The outputs of magnitude evaluation units of the addends are _ 0,Xevlt bit 

_ 1Yevlt bit  .

X = 210 = (0, 2, 3), Y = 360 = (3, 0, 0).

The output of RAUs is (3, 2, 3). After residue to binary conversion Z = 66.

The output of magnitude evaluation unit of the sum Z is _ 0Zevlt bit  .

The output of overflow detection unit is, overflow = 1.

Thus, overflow has been detected and further corrected as illustrated in Fig. 4.17.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 70 -

()

Magnitude
Evaluation

MUX

sel

0

1
Overflow

evlt_bit
X

evlt_bit

+
0

n – 1
0

n

3n – 1

Operand

Z

Correct
resultevlt_bit

Z

operand(n – 1)

MSB = (3n – 1)

Magnitude
Evaluation
(evlt_bit)

(b) The overflow detection unit (c) The overflow correction unit

(a) The magnitude evaluation unit

(3n – 2)

evlt_bit
Y

evlt_bit
X

3n

3n

3n + 1

Fig. ‎4.17: The internal structure of the proposed overflow detection & correction component for unsigned

numbers [82]

(a) Magnitude evaluation unit. (b) Overflow detection unit. (c) Overflow correction unit

4.6.2 Proposed component for overflow and sign detection and correction in
signed RNS

In a similar manner, to detect overflow and sign in the addition of two addends X and Y in

signed RNS based on the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1}, a single bit (evlt_bit), that indicates

to which half of the dynamic range M that addend belongs, is used.

As mentioned previously, in signed RNS, the positive numbers fall in the first half of the

dynamic range, whereas, the negative ones fall in the second half. Thus, we have the

following two cases that should be considered.

 No overflow will definitely occur if each of the addends has a different sign (fall

in a different interval of M).

 Overflow may or may not occur if both addends have the same sign.

Consequently, further processing should be done.

The sign evaluation of the addends is also represented by a single bit evlt_bit that is

calculated by (4.51).

The processing of evlt_bit of the two addends results in the two following cases,

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 71 -

0 ; _ _ 1

' ' ; _ _ 0

X Y

X Y

evlt bit evlt bit
overflow

u evlt bit evlt bit

 
 

 
 (4.54)

where, ‘u’ indicates the undetermined case of overflow occurrence and  refers to the

logical gate XOR.

In order to solve the undetermined case ‘u’, evlt_bit, that determines the sign of the

binary sum Z should be calculated by (4.51). Then the overflow can be indeed detected,

0 ; ' ' & _ _

1 ; ' ' & _ _

Z X

Z X

u evlt bit evlt bit
overflow

u evlt bit evlt bit


 


 (4.55)

where, _ Xevlt bit refers to the logical negation of _ Xevlt bit .

Fig. 4.18 shows the structure of the proposed design that detects the sign and overflow in

signed RNS based on {2
n
 – 1, 2

n
, 2

n
 + 1}.

The sign evaluation of the addends and their sum, based on equation (4.51), is realized by

an identical structure to that of the magnitude evaluation unit of the proposed design for

unsigned RNS. It is shown in Fig. 4.18 (a).

The overflow detection unit, based on equations (4.54) and (4.55), is realized by a similar

structure to that shown in Fig. 4.17 (b). It consists of a 2:1 multiplexer and two XOR gates.

This unit is shown in Fig. 4.18 (b).

The overflow correction unit has an identical structure to that of the unsigned RNS. It is

shown in Fig. 4.18 (c). Similarly, the adder that performs the final addition can be of any type.

Example: Consider n = 3, thus the moduli set {7, 8, 9}, M = 504. In case of signed RNS,

the dynamic range of representable numbers is [-252, 251]. The two numbers to be added are

X = -150, Y = -240.

Since the calculations within the RNS are based on unsigned arithmetic,

X = 504 – 150 = 354, Y = 504 – 240 = 264.

It is clear that both addends belong to the second half of the dynamic range as stated in

equation (1.5).

The outputs of sign evaluation units of the addends are _ 1, _ 1X Yevlt bit evlt bit  .

X = 354 = (4, 2, 3), Y = 264 = (5, 0, 3).

The output of RAUs is (2, 2, 6). After residue to binary conversion Z = 114.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 72 -

The output of the sign evaluation unit of the sum Z is _ 0Zevlt bit  .

_ _ 0 _ _ 1X Y X Zevlt bit evlt bit overflow evlt bit evlt bit      . Thus, the output of

overflow detection unit is, overflow = 1.

Thus, overflow has been detected and further corrected as illustrated in Fig. 4.18.

 Fig. ‎4.18: The internal structure of the sign and overflow detection & correction component for signed

numbers [82]

 (a) Sign evaluation unit. (b) Overflow detection unit. (c) Overflow correction unit

4.6.3 Evaluating the proposed overflow and sign detection and correction
designs

Since overflow and sign detection can be considered as a special case of comparison, the

proposed designs were compared with other two. The first one represents the general

approach for overflow detection, which consists of a binary comparator based on the residue-

to-binary converter presented in [4]. Whereas, the second one is an efficient residue

comparator for general moduli set introduced in [47].

Since the authors of the counterparts designs have presented the delay and area

consumption of their designs using the unit gate model, and for the sake of fair comparison, I

have estimated the delay and area consumption of my designs by using it. Tab. 4.16 illustrates

the delay and complexity of the proposed designs and the analogous ones.

Sign
 Evaluation

evlt_bit

Sign Evaluation
(evlt_bit)

(a) The sign evaluation unit

Operand

3n
operand(n – 1)

MSB = (3n – 1)

(3n – 2)

()

MUX

sel

0

1
Overflow

evlt_bit
X

+
0

n – 1
0

n

3n – 1

Z

Correct
result0

(b) The overflow detection unit (c) The overflow correction unit

evlt_bit
Y

evlt_bit
X

3n

3n + 1

evlt_bit
Z

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 73 -

The structures of the proposed designs are very similar; the only difference is the

additional XOR gate in the overflow detection unit for signed RNS. Both designs enclose the

following components, the residue-to-binary converter proposed in [4], the operand

evaluation units of the addends and their sum and the overflow detection unit. However, the

evaluation of the addends is performed in parallel with the binary-to-residue conversion.

Thus, no extra delay of these two units is presented. evlt_bit of the addends are stored in two

cells of RAM, each of them has a size of 1 bit. The correction unit was not included in the

comparison. Thus, the critical path is composed of the residue-to-binary converter, the

operand evaluation unit of the sum and the overflow detection unit.

The first analogous design is a binary comparator based on the reverse converter

proposed in [4]. This method uses two binary comparators with a 2:1 multiplexer. The sizes

of the binary comparators are 2n bits and n bits. Thus, the critical path in this design is

composed of the residue-to-binary converter, the 2n-bit comparator and the 2:1 multiplexer.

The second analogous design presented in [47] uses a special component for generating

two numbers (Ax and Bx) which are further used in the comparison. Moreover, this method

uses three binary comparators and two 2:1 multiplexers. The sizes if these comparators are n

bits, n bits and (n + 1) bits. Thus, the critical path of this circuit is composed of Ax and Bx

generator, the (n + 1)-bit binary comparator and the two 2:1 multiplexers.

Tab. ‎4.16: Performance comparison between the proposed designs and the analogous ones

Design Delay Area consumption

Residue comparator based on [4] 20n + 10 48n + 3

 [47] 18n + 14 40n + 8

Proposed-unsigned 16n + log n + 13 37n + 18

Proposed-signed 16n + log n + 15 37n + 20

According to Tab. 4.16, both proposed designs have less delay and complexity without

compromising on accuracy. Generally, this lower area requirements leads to lower power

consumption.

In case of overflow occurrence, M is added back to the binary sum, in order to correct the

sum (Z) and get the final accurate result. The adder that performs this addition can be of any

type, based on the design’s goal and strategy. Moreover, the size of this adder is 2n bits

instead of 3n bit, since the first n bits of M for the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1} are ‘0’.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 74 -

2

2

'0 ' "00 000 0"

'1' "11 110 0"

nn

nn

overflow final result Z

overflow final result Z

   

   
 (4.56)

Both proposed designs can be used with any RNS that uses any moduli set, which has

(2
n
) as one of its moduli, i.e. has an even dynamic range. This can be simply performed by

applying a tiny modification on the evaluation units, represented in changing the input

number of the AND gate, according to the dynamic range provided by the used moduli set.

Moreover, in case of changing the number and the order of the AND gate’s inputs, these two

designs can be used with any other moduli set, even if it provides an odd dynamic range.

However, for such systems, the parity checking technique will be faster and simpler than the

proposed one.

4.7 Proposed RNS-based application

An RNS-based image processing application is presented in this section. This application

applies a number of filters in spatial domain, such as sharpen, edge detection and enhancing

on a gray-scale image. All the processing is done using the RNS instead of the binary number

system (BNS). The proposed application proves that using the RNS results in faster and

power-reduced image filtering applications. Moreover, the negative effects of using improper

moduli sets in an RNS based image-processing applications are highlighted. This work has

been published in Gdynia, Poland [84]. An extended version of this work is under review to

be published in ElectroScope journal [85].

4.7.1 The proposed RNS-based image processing application

For performing filtering in spatial domain, a mask should be moved on the image

according to the following equation [72],

(,) (,) (,)
a b

k a l b

y i j h k l x i k j l
 

    (4.57)

where, x and y are the input and output images, respectively. h is the mask that is going to be

applied on the image. a and b are positive integers.

Theoretically, any spatial filter can be used based on the RNS, since the concept of its

application is the same.

During my research, I have implemented the following filters,

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 75 -

 Sharpening filter:

0 1 0

1 5 1

0 1 0

 
 
 
 
  

 Edge enhancement filters:

0 0 0

1 1 0

0 0 0

 
 

 
  

 ,

0 1 0

0 1 0

0 0 0

 
 
 
  

 and

1 0 0

0 1 0

0 0 0

 
 
 
  

, for

horizontal, vertical and diagonal edge enhancement, respectively.

 Edge detection filters:

0 1 0

1 4 1

0 1 0

 
 


 
  

and

1 2 1

2 4 2

1 2 1

 
 
 
 
  

During this research, using ROM-based converters from binary to RNS and vice versa

turned out to be the most efficient method for this application and its dynamic range. The

proposed design is divided into three stages; the first one includes a ROM-based forward

converter that converts the input pixels form binary to RNS. In the second stage, three parallel

residue arithmetic units, corresponding to the three moduli, perform filtering operations

(multiplying by the filter’s coefficients and adding). The third stage converts the output

residues of the three RAUs into their binary equivalent using ROM-based reverse converter.

Modulo

16

RAU

Modulo

15

RAU

Modulo

7

RAU

ROM

(Binary-to-Residue Conversion)

Original image

Filtered image

ROM

(Residue-to-Binary Conversion)

Fig. ‎4.19: The structure of the proposed RNS-based image-processing application [84]

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 76 -

According to [75], the most efficient moduli set for applications that require medium

dynamic ranges (less than 22 bits) is {2
n – 1

 – 1, 2
n
 – 1, 2

n
}. We chose n = 4, so the used

moduli set during our work is {7, 15, 16}. Its dynamic range = 1680 which is sufficient for

image filtering application and eliminates the necessity to a special component for overflow

detection and correction.

As stated in Section 2.3, since the moduli set is of the form {2
n – 1

 – 1, 2
n
 – 1, 2

n
}, their

residue arithmetic units are high-speed and efficient. Fig. 4.19 illustrates the structure of the

proposed design.

4.7.2 The moduli set effect on the output of image processing application

In this section, the importance of using a proper moduli set that provides a sufficient

dynamic range for a digital image-processing application is presented.

Two examples are illustrated in order to show the effects of using a moduli set with

insufficient dynamic range.

As aforementioned in Section 4.7.1, the utilized moduli set is {7, 15, 16}. Its dynamic

range = 1680 which is sufficient for image filtering application and eliminates the necessity to

a special component for overflow detection.

Many papers suggested using moduli sets with smaller dynamic ranges, such as {5, 7, 8}

and {7, 8, 9} that provide M = 280 and M = 504, respectively [60], [59]. Since the possible

pixel values in a digital image processing application have the range [0, 255], these papers

considered that using these sets would be sufficient. However, the following two examples

clarify the fact that this is not always true, except the case when using a special component for

overflow detection, which was not mentioned in any of those papers.

Example 1: the filtered pixel has a negative value

Suppose the following pixel values in a part of a gray-scale image,

23 20 35

23 16 34

24 16 32

 
 
 
  

Suppose the following sharpening filter that is going to be applied on that image,

0 1 0

1 5 1

0 1 0

 
 
 
 
  

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 77 -

1. Using the weighted number system

According to equation (4.57), the filtered pixel value is,

23 20 35 0 1 0

23 16 34 1 5 1 13

24 16 32 0 1 0

   
   

    
   
      

In standard image processing applications, negative numbers (in our case –13) are

considered to be 0 (which refers to black color).

2. Using the RNS based on the moduli set {5, 7, 8}

After forward conversion according to the moduli set {5, 7, 8},

(3,2,7) (0,6,4) (0,0,3) (0,0,0) (4,6,7) (0,0, 0)

(3,2,7) (1,2,0) (4,6,2) (4,6,7) (0,5,5) (4,6, 7) (2,1,3) 267

(4,3,0) (1,2,0) (2,4,0) (0,0,0) (4,6,7) (0,0, 0)

   
   

  
   
      

Positive integers greater than 255 (in our case 267) are considered 255 (which refers to

white color) in standard image processing applications.

It is obvious that the difference between the two results is huge; by using the weighted

system, the result is a black pixel, but by using RNS based on {5, 7, 8} the result is a

white pixel.

3. Using the RNS based on the moduli set {7, 15 ,16}

According to equation (1.5), I have divided the dynamic range into 2 parts; [0, 839]

for positive integers, and [840, 1679] for negative ones.

(2,8,7) (6,5,4) (0,5,3) (0,0,0) (6,14,15) (0, 0,0)

(2,8,7) (2,1,0) (6,4,2) (6,14,15) (5,5,5) (6,14,15) (1,2,3) 1667

(3,9,8) (2,1,0) (4,2,0) (0,0,0) (6,14,15) (0,0,0)

   
   

  
   
      

Since 1667 locates in the second half of the dynamic range, this means that it has a

negative value, so we consider it 0, which is the same as the one computed using the

weighted number system.

A question can arise here, what if the dynamic range in the case of using {5,7,8} was

divided into two parts for representing negative and positive values. Since the

dynamic range of {5, 7, 8} = 280, therefore, it is not enough to be divided into two

parts [0, 139] for positive values and [140, 279] for negative ones.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 78 -

Example 2: the filtered pixel has a large positive value

Suppose the following pixel values in a part of a gray-scale image,

193 185 118

203 214 200

201 189 217

 
 
 
  

1. Using the weighted number system

Suppose using the same sharpening filter,

193 185 118 0 1 0

203 214 200 1 5 1 293

201 189 217 0 1 0

   
   

   
   
      

293 is considered 255 (white color) in standard image processing applications.

2. Using the RNS based on the moduli set {5,7,8}

(3,4,1) (0,3,1) (3,6,6) (0,0,0) (4,6,7) (0,0, 0)

(3,0,3) (4,4,6) (0,4,0) (4,6,7) (0,5,5) (4,6, 7) (3,6,5) 13

(1,5,1) (4,0,5) (2,0,1) (0,0,0) (4,6,7) (0,0, 0)

   
   

  
   
      

13 represents a dark color near to black. Again, the huge difference between the two

results is clear.

3. Using the RNS based on the moduli set {7,15,16}

(4,13,1) (3,5,9) (6,13,6) (0,0,0) (6,14,15) (0,0,0)

(0,8,11) (4,4,6) (4,5,8) (6,14,15) (5,5,5) (6,14,15) (6,8,5) 293

(5,6,9) (0,9,13) (0,7,9) (0,0,0) (6,14,15) (0,0,0)

   
   

  
   
      

293 belongs to the first part of the dynamic range, which represents positive integers.

The result based on our moduli set is the same as the one computed using the weighted

system.

From the above two examples, the importance of choosing a proper moduli set with a

sufficient dynamic range is clear. Even though the pixel values range in [0, 255], the overflow

case should be taken into account, or at least a component that detects overflow should be

utilized, which is not an easy task when using moduli sets with even dynamic ranges and

presents further delay and complexity to the design [1], [75].

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 79 -

4.7.3 Performance evaluation and comparison

The proposed design was compiled and implemented on XC4VLX15 Virtex-4 FPGA

device. A 256×256 gray-scale image was stored in a RAM, which was designed using Xilinx

core generator v.13.4. Both forward and reverse converters were implemented as ROMs.

Since the concept of spatial filters is the same, I have only illustrated the implementation

results of applying sharpening and edge detection filters.

Tab. 4.17 presents the maximum frequency and power consumption at clock frequency of

100 MHz after implementing the filters using the BNS and the RNS based on the moduli set

{7, 15, 16}. The proposed design has shown considerably more impressive characteristics

than its counterpart. It can operate at higher frequency (by approx. 39.1%) and has less power

consumption (by approx. 23.7%) when operating at frequency of 100 MHz.

Tab. ‎4.17: Comparison between binary and RNS-based image processing application that applies spatial

filters on a gray-scale image

 Binary-based application RNS-based application Improvements %

Max. frequency [MHz] 127.08 176.75 39.1%

Power consumption at
100 MHz [mW]

489 373 23.7%

Fig. 4.20 shows the results of applying edge detection and sharpening filters using the

RNS based on {7, 15, 16} and {5, 7, 8}. The original input gray-scale image is shown in Fig.

 4.20 (a). The output-filtered images using the RNS based on the moduli sets {7, 15, 16} and

{5, 7, 8} are show in Fig. 4.20 (b) – (e).

Again, the negative effect of using a moduli set with insufficient dynamic range is clear.

Fig. 4.20 (c) and (e) show the distorted output filtered images after applying edge detection

and sharpening filters using the RNS based on the set {5, 7, 8}. Whereas, these images based

on the proposed design, which uses the moduli set {7, 15, 16}, are identical to those based on

the BNS.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 80 -

(a)

(b) (c)

(d) (e)

Fig. ‎4.20: The Output images after applying edge detection and sharpening filters,

 (a) The original gray-scale image.

(b) After applying edge detection filter using the RNS based on the moduli set {7,15,16} [84].

(c) After applying edge detection filter using the RNS based on the moduli set {5,7,8} [60].

(d) After applying sharpening filter using the RNS based on the moduli set {7,15,16} [84].

(e) After applying sharpening filter using the RNS based on the moduli set {5,7,8} [60].

4.8 When to use the RNS (Binary vs. RNS)

This section can be considered as the conclusive outcome of this thesis. It illustrates the

main issues that should be taken into account when deciding to use the RNS instead of BNS.

In Section 4.1, a detailed comparison between different moduli sets is presented.

However, during my research, I have observed that a number of these sets result in

applications with worse timing performance than that of its equivalent binary-based one. In

other words, there is no point of using the RNS based on these sets, at least in cases when the

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 81 -

main goal of the design is “timing performance”. Therefore, the first part of this section

establishes the main aspect that should be considered when choosing a moduli set in order to

achieve better timing performance than that of the BNS.

On the other hand, the second part studies the cases when utilizing the RNS would be the

most advantageous. As aforementioned before, using the RNS is of great benefit in

applications where addition, subtraction and multiplication are dominant. However, dominant

is an abstracted word. Thus, a detailed discussion about this issue is presented below. It

compares the performance of binary and RNS-based applications and highlights the areas

when using the RNS can be extremely useful in order to achieve higher timing performance

and less power consumption.

4.8.1 The effect of the critical modulo within a moduli set

The key concept of the RNS is that the delay of the RAU corresponding to the critical

channel is less than the delay of its equivalent binary arithmetic unit (BAU). However, the

presence of RNS converters affects the whole RNS, since their delay is rather long. Typically,

an RNS that performs one arithmetic operation suffers from longer delay than that of its

binary equivalent. Therefore, the essential point of using the RNS is ascertained via

performing many arithmetic operations, so the delay of BAUs exceeds the delay of residue

arithmetic units plus the RNS converters. Nevertheless, the issue of performing many

arithmetic operations is discussed in details in the next section.

As aforementioned before, many moduli sets of different forms and moduli number have

been suggested. However, the unpredictable issue is that, using some of these moduli sets

results in worse timing performance than that of binary-based ones. In systems based on such

sets, the delay of RAU corresponding to the critical channel exceeds the delay of its

equivalent BAU, regardless the delay of RNS convertors. An example that clarifies this issue

is presented below.

Example

Considering a system that uses the moduli set {2
n
 – 1, 2

n
 + 1, 2

2n
 + 1} [9]. The width of

its dynamic range is 4n bits. The critical modulo within this system is (2
2n

 + 1). Its width is

(2n + 1) bits

According to Tab. 6.1, the delay of a modulo (2
2n

 + 1) adder 2mod (2 1)n add
T


 and a modulo

(2
2n

 + 1) multiplier 2mod (2 1)n mul
T


 are as follows,

2 22mod (2 1) mod (2 1)
16 log 5 , 32 9n nadd mul

T n n T n
 

    

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 82 -

On the other hand, since the DR width is 4n bits, the delay of the binary adder and

multiplier on operands of 4n bits are as follows,

(4) (4)16 , 32 7bin add n bit bin mul n bitT n T n  

In order to get the benefit of using the RNS, the following two conditions should be met,

critical mod ulo add bin add

critical mod ulo mul bin mul

T T

T T




 (4.58)

According to the above conditions and by substituting the delay values of both modular

and binary adders,

2 2mod (2 1)
16 log 5 16n bin addadd

T T n n n


    

It is obvious, that this inequality is not true. The delay of the binary adder is longer than

that of the critical modular one.

In a similar manner, by substituting the delay values of both modular and binary

multipliers,

2mod (2 1)
32 12 32 9n bin mulmul

T T n n


    

Again, the above inequality is also not true. The delay of the binary multiplier is longer

than that of the critical modular one.

Therefore, we can see that using the moduli set {2
n
 – 1, 2

n
 + 1, 2

2n
 + 1} [9] results in

RAU with longer delay than that of the BAU, regardless the delay presented by the RNS

converters. i.e. there is no benefit of using the RNS based on this set in order to obtain higher

timing performance.

End of example

According to the above discussion, setting a concrete condition, that should be met when

choosing a moduli set, is obligatory.

Assuming an RNS-based application that uses one of the previously stated moduli sets,

the width of its DR is m bits. According to the studied moduli sets stated in Tab. 2.1, the

smallest critical channel is of the form (2
n
 – 1).

According to the unit gate model and Tab. 6.1, the delay of the modular adder

corresponding to the critical channel (2
n
 – 1) is as follows,

mod(2 1)
8n add

T n




Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 83 -

Since the width of the DR is m bits, the delay of binary adder is as follows,

() 4bin add m bitT m

Again, in order to get the benefit of using the RNS, inequality (4.58) should be met.

Hence,

8 4 2critical mod ulo add bin addT T n m n m     (4.59)

Consequently, inequality (4.59) clarifies the fact, that in order to obtain better

timing performance of addition using the RNS, the dynamic range width should be greater

than the critical channel width by more than two times.

In a similar manner, the condition that should be met in order to obtain higher timing

performance of multipliers than that of the BNS, is as follows,

16 7 8 7 2critical mod ulo mul bin mulT T n m n m       (4.60)

Inequality (4.60) also illustrates the same fact that in order to obtain better timing

performance of multiplication using the RNS, the dynamic range width should be greater than

the critical channel width by more than two times.

However, the above-concluded results are only based on a theoretical point of view.

Therefore, in order to verify these results, a comparison based on FPGA implementation has

been held. Timing performance of three parallel RAUs based on the moduli set {2
n
 – 1, 2

n
 +

1, 2
2n

 + 1} [9] has been compared with their equivalent BAU. The RNS system has been

implemented without converters, only RAUs with respect to the three moduli within the set.

The implementation results are illustrated in Tab. 4.18.

Tab. ‎4.18: A comparison between binary arithmetic unit and parallel RAUs (in terms of timing performance)

based on moduli set {2
n
 – 1, 2

n
 + 1, 2

2n
 + 1} [9], with DR = 4n bit

DR

Addition Multiplication

Binary [MHz] RNS [MHz] Binary [MHz] RNS [MHz]

n = 4, DR = 16 bit 465.1 253.7 317.5 131

n = 8, DR = 32 bit 330.4 225.5 149.6 115.9

n = 15, DR = 60 bit 174.6 171.6 79.3 65.3

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 84 -

According to Tab. 4.18, it is clear that the binary arithmetic unit can operate at higher

frequencies than that of RAU. Again, the reverse converters were not included in the

comparison. Thus, it is clear that using the RNS based on this moduli set does not improve

timing performance.

Hence, the main condition before choosing a moduli set in order to obtain better timing

performance of addition or multiplication using the RNS, is as follows, “the critical modulo

width (bits number) in the moduli set should be less than half of the dynamic range width this

set provides”. Therefore, the moduli sets that should not be used in systems than concern

about timing performance are those that do not meet this issue. During my research, I have

observed a number of already published papers suggesting moduli sets that can be

disadvantageous to use, such as {2
n
 – 1, 2

n
, 2

2n+1
 – 1} [8], {2

n
 – 1, 2

n
 + 1, 2

2n
 + 1} [9] and

{2
n/2

 – 1, 2
n/2

 + 1, 2
n
 + 1, 2

2n+1
 – 1} [18]. These sets are illustrated in Tab. 4.19. The

inefficiency proofs, based on theoretical and implementation results, of using moduli set {2
n
 –

1, 2
n
 + 1, 2

2n
 + 1} [9], are stated. The inefficiency of using the moduli sets [8] and [18] can

be similarly proved.

Tab. ‎4.19: Moduli sets that result in applications with worse timing performance than binary-based ones

Moduli # Modulo set

Critical

modulo

channel

Critical

channel width

Dynamic

range

width

3

{2
n
 – 1, 2

n
, 2

2n+1
 – 1} [8] (2

2n+1
 – 1) (2n + 1) bits (4n + 1) bits

{2
n
 – 1, 2

n
 + 1, 2

2n
 + 1} [9] (2

2n
 + 1) (2n + 1) bits (4n) bits

4
{2

n/2
 – 1, 2

n/2
 + 1, 2

n
 + 1, 2

2n+1
 – 1}

 [18]

(2
2n+1

 – 1) (2n + 1) bits (4n + 1) bits

4.8.2 When is RNS superior than binary number system

As previously stated, the main advantageous field of using the RNS instead of BNS is in

applications that contain a dominant number of additions, subtractions and multiplications.

Hence, this section discusses the issue of how many additions/multiplications should an

application contain in order to obtain an RNS-based application faster than a binary-based

one.

Theoretically, in case of performing only one addition or multiplication, the binary-based

application will be faster than the RNS-based one, due to presence of both converters.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 85 -

Therefore, in order to get the benefit of the RNS’s properties, these arithmetic operations

should be performed at least a certain number of times in order to make the profits gained in

the RAUs exceeds the overhead of the converters.

Assuming an application that performs a certain arithmetic operation, this application

based on the RNS will be faster, if the delay of the binary arithmetic unit exceeds the delay of

the residue arithmetic one corresponding to the critical modulo channel plus the delay of

converters.

bin operation critical mod ulo operation convT T T  (4.61)

where, bin operationT refers to the delay of binary arithmetic unit that performs that certain

operation, critical mod ulo operationT refers to the delay of the RAU corresponding to the critical

modulo and convT refers to the delay of both forward and reverse converters.

Since the delay of the converters has always a rather big value, the above expression can

only be achieved by repeating this operation a certain number of times k,

   bin operation critical mod ulo operation convk T k T T    (4.62)

Example

Assuming an RNS-based application that uses the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1} with DR

= 3n bits. The critical channel in this system is modulo (2
n
 + 1).

According to the unit gate model and Tab. 6.1 stated in the appendix, timing requirements

of the forward converter, reverse converter, modulo (2
n
 + 1) adder and modulo (2

n
 + 1)

multiplier within this system are as follows,

2mod (2 1) mod (2 1)

12 9 , 20 12 32 21

8 log 4 , 16 9n n

FC RC conv

add mul

T n T n T n

T n n T n
 

      

    

Since the width of the DR is 3n bits, timing requirements for performing addition and

multiplication in a binary system are as follows,

(3) (3)12 , 24 7n bit add n bit mulT n T n  

According to equation (4.62),

    212 8 4 32 21bin add critical mod ulo add conv

bin add convcritical mod ulo add

k T k T T k n k n log n n
  
             
    

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 86 -

Thus,

2

32 21

4 log 4

n
k

n n




 
 (4.63)

This means that in order to achieve better timing performance of the RNS-based

application, the addition should be repeated at least k times determined in equation (4.63).

In a similar manner, regarding multiplication based on the same moduli set, this operation

should be repeated at least l times in order to achieve better timing performance of the RNS-

based application.

32 21

8 16

n
l

n





 (4.64)

End of example

According to equations (4.63) and (4.64), the minimum numbers of iterated additions and

multiplications have been computed for different dynamic range requirements. Their values

are shown in Tab. 4.20.

Tab. ‎4.20: The least numbers of iterated additions and multiplications required to achieve better timing

performance of the RNS-based application that uses moduli set {2
n
 – 1, 2

n
, 2

n
 + 1}

n Dynamic range
Minimum number of

iterated additions

Minimum number of

iterated multiplications

4 12 bits k ≥ 15 l ≥ 10

8 24 bits k ≥ 12 l ≥ 6

11 33 bits k ≥ 11 l ≥ 6

16 48 bits k ≥ 10 l ≥ 5

22 66 bits k ≥ 10 l ≥ 5

From Tab. 4.20, it is clear that the RNS speed advantage is mainly manifested in

multiplication rather than addition. It is also obvious that as the dynamic range increases, the

minimum number of repeated operations decreases. For medium dynamic range (12 bits), an

RNS-based application that performs 10 repeated multiplications is theoretically faster than

the binary-based one. Whereas, for very large dynamic range (66 bits), this number decreases

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 87 -

to only five repeated multiplications to achieve better timing performance than the binary

based one.

However, this study is based on the theoretical point of view. Hence, in order to compare

the theoretical results with the practical ones, two applications that perform different numbers

of iterated additions and iterated multiplications, respectively, have been implemented on

Virtex-4 XC4VSX25 FPGA. These applications are based on the moduli set {2
n
 – 1, 2

n
, 2

n
 +

1}.

The implementing results illustrating the maximum frequency and power consumption

for different number of iterated additions/multiplications, for different dynamic ranges are

detailed in Appendix in Tab. 6.6 - Tab. 6.13. The utilized components within these

applications are based on the proposed designs stated in this thesis, including forward

converter, reverse converter, modular adders and multipliers.

Since the proposed reverse converter could not be implemented for DRs larger than 48 bit

on Virtex-4 XC4VSX25 FPGA, thus, the maximum DR that the proposed designs were

implemented for was 48 bit instead of 66 bit.

In a similar manner as shown in Tab. 4.20, the least numbers of iterated

additions/multiplications for different dynamic ranges, based on Virtex-4 implementation, are

shown in Tab. 4.21.

Tab. ‎4.21: The least numbers of iterated additions and multiplications required to achieve better timing

performance of the RNS based on Virtex-4 implementation

n Dynamic range
Minimum number of

iterated additions

Minimum number of

iterated multiplications

4 12 bits k ≥ 3 l ≥ 2

8 24 bits k ≥ 6 l ≥ 1

11 33 bits k ≥ 6 l ≥ 1

16 48 bits k ≥ 9 l ≥ 1

The difference between the theoretical and implementation results is obvious. The

implementation results are much better than the theoretical ones. Less numbers of iterated

additions/multiplications are needed in order to achieve better timing performance of the

RNS-based application. There are two reasons behind this improvement; the first one is the

efficient reverse converter being used. Its structure is partially based on integrated block

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 88 -

RAMs, which can run at 500 MHz in the selected device [73]. This presents a considerable

improvement in timing performance of the overall system. The second reason is the usage of

the dedicated XtremeDSP slices built-in Virtex-4 FPGA. These DSP slices can run at 500

MHz and have small power consumption 2.3 mW/100 MHz per slice [74].

However, as illustrated in the appendix in Tab. 6.10 - Tab. 6.13, the application based on

iterated multiplications shows power-saving feature, for averagely 10 iterated multiplications.

Therefore, for the sake of a clear discussion, the implementation results (maximum frequency,

hardware and power consumption) of both applications based on 10 iterated

additions/multiplications are shown in this section in Tab. 4.22, Tab. 4.23 and Tab. 4.24,

respectively.

Tab. ‎4.22: The maximum frequency of applications performing 10 iterated additions and 10 iterated

multiplications using the RNS and BNS

Dynamic

range

Application based on 10 additions Application based on 10 multiplications

RNS Binary
Speed

improvement %
RNS Binary

Speed

improvement %

12 bits 193.9 MHz 123.9 MHz 56.5 % 134.6 MHz 22.7 MHz 493 %

24 bits 158.1 MHz 111.6 MHz 41.7 % 124.5 MHz 19.9 MHz 525.6 %

33 bits 150.5 MHz 105.9 MHz 42.1 % 121.6 MHz 12.8 MHz 850 %

48 bits 103.1 MHz 100.1 MHz 3 % 106.7 MHz 12.6 MHz 749.8 %

As shown in Tab. 4.22, it is obvious that the application based on iterated multiplications

has much more impressive results than the one based on additions. The reason is the DSP48

units in FPGA. These DSP units are used in the case of application based on pure

multiplications. Whereas, the one based on pure additions is implemented using LUTs only.

Moreover, the application that performs only multiplications for dynamic ranges 33 bit

and 48 bits, RNS-based application becomes more power efficient for multiplications iterated

for more than 6 times and 5 times, respectively. As shown in Appendix in Tab. 6.12 and Tab.

 6.13, these savings gradually increase as number of iterated multiplications increases.

According to the application being under discussion (based on 10 iterated

multiplications), compared to the binary-based application, the power consumption of the

RNS-based one is reduced by 25.2% and 39.8% for dynamic ranges 33 bits and 48 bits,

respectively, as shown in Tab. 4.23.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 89 -

Tab. ‎4.23: Power consumption at 100 MHz running application performing 10 iterated multiplications using

the RNS and BNS

Dynamic range RNS Binary Power saving %

33 bits 506 mW 676 mW 25.2 %

48 bits 716 mW 1189 mW 39.8 %

This power efficiency feature is evident in RNS-based application for large and very

large dynamic ranges (33 bits and 48 bits). The reason is the huge increment in the utilized 4

input look-up tables in binary-based application compared to the RNS-based one. Hardware

requirements for implementing binary and RNS-based applications that perform 10 iterated

multiplications are illustrated in Tab. 4.24.

Tab. ‎4.24: Hardware requirements for implementing applications performing 10 iterated multiplications

using the RNS and BNS on Virtex-4 XC4VSX25 FPGA

Dynamic range

RNS Binary

4-LUTs DSP48s RAMB16s 4-LUTs DSP48s RAMB16s

33 bits 610 23 3 3 301 15 0

48 bits 1 246 23 120 11 206 12 0

After implementing applications based on the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1}, this study

has been further extended to other moduli sets. The minimum numbers of iterated additions

and multiplications required to achieve better timing performance of the RNS-based

applications that use different moduli sets are shown in Tab. 4.25.

During this study, an unexpected issue has been observed. The three-moduli set {2
n
 – 1,

2
n
, 2

n+1
 – 1} [7] has the best results for different dynamic ranges. It requires the minimum

number of iterated additions and multiplications in order to achieve better timing performance

than binary applications. Another surprising issue is, that the five-moduli set {2
n
, 2

n/2
 – 1, 2

n/2

+ 1, 2
n
 + 1, 2

2n–1
 – 1} [17], contrary to all other sets, requires more additions and

multiplications as the dynamic range increases.

It should be mentioned that both moduli sets {2
n
 – 1, 2

n
, 2

n
 + 1, 2

n+1
 – 1} [11]-I and {2

n
,

2
n/2

 – 1, 2
n/2

 + 1, 2
n
 + 1, 2

2n–1
 – 1} [17] can only be used with even values of n. Therefore, n

was chosen in such a way to keep the acquired dynamic ranges as close as possible.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 90 -

Thus, it is evident that using the RNS is more advantageous in applications that have

large and very large dynamic ranges and contain multiplications rather than only additions.

Tab. ‎4.25: The least numbers of iterated additions and multiplications required to achieve better timing

performance of the RNS-based application that uses moduli set {2
n
 – 1, 2

n
, 2

n
 + 1}

Moduli set Dynamic range n Min. add. # Min. mul. #

{2
n
 – 1, 2

n
, 2

n
 + 1} [4]

12 bits 4 k ≥ 15 l ≥ 10

24 bits 8 k ≥ 12 l ≥ 6

33 bits 11 k ≥ 11 l ≥ 6

66 bits 22 k ≥ 10 l ≥ 5

{2
n
 – 1, 2

n
, 2

n+1
 – 1} [7]

13 bits 4 k ≥ 9 l ≥ 5

25 bits 8 k ≥ 7 l ≥ 4

34 bits 11 k ≥ 6 l ≥ 3

64 bits 22 k ≥ 5 l ≥ 3

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

n+1
 – 1}

 [11]-I

9 bits 2 k ≥ 11 l ≥ 7

25 bits 6 k ≥ 9 l ≥ 5

34 bits 8 k ≥ 9 l ≥ 5

64 bits 16 k ≥ 8 l ≥ 4

{2
n
 – 1, 2

2n
, 2

n
 + 1, 2

2n
 + 1}

 [13]-II

12 bits 2 k ≥ 14 l ≥ 9

24 bits 4 k ≥ 10 l ≥ 6

36 bits 6 k ≥ 9 l ≥ 5

66 bits 11 k ≥ 9 l ≥ 4

{2
n
, 2

n/2
 – 1, 2

n/2
 + 1, 2

n
 +

1, 2
2n–1

 – 1} [17]

9 bits 2 k ≥ 12 l ≥ 6

19 bits 4 k ≥ 14 l ≥ 7

39 bits 8 k ≥ 16 l ≥ 8

69 bits 14 k ≥ 16 l ≥ 8

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 91 -

5 Conclusions

The main aim of this dissertation was designing RNS based building blocks for

applications in the field of DSP applications (binary-to-residue converter, residue-to-binary

converter, residue adder and residue multiplier). The achieved results and key outcomes are

summarized in this Chapter.

Throughout this thesis, a general introduction into the RNS and its properties, including

its basics, advantages and disadvantages, have been presented in Chapter 1. Chapter 2

includes a brief survey on the recent trends and achievements in all RNS areas. The

applications where RNS can be useful have been presented too. Chapter 3 states the main

aims and objectives of this dissertation thesis. Chapter 4 details the proposed work and

dissertation results. The main RNS components have been proposed including a binary to

residue converter, modular adders, subtractors, multipliers, a residue comparator, components

for overflow and sign detection and correction and a residue to binary converter. Moreover,

discussions on the recently suggested moduli sets, the most efficient ones and those that

should not be used have been also presented in Sections 4.1 and 4.8.1, respectively. A

comparison between binary and RNS-based applications and the considerations that should be

taken into account before designing a DSP application based on the RNS are also stated in

Sections 4.7 and 4.8.2. The efficiency of those proposed designs have been proven by

illustrating the implementation results and comparing them with already published designs.

The majority of the proposed designs can be implemented with any system that has any

moduli set of the form (2
k
 ± 1). Hence, the proposed components can be implemented with

any RNS system that uses any of the published moduli sets.

The proposed designs and outcomes of the doctoral thesis have been published in

different national and international conferences and journals.

5.1 Final remarks

The final points of this thesis can be summarized as follows,

 The RNS-based applications should be used in fields that have dominant

multiplications or at least a mix of multiplications and additions rather than only

additions.

 The moduli set should be chosen in such a way that it contains as few moduli of

the form (2
k

+ 1) as possible, due to the complexity and delay caused by this

channel. The most efficient set has been proven to be {2
n+1

 – 1, 2
n
, 2

n
 – 1}.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 92 -

 Contrary to the prevalent issue, the number of moduli within a set is not as

important as it is widely known. Moduli number does not play a crucial role in

enhancing the speed of the RNS system.

 Indeed, the form and magnitude of the largest modulo are the main concerns that

should be taken into account. The width of the largest modulo should be at least

less than half of the dynamic range‘s width. A number of published moduli sets

that should not be used have been stated in Section 4.8.1.

 Enlarging the dynamic range is more efficient than using overflow detection units,

since such components present a considerably long delay. Therefore, timing

performance of the RNS-based application that uses these components is worse

than the one that has a larger dynamic range and does not contain overflow

detection units.

 Using the RNS in very large DRs results in so-called “super-efficient”

applications compared to binary ones, (they provide considerably higher timing

performance, reduced area and power consumption).

 Using the RNS provides a kind of low-level security, since the operands and

results are presented using a totally different system.

 Choosing the type of forward and reverse converters should depend on the

dynamic range (more than 15 bits, the proposed converters have been proven to

be more efficient than pure memory ones).

Hence, the points mentioned in the objectives of this thesis have been met. This work has

led to new sights in the field of the residue number system. This system has very attractive

and promising features if used in applications that require large and very large dynamic

ranges. Rather than providing reduced power consumption with compromising timing

performance or vice versa, both aspects can be fully met simultaneously. Since these two

terms have become the key interests in nowadays technology, the RNS is the promising

means that provides the so-called “super-efficient” applications.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 93 -

Bibliography
[1] OMONDI, A., PREMKUMAR, B. Residue Number System: Theory and Implementation. London:

Imperial College Press. 2007. 312 pages. ISBN-13: 978-1860948664.

[2] MOHAN, P.V.A., Residue Number System: Algorithms and Architectures. Massachusetts: Springer,

2002. 272 pages. ISBN-13: 978-1402070310.

[3] WANG, W., SWAMY, M.N.S., AHMAD, M.O. Moduli Selection in RNS for Efficient VLSI

Implementation. In Proceedings of the International Symposium on Circuits and Systems, 2003, p. IV-

512 – IV-515. ISBN 0-7803-7761-3.

[4] PIESTRAK, S.J. A High-Speed Realization of a Residue to Binary Number System Converter. In IEEE

Trans. on Circuits and Systems-II: Analog and Digital Signal Processing, 1995, vol. 42, p. 661 – 663.

ISSN 1057-7130.

[5] NAVI, K., MOLAHOSSEINI, A.S., ESMAEILDOUST, M. How to Teach Residue Number System to

Computer Scientists and Engineers. In IEEE Trans. on Education, 2011, vol. 54, p. 156 – 163. ISSN

0018-9359.

[6] WANG, W., SWAMY, M.N.S., AHMAD, M.O., WANG, Y. A High-Speed Residue-to-Binary Converter

for Three-Moduli (2
k
, 2

k
 – 1, 2

k–1
 – 1) RNS and a Scheme for its VLSI Implementation. In IEEE Trans. on

Circuits and Systems-II: Analog and Digital Signal Processing, 2000, vol. 47, p. 1576 – 1581. ISSN

1057-7130.

[7] MOHAN, P.V.A. RNS-to-Binary Converter for a New Three-Moduli Set {2
n+1

 – 1, 2
n
, 2

n
 – 1}. In IEEE

Trans. on Circuits and Systems-II: Express Briefs, 2007, vol. 54, p. 775 – 779. ISSN 1549-7747.

[8] MOLAHOSSEINI, A.S., NAVI, K., RAFSANJANI, M.K. A New Residue to Binary Converter Based on

Mixed-Radix Conversion. In 3
rd

 International Conference on Information and Communication

Technologies: From Theory to Applications, 2008, p. 1 – 6. ISBN 978-1-4244-1751-3.

[9] WANG, W., SWAMY, M.N.S., AHMAD, M.O., WANG, Y. A Study of the Residue-to-Binary

Converters for the Three-Moduli Sets. In IEEE Trans. on Circuits and Systems-I: Fundamental Theory

and Applications, 2003, vol. 50, p. 235 – 243. ISSN 1057-7122.

[10] HARIRI, A., NAVI, K., RASTEGAR, R. A New High Dynamic Range Moduli Set with Efficient Reverse

Converter. In Computers & Mathematics with Applications Journal, 2008, vol. 55, p. 660 – 668. ISSN

0898-1221.

[11] MOHAN, P.V.A., PREMKUMAR, A.B. RNS-to-Binary Converters for Two Four-Moduli Sets {2
n
 – 1,

2
n
, 2

n
 + 1, 2

n+1
 – 1} and {2

n
 – 1, 2

n
, 2

n
 + 1, 2

n+1
 + 1}. In IEEE Trans. on Circuits and Systems-I: Regular

Papers, 2007, vol. 54, p. 1245 – 1254. ISSN 1549-8328.

[12] CAO, B., CHANG, C.H., SRIKANTHAN, T. An Efficient Reverse Converter for the 4-Moduli Set {2
n
 –

1, 2
n
, 2

n
 + 1, 2

2n
 + 1} Based on the New Chinese Remainder Theorem. In IEEE Trans. on Circuits and

Systems-I: Fundamental Theory and Applications, 2003, vol. 50, p. 1296 – 1303. ISSN 1057-7122.

[13] MOLAHOSSEINI, A.S., NAVI, K., DADKHAH, C., KAVEHEI, O., TIMARCHI, S. Efficient Reverse

Converter Designs for the New 4-Moduli Sets {2
n
 – 1, 2

n
, 2

n
 + 1, 2

2n+1
 – 1} and {2

n
 – 1, 2

n
 + 1, 2

2n
, 2

2n
 +

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 94 -

1} Based on New CRTs. In IEEE Trans. on Circuits and Systems-I: Regular Papers, 2010, vol. 57, p. 823

– 835. ISSN 1549-8328.

[14] HIASAT, A.A. VLSI Implementation of New Arithmetic Residue to Binary Decoders. In IEEE Trans. on

VLSI Systems, 2005, vol. 13, p. 153 – 158. ISSN 1063-8210.

[15] ZHANG, W., SIY, P. An Efficient Design of Residue to Binary Converter for Four Moduli Set (2
n
 – 1, 2

n

+ 1, 2
2n

 – 2, 2
2n+1

 – 3) Based on New CRT-II. In Information Sciences Journal, 2008, vol. 178, p. 264 –

279. ISSN 0020-0255.

[16] CAO, B., CHANG, C.H., SRIKANTHAN, T. A Residue-to-Binary Converter for a New Five-Moduli Set.

In IEEE Trans. on Circuits and Systems-I: Regular Papers, 2007, vol. 54, p. 1041 – 1049. ISSN 1549-

8328.

[17] MOLAHOSSEINI, A.S., DADKHAH, C., NAVI, K. A New Five-Moduli Set for Efficient Hardware

Implementation of the Reverse Converter,” In IEICE Electronics Express, 2009, vol. 6, p. 1006 – 1012.

ISSN 1006-1012.

[18] MOLAHOSSEINI, A.S., TEYMOURI, F., NAVI, K. A New Four-Modulus RNS to Binary Converter. In

Proc. of IEEE International Symposium on Circuits and Systems, 2010, p. 4161 – 4164. ISBN 978-1-

4244-5308-5.

[19] SOUSA, L., ANTÃO, S. MRC-Based RNS Reverse Converters for the Four-Moduli Sets {2
n
 + 1, 2

n
 – 1,

2
n
, 2

2n+1
 – 1} and {2

n
 + 1, 2

n
 – 1, 2

2n
, 2

2n+1
 – 1}. In IEEE Trans. on Circuits and Systems II: Express

Briefs, 2012, vol. 59, p. 244 – 248. ISSN 1549-7747.

[20] ALIABADIAN, R., ALIABADIAN, A., BOLHASANI, A., HOSSEINI, S.Z., GOLSORKHTABAR, A.

A Novel High Dynamic Range 4-Module Set {2
2n+1

, 2
2n

 + 1, 2
n
 + 1, 2

n
 – 1} with Efficient Reverse

Converter and Review Improving Modular Multiplication’s Dynamic Range with this Module Set. In

International Conference on Computer Communication and Informatics, 2012, p. 1 – 6. ISBN 978-1-

4577-1580-8.

[21] PIESTRAK, S.J. Design of Residue Generators and Multioperand Modular Adders Using Carry-Save

Adders. In IEEE Transactions on Computers, 1994, vol. 43, p. 68–77. ISSN 0018-9340.

[22] BAYOUMI, M., JULLIEN, G., MILLER, W. A VLSI Implementation of Residue Adders. In IEEE

Transactions on Circuits and Systems, 1987, vol. 34, p. 284-288. ISSN 0098-4094.

[23] JULLIEN, G.A. Residue Number Scaling and Other Operations Using ROM Arrays. In IEEE

Transactions on Computers, 1978, vol. C-27, p. 325-336. ISSN 0018-9340.

[24] BANERJI, D.K. A Novel Implementation Method for Addition and Subtraction in Residue Number

Systems. In IEEE Transactions on Computers, 1974, vol. C-23, p. 106-109. ISSN 0018-9340.

[25] TAYLOR, F.J. A VLSI Residue Arithmetic Multiplier. In IEEE Transactions on Computers, 1982, col. C-

31, p. 540-546. ISSN 0018-9340.

[26] BEUCHAT, J.L. Some Modular Adders and Multipliers for Field Programmable Gate Arrays. In IPDPS

'03 Proceedings of the 17th International Symposium on Parallel and Distributed Processing, 2003, ISSN

1530-2075.

[27] VERGOS, H.T., EFSTATHIOU, C. Efficient Modulo 2
n
 + 1 Adder Architectures. In Integration, the

VLSI Journal, 2009, vol. 42, p. 149–157. ISSN 0167-9260.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 95 -

[28] VERGOS, H.T., EFSTATHIOU, C., NIKOLOS, D. Diminished-One Modulo 2
n
 + 1 Adder Design. In

IEEE Transactions on Computers, 2002, vol. 51, p. 1389-1399. ISSN 0018-9340.

[29] EFSTATHIOU, C., VERGOS, H.T., NIKOLOS, D. Fast Parallel Prefix Modulo 2
n

+ 1 Adders. In IEEE

Transactions on Computers, 2004, vol. 53, p. 1211-1216. ISSN 0018-9340.

[30] KALAMPOUKAS, L. et al. High-Speed Parallel-Prefix Modulo 2
n
 – 1 Adders. In IEEE Transactions on

Computers, 2000, vol. 49, p. 673–679. ISSN 0018-9340.

[31] VASSALOS1, E., BAKALIS1, D., VERGOS, H.T. Novel Modulo 2
n
+1 Subtractors. In 16

th
 International

Conference on Digital Signal Processing, 2009, p. 1-5. ISBN 978-1-4244-3297-4.

[32] TIMARCHI, S., NAVI, K., HOSSEINZADE, M. New Design of RNS Subtractor for Modulo 2
n
 +1. In

Information and Communication Technologies, 2006, vol. 2, p. 2803-2808. ISBN 0-7803-9521-2.

[33] NEDJAH, N., MOURELLE, L.M. A Review of Modular Multiplication Methods and Respective

Hardware Implementations. In Informatica Journal, 2006, vol. 30, p. 111–129. ISSN 0350-5596.

[34] HIASAT, A.A., ZOHDY, H.S. Design and Implementation of a Fast and Compact Residue-Based Semi-

Custom VLSI Arithmetic Chip. In Proceedings of the 37
th

 Midwest Symposium on Circuits and Systems,

1994, vol. 1, p. 428–431. ISBN 0-7803-2428-5.

[35] HIASAT, A.A. New Memoryless, Mod (2
n
 – 1) Residue Multiplier. In Electronics Letters, 1992, vol. 28,

p. 314-315. ISSN 0013-5194.

[36] BAJARD, J.C., DIDIER, L.S., KORNERUP, P. An RNS Montgomery Modular Multiplication Algorithm.

In IEEE Transactions on Computers, 1998, vol. 47, p. 766–776. ISSN 0018-9340.

[37] WANG, Z., JULLIEN, G.A., MILLER, W.C. An Efficient Tree Architecture for Modulo 2
n
 + 1

Multiplication. In Journal of VLSI Signal Processing Systems - Special Issue on VLSI Arithmetic and

Implementations. 1996, vol. 14, p. 241–248. ISSN 0922-5773.

[38] WANG, Z., JULLIEN, G.A., MILLER, W.C. An Algorithm for Multiplication Modulo (2
n
 – 1). In IEEE

39
th

 Midwest Symposium Circuits Systems, 1996, vol. 3, p. 1301–1304. ISBN 0-7803-3636-4.

[39] EFSTATHIOU, C., VERGOS, H.T. Modified Booth 1's Complement and Modulo 2
n

–1 Multipliers. In

The 7
th

 IEEE International Conference on Electronics, Circuits and Systems, 2000, vol. 2, p. 637-640.

ISBN 0-7803-6542-9.

[40] SOUSA, L., CHAVES, R. A Universal Architecture for Designing Efficient Modulo 2
n
 + 1 Multipliers. In

IEEE Transactions on Circuits and Systems I: Regular Papers, 2005, vol. 52, p. 1166–1178. ISSN 1549-

8328.

[41] VEROGS, H.T., EFSTATHIOU, C. Design of Efficient Modulo 2
n
 + 1 Multipliers. In IET Computers &

Digital Techniques, 2007, vol. 1, p. 49–57. ISSN 1751-8601.

[42] WRZYSZCZ, A., MILFORD, D. A New Modulo 2
α
 + 1 Multiplier. In IEEE International Conference on

Computer Design: VLSI in Computers and Processors, 1993, p. 614–617. ISBN 0-8186-4230-0.

[43] ASKARZADEH, M., HOSSEINZADEH, M., NAVI, K. A New Approach to Overflow Detection in

Moduli Set {2
n
 – 3, 2

n
 – 1, 2

n
 + 1, 2

n
 + 3}. In Second International Conference on Computer and

Electrical Engineering, 2009, vol. 1, p. 439 – 442. ISBN 978-1-4244-5365-8.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 96 -

[44] SHANG, M., JIANHAO, H., LIN, Z., XIANG, L. An Efficient RNS Parity Checker for Moduli Set {2
n
 −

1, 2
n
 + 1, 2

2n
 + 1} and its Applications. In Springer Journal of Science in China Series F: Information

Sciences, 2008, vol. 51, p. 1563 – 1571. ISSN 1862-2836.

[45] DIMAURO, G., IMPEDOVO, S., PIRLO, G. A New Technique for Fast Number Comparison in the

Residue Number System. In IEEE Transactions on Computers, 1993, vol. 42, p. 608 – 612. ISSN 0018-

9340.

[46] WANG, Y., SONG, X., ABDOULHAMID, M. A New Algorithm for RNS Magnitude Comparison Based

on New Chinese Remainder Theorem II. In Proceedings Ninth Great Lakes Symposium on VLSI, 1999,

vol. 1, p. 362 – 365. ISSN 1066-1395.

[47] BI, S., GROSS, W.J. Efficient Residue Comparison Algorithm for General Moduli Sets. In 48th Midwest

Symposium on Circuits and Systems, 2005, vol. 2, p. 1601 – 1604. ISBN 0-7803-9197-7.

[48] Sousa, L. Efficient Method for Magnitude Comparison in RNS Based on Two Pairs of Conjugate Moduli.

In 18th IEEE Symposium on Computer Arithmetic, 2007, vol. 1, p. 240 – 250. ISSN 1063-6889.

[49] ZAREI, B., ASKARZADEH, M., DERAKHSHANFARD, N., HOSSEINZADEH, M. A High-Speed

Residue Number Comparator for the 3-Moduli Set {2
n
−1, 2

n
+1, 2

n
+3}. In International Signals Systems

and Electronics, 2010, vol. 1, p. 1 – 4. ISBN 978-1-4244-6352-7.

[50] NANNARELLI, A., RE, M., CARDARILLI, G.C. Tradeoffs between Residue Number System and

Traditional FIR Filters. In IEEE International Symposium on Circuits and Systems, 2001, vol. 2, p. 305 –

308. ISBN 0-7803-6685-9.

[51] CONWAY, R., NELSON, J. Improved RNS FIR Filter Architectures. In IEEE Transactions on Circuits

and Systems II: Express Briefs, 2004, vol. 51, p. 26–28. ISSN 1549-7747.

[52] SHAHANA, T.K., JAMES, R.K., JOSE, B.R., JACOB, K.P. Performance Analysis of FIR Digital Filter

Design: RNS Versus Traditional. In International Symposium on Communications and Information

Technologies, 2007, vol.1, p. 1 – 5. ISBN 978-1-4244-0977-8.

[53] FREKING, W.L., PARHI, K.K. Low-Power FIR Digital Filters Using Residue Arithmetic. In Conference

Record of the 31st Asilomar Conference on Signals, Systems & Computers, 1997, vol. 1, p. 739-743.

ISBN 0-8186-8316-3. (LOW POWER)

[54] CARDARILLI, G.C., DEL RE, A., NANNARELLI, A., RE, M. Low Power and Low Leakage

Implementation of RNS FIR Filters. In Conference Record of the Thirty-Ninth Asilomar Conference on

Signals, Systems and Computers, 2005, vol. 1, p. 1620 – 1624. ISSN 1058-6393. (LOW POWER)

[55] CARDARILLI, G.C, NANNARELLI, A., RE, M. Residue Number System for Low-Power DSP

Applications. In Conference Record of the Forty-First Asilomar Conference on Signals, Systems and

Computers, 2007, vol. 1, p. 1412 – 1416. ISSN 1058-6393.

[56] RAMNARAYAN, R., TAYLOR, F. Analysis of Errors in Residue Number System (RNS) Based IIR

Digital Filters. In IEEE International Conference on Acoustics, Speech and Signal Processing, 1982, vol.

7, p. 56 – 59.

[57] SODERSTRAND, M.A., SINHA, B. A Pipelined Recursive Residue Number System Digital Filter. In

IEEE Transactions on Circuits and Systems, 1984, vol. 31, p. 415 – 417. ISSN 0098-4094.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 97 -

[58] AMMAR, A., AL KABBANY, A., YOUSSEF, M., AMAM, A. A Secure Image Coding Scheme Using

Residue Number System. In Proceedings of the Eighteenth National Radio Science Conference, 2001, vol.

2, p. 339 – 405. ISBN 977-5031-68-0.

[59] WANG, W., SWAMY, M.N.S., AHMAD, M.O. RNS Application for Digital Image Processing. In 4th

IEEE international workshop on system-on-chip for real-time applications, 2004, vol. 1, p. 77–80. ISBN

0-7695-2182-7.

[60] TALESHMEKAEIL, D.K., MOUSAVI, A. The Use of Residue Number System for Improving the Digital

Image Processing. In IEEE 10th International Conference on Signal Processing, 2010, vol. 1, p. 775–780.

ISBN 978-1-4244-5897-4.

[61] TALESHMEKAEIL, D.K., MOHAMAMDZADEH, H., MOUSAVI, A. Using Residue Number System

for Edge Detection in Digital Images Processing. In IEEE 3rd International Conference on

Communication Software and Networks, 2011, vol. 1, p. 249–253. ISBN 978-1-61284-485-5.

[62] MOHARRAMI, S., TALESHMEKAEIL, D.K. The Application of the Residue Number System in Digital

Image Processing: Propose a Scheme of Filtering in Spatial Domain. In Research Journal of applied

science, 2012, vol. 7, p. 286–292. ISSN 1815-932X.

[63] YANG, L.L., HANZO, L. Redundant Residue Number System Based Error Correction Codes. In IEEE

Vehicular Technology Conference, 2001, vol. 3, p. 1472–1476. ISBN 0-7803-7005-8.

[64] PONTARELLI, S., CARDARILLI, G.C., RE, M., SALSANO, A. A Novel Error Detection and

Correction Technique for RNS Based FIR Filters. In IEEE International Symposium on Defect and Fault

Tolerance of VLSI Systems, 2008, vol. 1, p. 436 – 444. ISSN 1550-5774.

[65] YANG, L.L., HANZO, L. A Residue Number System Based Parallel Communication Scheme Using

Orthogonal Signaling .I. In System outline. In IEEE Transactions on Vehicular Technology, 2002, vol.

51, p. 1534-1546. ISSN 0018-9545.

[66] YOUSSEF, M.I., EMAM, A.E., ABD ELGHANY M. Direct Sequence Spread Spectrum Technique with

Residue Number System. In International Journal of Electrical & Electronics Engineering, 2009, vol. 3, p.

223-230. ISSN 2010-3972.

[67] BAJARD, J.C., IMBERT, L. Brief Contributions: A Full RNS Implementation of RSA. In IEEE

Transactions on Computers, 2004, vol. 53, p. 769-774. ISSN 0018-9340.

[68] TIMARCHI, S., NAVI, K. Improved Modulo 2
n
+1 Adder Design. In World Academy of Science

Engineering and Technology, 2008, vol. 39, p. 577 – 584. ISSN 2010-3778.

[69] HAOHUAN, F., MENCER, O., LUK, W. Optimizing Residue Arithmetic on FPGAs. In International

Conference on ICECE Technology, 2008, vol. 1, p. 41 – 48. ISBN 978-1-4244-2796-3.

[70] ZIMMERMANN, R. Efficient VLSI Implementation of Modulo (2
n

± 1) Addition and Multiplication. In

Proceedings of 14th IEEE Symposium on Computer Arithmetic, 1999, vol. 1, p. 158 – 167. ISBN 0-7695-

0116-8.

[71] HIASAT, A., SWEIDAN, A. Residue Number System to Binary Converter for the Moduli Set (2
n-1

, 2
n
-1,

2
n
+1). In Journal of Systems Architecture: the EUROMICRO Journal, 2003, vol. 49, p. 53 – 58. ISSN

1383-7621.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 98 -

[72] SMITH, S.W. Digital Signal Processing: a Practical Guide for Engineers and Scientists. USA: Newnes

an Imprint of Elsiever.2003. 650 pages. ISBN-13:978-0-7506-7444-7.

[73] XILINX, Virtex-4 FPGA User Guide. 2008, 406 pages. [Online] Cited 2012-09-04. Available at

http://www.xilinx.com/support/documentation/user_guides/ug070.pdf

[74] XILINX, XtremeDSP for Virtex-4 FPGAs. 2008, 121 pages. [Online] Cited 2012-09-11. Available at

http://www.xilinx.com/support/documentation/user_guides/ug073.pdf

http://www.xilinx.com/support/documentation/user_guides/ug070.pdf
http://www.xilinx.com/support/documentation/user_guides/ug073.pdf

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 99 -

Author’s publications
[75] YOUNES, D., STEFFAN, P. A Comparative Study on Different Moduli Sets in Residue Number System.

In International Conference on Computer Systems and Industrial Informatics, Dubai, UAE, 2012, vol. 1,

p. 1 – 6. ISBN 978-1-4673-5155-3.

[76] YOUNES, D., STEFFAN, P., A Detailed Study on the Moduli Number Effect on RNS Timing

Performance. In Journal of Emerging Trends in Computing and Information Sciences, Islamabad,

Pakistan, 2013, vol. 4, p. 85 – 93. ISSN 2079-8407.

[77] YOUNES, D., STEFFAN, P. Novel Architectures of Modulo 2
n
 ± 1 Adders for Field Programmable Gate

Array. In Electronic Devices and Systems IMAPS CS International conference, Brno, Czech republic,

2011, vol. 1, p. 51 – 56. ISBN 978-80-214-4303- 7.

[78] YOUNES, D., STEFFAN, P. New Structures of 2
n
 ± 1 Modular Adders for FPGAs. In ElectroScope

Journal, Czech Republic, 2011, vol. 5, p. 11 – 14. ISSN 1313-1842.

[79] YOUNES, D., STEFFAN, P. Improved Design for Modulo 2
n
+ 1 Adder. In Electronic Devices and

Systems IMAPS CS International Conference, Brno, Czech republic, 2010, vol. 1, p. 346 – 348. ISBN

978-80-214-4138- 5.

[80] YOUNES, D., STEFFAN, P. Novel Modulo 2
n
+ 1 Subtractor and Multiplier. In the Sixth International

Conference on Systems ICONS, St. Maarten, the Netherlands Antilles, 2011, vol. 1, p. 36 – 38. ISBN

978-1-61208-002- 4.

[81] YOUNES, D., STEFFAN, P. Efficient Method for Overflow Detection and Correction in Residue Number

System. In Electronic Devices and Systems IMAPS CS International Conference, Brno, Czech republic,

2012, vol. 1, p. 183 – 188. ISBN 978-80-214-4539- 0.

[82] YOUNES, D., STEFFAN, P. Universal Approaches for Overflow and Sign Detection in Residue Number

System Based on {2
n
 – 1, 2

n
, 2

n
 + 1}. In the Eighth International Conference on Systems, Seville, Spain,

2013, vol. 1, p. 1 – 5. ISBN 978-1-61208-246- 2.

[83] YOUNES, D., STEFFAN, P. FPGA Implementation of Residue-to-Binary Converters: A Comparison

between New CRT-I and MRC Converters for the Moduli Set (2
n

– 1, 2
n
, 2

n
 + 1). In Electronics Journal,

Sofia, Bulgaria, 2011, vol. 5, p. 11 – 14. ISSN 1313- 1842.

[84] YOUNES, D., STEFFAN, P. Efficient Image Processing Application Using Residue Number System. In

20th International Conference Mixed Design of Integrated Circuits and Systems, Gdynia, Poland, 2013. p.

468 – 472. ISBN 978-83-63578-00- 8.

[85] YOUNES, D., STEFFAN, P. Fast and Power Reduced RNS-Based Image Filtering in Spatial Domain. In

ElectroScope Journal, Czech Republic, 2013. ISSN 1313-1842. Under review.

[86] YOUNES, D., STEFFAN, P. Efficient Reverse Converter and Residue Comparator Based on a Novel

Algorithm in RNS. In IEICE Electronics Express Journal. ISSN 1349-2543. Under review.

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 100 -

6 Appendix

Tab. ‎6.1: Delay and hardware complexity of different components using unit gate model

Component Delay (T) Area (A)

NOT gate, circular shifting and bits rearrangement ignored ignored

OR, AND, NOR, NAND gates 1 1

XOR, XNOR gates 2 2

2:1 multiplexer 2 3

Half adder (HA) 2 3

Full adder (FA) 4 7

Carry propagate adder (CPA) of n bits 4n 7n

Carry propagate adder with end-around carry (CPA-EAC) of
n bits

8n 7n

Carry save adder (CSA) of n bits 4 7n

Carry save adder with end-around carry (CSA-EAC) of n bits 4 7n

General modulo adder of n bits [5] 8n + 3 17n + 1

Modulo (2
n
 – 1) adder (1

st
 complement adder) [1] 8n 7n

Modulo (2
n
 + 1) adder [68] 8n + 11 17n + 18

Proposed modulo (2
n
 + 1) adder [79] 8n + log2 n + 4  n n2

35
log 7

2

Binary multiplier (array multiplier [1]) of n bits 8n – 7 8n
2
 – 11n

General modulo multiplier (based on the product-partitioning
method [1]) of n bits

24n – 11 16n
2
 – 5n + 1

Modulo (2
n
 – 1) multiplier 16n – 7 8n

2
 – 4n

Modulo (2
n
 + 1) multiplier [80] 16n + 9 8n

2
 + 22n + 15

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 101 -

Tab. ‎6.2: Comparison between reverse converters, modular adders and modular multipliers for systems based

on sets that provide DR = 3n

Moduli set DR
n odd/
even

mod #

RC

Critical
Channel

Modular adders Modular multipliers

Delay Complexity Delay Complexity Delay Complexity

{2
n
 – 1, 2

n
, 2

n
 + 1} [4] 3n any 3 16n + 8 31n + 13 (2

n
 + 1) 8n + 11 38n + 18 16n + 12 24n

2
 + 7n + 15

{2
n–1

 – 1, 2
n
 – 1, 2

n
} [6] 3n–1 any 3 24n – 2 54n – 45 (2

n
 – 1) 8n 21n – 7 16n – 7 24n

2
 – 35n + 12

{2
n
 – 1, 2

n
, 2

n+1
 – 1} [7] 3n+1 any 3 8n + 30 110n + 159 (2

n+1
 – 1) 8n + 8 21n + 7 16n + 9 24n

2
 – 27n + 4

Tab. ‎6.3: Comparison between reverse converters, modular adders and modular multipliers for systems based

on sets that provide DR = 4n

Moduli Set DR
n

odd/
even

mod

RC

Critical
Channel

Modular Adders Modular Multipliers

Delay Complexity Delay Complexity Delay Complexity

{2
n
 – 1, 2

n
, 2

2n+1
 – 1} [8] 4n+1 any 3 40n + 20 69n + 20 (2

2n+1
 – 1) 16n+ 8 38n + 25 32n + 9 48n

2
 + 9n + 4

{2
n
 – 1, 2

n
 + 1, 2

2n
 + 1} [9] 4n any 3 32n + 8 62n + 8 (2

2n
 + 1) 16n + 11 58n + 36 32n + 12 48n

2
 + 62n + 15

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

n+1
 – 1}

 [11]-I
4n+1 even 4 46n + 28

15n + 5 + 7/2(n
2

– 3n – 4)
(2

n
 + 1) 8n + 11 45n + 25 16n + 12 32n

2
 + 19n + 19

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

n+1
 + 1}

 [11]-II
4n+1 odd 4 48n + 62

7n
2
 + 102n +
108

(2
n+1

 + 1) 8n + 19 55n + 53 16n + 28 32n
2
 + 45n +60

{2
n/2

 – 1, 2
n/2

 + 1, 2
n
 + 1,

2
2n+1

 – 1} [18]
4n+1 even 4 32n + 37 68n + 37 (2

2n+1
 – 1) 16n + 8 43n + 43 32n + 9 44n

2
 + 59n + 34

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 102 -

Tab. ‎6.4: Comparison between reverse converters, modular adders and modular multipliers for systems based

on sets that provide DR = 5n

Moduli Set DR
n

odd/
even

mod

RC

Critical
Channel

Modular Adders Modular Multipliers

Delay Complexity Delay Complexity Delay Complexity

{2
n
, 2

2n
 – 1, 2

2n
 + 1} [10] 5n even 3 32n + 4 44n + 8 (2

2n
 + 1) 16n + 11 55n + 18 32n + 12 72n

2
 + 25n + 15

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

2n
 + 1}

 [12]
5n any 4 32n + 12 95n + 39 (2

2n
 + 1) 16n + 11 72n + 36 32n + 12 56n

2
 + 51n + 30

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

2n+1
 – 1}

 [13]-I
5n+1 any 4 48n + 20 74n + 14 (2

2n+1
 – 1) 16n + 8 52n + 25 32n + 9 56n

2
 + 31n + 19

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

n
 –

2
(n+1)/2

 + 1, 2
n
 + 2

(n+1)/2
 + 1}

 [14]
5n odd 5 32n + 20 184n – 9

(2
n
 + 2

(n+1)/2

+ 1)
8n + 11 72n + 37 24n + 13 56n

2
 + 29n + 28

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

n–1
 – 1,

2
n+1

 + 1} [16]
5n even 5

72n + 4l +
28

7×(5n
2
 + 43n +

m)/6 + 112n – 7
(2

n+1
 + 1) 8n + 19 62n + 36 16n + 28 40n

2
 + 25n + 72

{2
n
, 2

n/2
 – 1, 2

n/2
 + 1,

2
n
 + 1, 2

2n–1
 – 1} [17]

5n–1 even 5 52n + 4 97n + 11 (2
2n–1

 – 1) 16n – 8 50n + 29 32n – 23 52n
2
 – 20n + 42

Tab. ‎6.5: Comparison between reverse converters, modular adders and modular multipliers for systems based

on sets that provide DR = 6n

Moduli Set DR
n

odd/
even

mod

RC

Critical
Channel

Modular Adders Modular Multipliers

Delay Complexity Delay Complexity Delay Complexity

{2
n
 – 1, 2

n
 + 1, 2

2n
 – 2, 2

2n+1
 – 3}

 [15]
6n+1 any 4 56n + 39 188n + 57 (2

2n+1
 – 3) 16n + 11 92n + 37 48n + 13 144n

2
 + 62n + 28

{2
n
 – 1, 2

2n
, 2

n
 + 1, 2

2n
 + 1}

 [13]-II
6n any 4 32n + 12 88n + 24 (2

2n
 + 1) 16n + 11 72n + 19 28n + 12 80n

2
 + 40n + 30

{2
n
 + 1, 2

n
 – 1, 2

2n
, 2

2n+1
 – 1}

 [19]
6n+1 any 4 40n 98n + 7 (2

2n+1
 – 1) 16n + 8 52n + 25 32n + 9 80n

2
 + 20n + 19

{2
2n+1

, 2
2n

 + 1, 2
n
 + 1, 2

n
 – 1}

 [20]
6n+1 any 4 32n + 12 88n + 28 (2

2n
 + 1) 16n + 11 72n + 34 28n + 12 80n

2
 + 72n + 27

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 103 -

Tab. ‎6.6: The maximum frequency and power consumption of application performing a number of iterated

additions using the RNS and BNS for DR = 12 bits (implemented on Virtex-4 XC4VSX25 FPGA)

Number of

iterated adding

operations

RNS-based Binary-based RNS improvement%

Max freq. [MHz] PWR at 100 MHz [mW] Max freq. [MHz] PWR at 100 MHz [mW]
Freq.

increment %

PWR

reduction %

1 220.6 425 788 345 - -

5 225.6 440 215.8 389 4.5% -

10 193.9 454 123.9 395 56.5% -

15 156.6 442 100.7 396 55.5% -

20 141.5 460 82 399 72.6% -

Tab. ‎6.7: The maximum frequency and power consumption of application performing a number of iterated

additions using the RNS and BNS for DR = 24 bits (implemented on Virtex-4 XC4VSX25 FPGA)

Number of

iterated adding

operations

RNS-based Binary-based RNS improvement%

Max freq. [MHz] PWR at 100 MHz [mW] Max freq. [MHz] PWR at 100 MHz [mW]
Freq.

increment %

PWR

reduction %

1 186.5 458 446.6 417 - -

5 174.3 484 204 444 - -

10 158.1 500 111.6 452 41.7% -

15 147.6 534 95.6 455 54.4% -

20 126.8 550 69.1 462 83.5% -

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 104 -

Tab. ‎6.8: The maximum frequency and power consumption of application performing a number of iterated

additions using the RNS and BNS for DR = 33 bits (implemented on Virtex-4 XC4VSX25 FPGA)

Number of

iterated adding

operations

RNS-based Binary-based RNS improvement%

Max freq. [MHz] PWR at 100 MHz [mW] Max freq. [MHz] PWR at 100 MHz [mW]
Freq.

increment %

PWR

reduction %

1 161.5 496 316.3 443 - -

5 166.5 517 173.7 484 - -

10 150.5 568 105.9 493 42.1% -

15 116.8 589 93.2 499 25.3% -

20 107.7 614 66.7 504 61.5% -

Tab. ‎6.9: The maximum frequency and power consumption of application performing a number of iterated

additions using the RNS and BNS for DR = 48 bits (implemented on Virtex-4 XC4VSX25 FPGA)

Number of

iterated adding

operations

RNS-based Binary-based RNS improvement%

Max freq. [MHz] PWR at 100 MHz [mW] Max freq. [MHz] PWR at 100 MHz [mW]
Freq.

increment %

PWR

reduction %

1 115.7 703 307.9 493 - -

5 116.7 758 158.9 555 - -

10 103.1 802 100.1 567 3% -

15 114.9 833 87.8 575 30.9% -

20 108.2 867 63.4 583 70.7% -

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 105 -

Tab. ‎6.10: The maximum frequency and power consumption of application performing a number of iterated

multiplications using the RNS and BNS for DR = 12 bits (implemented on Virtex-4 XC4VSX25 FPGA)

Number of

iterated

multiplying

operations

RNS-based Binary-based RNS improvement%

Max freq. [MHz] PWR at 100 MHz [mW] Max freq. [MHz] PWR at 100 MHz [mW]
Freq.

increment %

PWR

reduction %

1 141.4 410 146.8 340 - -

5 137.4 417 43.5 343 215.9% -

10 134.6 425 22.7 347 493% -

15 134.1 435 15.4 348 770.8% -

20 132.2 441 11.7 350 1029.9% -

Tab. ‎6.11: The maximum frequency and power consumption of application performing a number of iterated

multiplications using the RNS and BNS for DR = 24 bits (implemented on Virtex-4 XC4VSX25 FPGA)

Number of

iterated

multiplying

operations

RNS-based Binary-based RNS improvement%

Max freq. [MHz] PWR at 100 MHz [mW] Max freq. [MHz] PWR at 100 MHz [mW]
Freq.

increment %

PWR

reduction %

1 135.4 419 92.2 355 46.9% -

5 125.9 437 35.9 360 250.7% -

10 124.5 465 19.9 366 525.6% -

15 121.3 476 13.7 380 785.4% -

20 120.6 489 10.5 383 1048.6% -

Residue Number System Based Building Blocks for Applications in Digital Signal Processing

- 106 -

Tab. ‎6.12: The maximum frequency and power consumption of application performing a number of iterated

multiplications using the RNS and BNS for DR = 33 bits (implemented on Virtex-4 XC4VSX25 FPGA)

Number of

iterated

multiplying

operations

RNS-based Binary-based RNS improvement%

Max freq. [MHz] PWR at 100 MHz [mW] Max freq. [MHz] PWR at 100 MHz [mW]
Freq.

increment %

PWR

reduction %

1 125.8 457 78.7 360 59.9% -

5 122.9 486 26.4 362 365.5% -

10 121.6 506 12.8 676 850% 25.2%

15 120.1 529 9.1 832 1219.8% 36.4%

20 119.8 545 7 1026 1611.4% 46.9%

Tab. ‎6.13: The maximum frequency and power consumption of application performing a number of iterated

multiplications using the RNS and BNS for DR = 48 bits (implemented on Virtex-4 XC4VSX25 FPGA)

Number of

iterated

multiplying

operations

RNS-based Binary-based RNS improvement%

Max freq. [MHz] PWR at 100 MHz [mW] Max freq. [MHz] PWR at 100 MHz [mW]
Freq.

increment %

PWR

reduction %

1 114.7 663 54.7 411 109.7% -

5 113.7 684 20.9 661 444% 3.5%

10 106.7 716 12.6 1189 749.8% 39.8%

15 114.1 757 8.9 1567 1182% 51.7%

20 105 777
Too large to be
implemented on

device

Too large to be
implemented on device

