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Abstract 

This doctoral thesis deals with designing residue number system based building blocks 

to enhance the performance of digital signal processing applications. 

The residue number system (RNS) is a non-weighted number system that provides 

carry-free, parallel, high speed, secure and fault tolerant arithmetic operations. These features 

make it very attractive to be used in high-performance and fault tolerant digital signal 

processing (DSP) applications. 

A typical RNS system consists of three main components; the first one is the binary to 

residue converter that computes the RNS equivalent of the inputs represented in the binary 

number system. The second component in this system is parallel residue arithmetic units that 

perform arithmetic operations on the operands already represented in RNS. The last 

component is the residue to binary converter, which converts the outputs back into their 

binary representation. 

The main aim of this thesis was to propose novel structures of the basic components of 

this system in order to be later used as fundamental units in DSP applications. 

This thesis encloses improving and designing novel structures of these components, 

simulating and verifying their efficiency via FPGA implementation. In addition to suggesting 

novel structures of basic RNS components, a detailed study on different moduli sets that 

compares and determines the most efficient one for different dynamic range requirements is 

also presented. One of the main outcomes of this thesis is concluding and verifying the main 

condition that should be met when choosing a moduli set, in order to improve the timing 

performance of a DSP application. An RNS-based image processing application is also 

proposed. Its efficiency, in terms of timing performance and power consumption, is proved 

via comparing it with a binary-based one. Finally, the main considerations that should be 

taken into account when choosing to use the binary number system or RNS are also discussed 

in details. 

Keywords 

Residue number system, digital signal processing, modular arithmetic, moduli set, dynamic 

range, binary to RNS converter, RNS to binary converter, RNS-based application, parallel 

processing, power reduced DSP application, FPGA implementation.  



 

 

Abstrakt 

Předkládaná disertační práce se zabývá návrhem základních bloků v systému 

zbytkových tříd pro zvýšení výkonu aplikací určených pro digitální zpracování signálů (DSP). 

Systém zbytkových tříd (RNS) je neváhová číselná soustava, jež umožňuje provádět 

paralelizovatelné, vysokorychlostní, bezpečné a proti chybám odolné aritmetické operace, 

které jsou zpracovávány bez přenosu mezi řády. Tyto vlastnosti jej činí značně perspektivním 

pro použití v DSP aplikacích náročných na výpočetní výkon a odolných proti chybám. 

Typický RNS systém se skládá ze tří hlavních částí: převodníku z binárního kódu do 

RNS, který počítá ekvivalent vstupních binárních hodnot v systému zbytkových tříd, dále jsou 

to paralelně řazené RNS aritmetické jednotky, které provádějí aritmetické operace s operandy 

již převedenými do RNS. Poslední část pak tvoří převodník z RNS do binárního kódu, který 

převádí výsledek zpět do výchozího binárního kódu. 

Hlavním cílem této disertační práce bylo navrhnout nové struktury základních bloků 

výše zmiňovaného systému zbytkových tříd, které mohou být využity v aplikacích DSP. 

Tato disertační práce předkládá zlepšení a návrhy nových struktur komponent RNS, 

simulaci a také ověření jejich funkčnosti prostřednictvím implementace v obvodech FPGA. 

Kromě návrhů nové struktury základních komponentů RNS je prezentován také podrobný 

výzkum různých sad modulů, který je srovnává a determinuje nejefektivnější sadu pro různé 

dynamické rozsahy. Dalším z klíčových přínosů disertační práce je objevení a ověření 

podmínky určující výběr optimální sady modulů, která umožňuje zvýšit výkonnost aplikací 

DSP. Dále byla navržena aplikace pro zpracování obrazu využívající RNS, která má vůči 

klasické binární implementanci nižší spotřebu a vyšší maximální pracovní frekvenci. V závěru 

práce byla vyhodnocena hlavní kritéria při rozhodování, zda je vhodnější pro danou aplikaci 

využít binární číselnou soustavu nebo RNS. 

Klíčová slova 

Systém zbytkových tříd, digitální zpracování signálu, modulární aritmetika, sada modulů, 

dynamický rozsah, převodník z binární soustavy do RNS, převodník z RNS do binární 

soustavy, aplikace RNS, paralelní výpočty, aplikace DSP s nízkou spotřebou, implementace 

do FPGA. 
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1 Introduction 

This thesis is concerned with an unconventional non-weighted number system that has 

gained a great scientific interest; the residue number system (RNS). Designing new and more 

efficient RNS based building blocks that improve digital signal processing (DSP) 

applications’ performance is the main aim of this thesis. 

Since the whole work will be devoted on the RNS, enclosing a brief introduction about 

this number system will be beneficial. 

The RNS is a very old number system. It was found 1500 years ago by a Chinese scholar 

Sun Tzu. Since the last five decades, RNS’s features have been rediscovered and thus the 

interest in this system has been renewed. The researchers have used the RNS in order to 

benefit from its features in designing high-speed and fault-tolerance applications. 

The fundamental idea of the RNS is based on uniquely representing large binary numbers 

using a set of smaller residues, which results in carry-free, high-speed and parallel arithmetic 

 [1]. 

This system is based on modulus operation, where the divider is called modulo and the 

remainder of the division operation is called residue. The basic notation in RNS is, 

mod ; 0   
i

i i i i im
x X m x x m     ( 1.1) 

Each integer in RNS is represented by a set of residues corresponding to a specified 

moduli set. The main condition is that the moduli within the moduli set should be relatively 

prime,  

   
1 2

1 2, , , ; ( , ) 1 
n

RNS

n i jm m m
X x x x GCD m m  ( 1.2) 

The RNS uniquely represents any integer X that locates in its dynamic range M, which is 

the product of the moduli within the moduli set.  

1


n

i

i

M m       ( 1.3) 

Both signed and unsigned integers can be represented in the RNS. For unsigned RNS, the 

range of the representable integers is, 

0  X M       ( 1.4) 

For signed RNS, the range of representable integers is partitioned into two equal 

intervals, 
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0 / 2

/ 2

    

   

X M for positive numbers

M X M for negative numbers
   ( 1.5) 

In principle, any interval of M consecutive integers can be uniquely represented in the 

RNS. However, the standard conventions on representable integer ranges in the RNS are 

illustrated in equations ( 1.4) and ( 1.5). 

The principal aspect that distinguishes the RNS from other number systems is that the 

standard arithmetic operations; addition, subtraction and multiplication are easily 

implemented, whereas operations such as division, root, comparison, scaling and overflow 

and sign detection are more complicated. Therefore, the RNS is extremely useful in 

applications that require a large number of addition and multiplication, and a minimum 

number of comparisons, divisions and scaling. In other words, the RNS is preferable in 

applications in which additions and multiplications are critical. Such applications are DSP, 

image processing, speech processing, cryptography and transforms  [2]. 

The main RNS advantage is the absence of carry propagation between digits, which 

results in high-speed arithmetic needed in embedded processors. Another important feature of 

RNS is the digits independence, so an error in a digit does not propagate to other digits, which 

results in no error propagation, hence providing fault-tolerance systems. In addition, the RNS 

can be very efficient in complex-number arithmetic, because it simplifies and reduces the 

number of multiplications needed. All these features increase the scientific tendency toward 

the RNS especially for DSP applications. However, the RNS is still not popular in general-

purpose processors, due the aforementioned difficulties. 

Operands Results
Forward 

Converter

  RAU mod 1m

  RAU mod 2m

  RAU mod nm

Reverse 
Converter

 

Fig. ‎1.1: The architecture of the residue number system (RNS) 

The basic RNS processor’s architecture is shown in Fig.  1.1. It consists of three main 

components; a forward converter (binary to residue converter), that converts the binary 

number to n equivalent RNS residues, corresponding to the n moduli. The n residues are then 

processed using n parallel residue arithmetic units (RAUs); each of them corresponds to one 
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modulo. The n outputs of these units represented in RNS are then converted back into their 

binary equivalent, by utilizing the reverse converter (residue to binary converter).  

The structure of this desecration is organized as follows; Chapter 2 presents a brief 

survey about the most recently achievements in the RNS, concerning different proposed 

moduli sets that provide different dynamic ranges, the common means and structures to 

perform forward and reverse conversion, general structures of residue arithmetic units and 

applications where using the RNS is advantageous. Then, the main aims and purposes of this 

dissertation are stated in Chapter 3. Chapter 4 is dedicated to present the dissertation results 

including the proposed RNS components, proposed RNS-based applications, comparisons 

between RNS and binary-based applications, and the cases when RNS should be used. 

Moreover, some widely accepted concepts are proven wrong. Finally, the conclusions, 

outcomes and the final remarks of this dissertation are illustrated in Chapter 5.  
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2 State of the art 

This chapter presents a summary of the fundamental principles of the RNS; RNS’s 

components, their basics and the most commonly used designs. The most recent work and 

researches are also presented in this chapter. Each component in the RNS will be separately 

discussed, in order to provide a brief overview and state the recent achievements in its field. 

The interest in RNS arithmetic has started since 1950’s  [1],  [2]. The first hardware based 

on the RNS was built in 1967. The work in this field continued and many improvements in all 

areas of the RNS have arisen, in order to enhance its features, resolve its related problems and 

find suitable applications that benefit from RNS’s features. Most of the early designs of RNS 

were based on read-only memories (ROM). However, the great advance in VLSI (very large 

scale integration) technology paved the way for new approaches in designing RNS systems.  

New trends to design non-ROM based RNS have appeared. Subsequently, much work 

has been devoted for special moduli sets.  Excellent results in terms of computational speed 

have been achieved in 2000  [2]. 

The most important issues that must be taking into account when designing an RNS 

system are, a proper moduli set selection, forward conversion, residue arithmetic units and 

reverse conversion. A brief of each of these issues and its recent achievements are separately 

discussed in the following sections. 

2.1 Moduli set selection 

Choosing a proper modulo set is an essential issue for building an efficient RNS with a 

sufficient dynamic range (DR). The number, form and value of the moduli affect the dynamic 

range, timing performance and hardware complexity of an RNS-based application  [3]. 

The moduli set in the RNS can be either arbitrary or special. In principal, special moduli 

sets were suggested in order to simplify the implementation of arithmetic operations. This 

invariably means that arithmetic on residue digits should not deviate too far from 

conventional arithmetic, which is just arithmetic modulo a power of two  [1]. On the other 

hand, arithmetic circuits based on arbitrary moduli sets are much more complex and time 

consuming. These sets are utilized in cases when using special moduli sets imposes some 

constraints. 

The most famous moduli set is {2
n
 – 1, 2

n
, 2

n
 + 1}  [4]. This set has been known as a 

means of simplifying the calculations necessary to implement the reverse converter (RC). 

However, this set has modulo (2
n
 + 1) channel that represents the bottleneck of the system. Its 

arithmetic circuits suffer from the longest delay among all three channels.  
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In general, arithmetic circuits modulo (2
k
 – 1) are more efficient than those modulo (2

k
 + 

1), therefore, it is better to reduce the number of moduli of the form (2
k
 + 1)  [5]. Thus, in 

order to simplify the complexity caused by modulo (2
n
 + 1) in the set {2

n
 – 1, 2

n
, 2

n
 + 1}  [4], 

new moduli sets {2
n–1

 – 1, 2
n
 – 1, 2

n
}  [6] and {2

n
 – 1, 2

n
, 2

n+1
 – 1}  [7], that substitute this 

modulo with another of the form (2
k
 – 1), have been suggested. These three sets have a 3n-bit 

DR, which is sufficient for applications that require medium DRs (less than 22 bits).  

However, many DSP applications require larger DRs, therefore, new moduli sets {2
n
 – 1, 

2
n
, 2

2n+1
 – 1}  [8] and {2

n
 – 1, 2

n
 + 1, 2

2n
 + 1}  [9] that provide 4n-bit DR and {2

n
, 2

2n
 – 1, 2

2n
 + 

1}  [10] that provides 5n-bit DR, have been suggested. Although the DR is larger, the delay of 

the RAUs based on these sets has considerably increased, due to utilizing moduli with greater 

magnitudes. In order to eliminate this drawback and maintain the large DR, sets of four and 

five moduli have been suggested, such as {2
n
 – 1, 2

n
, 2

n
 + 1, 2

n+1
 – 1}  [11]-I, {2

n
 – 1, 2

n
, 2

n
 + 

1, 2
n+1

 + 1}  [11]-II, {2
n
 – 1, 2

n
, 2

n
 + 1, 2

2n
 + 1} [12], {2

n
 – 1, 2

n
, 2

n
 + 1, 2

2n+1
 – 1} [13]-I, {2

n
 – 

1, 2
n
, 2

n
 + 1, 2

n
 – 2

(n+1)/2
 + 1, 2

n
 + 2

(n+1)/2
 + 1}  [14], {2

n
 – 1, 2

n
 + 1, 2

2n
 – 2, 2

2n+1
 – 3}  [15], {2

n
 

– 1, 2
2n

, 2
n
 + 1, 2

2n
 + 1}  [13]-II, {2

n
 – 1, 2

n
, 2

n
 + 1, 2

n–1
 – 1, 2

n+1
 + 1}  [16], {2

n
, 2

n/2
 – 1, 2

n/2
 + 

1, 2
n
 + 1, 2

2n–1
 – 1}  [17], {2

n/2
 – 1, 2

n/2
 + 1, 2

n
 + 1, 2

2n+1
 – 1}  [18], {2

n
 + 1, 2

n
 – 1, 2

2n
, 2

2n+1
 – 

1}  [19] and {2
2n+1

, 2
2n

 + 1, 2
n
 + 1, 2

n
 – 1}  [20]. Each of these sets has its own advantages and 

disadvantages. Some of them offer higher DRs than others, while others have more 

parallelism. Some of them concentrated on designing efficient RCs, while others on efficient 

RAUs. 

Tab.  2.1 illustrates the most recently published moduli sets, including the dynamic ranges 

they provide and possible n values that can be used in these sets.  

Tab. ‎2.1: The most recently published moduli sets 

Number of moduli Modulo set Dynamic range n odd/even 

Three moduli sets 

{2
n
 – 1, 2

n
, 2

n
 + 1}  [4] 3n any 

{2
n–1

 – 1, 2
n
 – 1, 2

n
}  [6] 3n – 1 any 

{2
n
 – 1, 2

n
, 2

n+1
 – 1}  [7] 3n + 1 any 

{2
n
 – 1, 2

n
, 2

2n+1
 – 1}  [8] 4n + 1 any 

{2
n
 – 1, 2

n
 + 1, 2

2n
 + 1}  [9] 4n any 

{2
n
, 2

2n
 – 1, 2

2n
 + 1}  [10] 5n even 

Four moduli sets {2
n
 – 1, 2

n
, 2

n
 + 1, 2

n+1
 – 1}  [11]-I 4n + 1 even 
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{2
n
 – 1, 2

n
, 2

n
 + 1, 2

n+1
 + 1}  [11]-II 4n + 1 odd 

{2
n/2

 – 1, 2
n/2

 + 1, 2
n
 + 1, 2

2n+1
 – 1}  [18]  4n + 1 even 

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

2n
 + 1}  [12] 5n any 

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

2n+1
 – 1}  [13]-I  5n + 1 any 

{2
n
 – 1, 2

2n
, 2

n
 + 1, 2

2n
 + 1}  [13]-II 6n any 

{2
n
 – 1, 2

n
 + 1, 2

2n
 – 2, 2

2n+1
 – 3}  [15] 6n + 1 any 

{2
n
 + 1, 2

n
 – 1, 2

2n
, 2

2n+1
 – 1}  [19] 6n + 1 any 

{2
2n+1

, 2
2n

 + 1, 2
n
 + 1, 2

n
 – 1}  [20] 6n + 1 any 

Five moduli 

sets 

{2
n
, 2

n/2
 – 1, 2

n/2
 + 1, 2

n
 + 1, 2

2n–1
 – 1}  [17] 5n – 1 even 

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

n
 – 2

(n+1)/2
 + 1,  

2
n
 + 2

(n+1)/2
 + 1}  [14] 

5n odd 

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

n–1
 – 1, 2

n+1
 + 1}  [16] 5n even 

 

2.2 RNS Converters  

Every RNS system involves forward and reverse converters that convert weighted 

numbers into their equivalent RNS representation and vice versa, respectively.  

The structures of these converters can be memory-based, conventional-based or mix of 

both. The choice is actually determined by the dynamic range required for the application 

being designed. For applications with small dynamic ranges, such as digital image processing 

where the range of pixel values is [0,255], the memory-based converters are the most 

efficient. Contrary, for applications with large dynamic ranges (greater than 22 bits), such as 

cryptography and some FIR filters, the combinational structure of the converters is preferred. 

The next two sections illustrate the converters based on the combinational structure. 

2.2.1   Binary to residue converters 

The structure of the binary to residue converter (forward converter) is rather simple. 

Hence, little work was devoted to this component  [21]. 

In order to illustrate the forward conversion process, forward conversion equations 

corresponding to the special moduli set {2
n
 – 1, 2

n
, 2

n
 + 1} will be stated  [1],  [2]. Actually, by 

modifying k, these equations can be applied with any modulo of the form (2
k
 ± 1) within the 

sets presented in Tab.  2.1.  
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Assuming X is a 3n-bit integer. X can be written as follows, 

2

3 1 3 2 1 0 2 1 2 3( ) 2 2     n n

n n n nX b b b b b B B B    ( 2.1) 

where, b3n-1 … b0 are the binary digits (bits) of X.  B1, B2, B3 are blocks, each of them contains 

n bits.  

ADD 
  mod (2 1)n

SUB 
  mod (2 1)n

3B

2B
1B

  2

1 2 32 2n nX B B B
3n bit

ADD 
  mod (2 1)n

1B

ADD 
  mod (2 1)n

3B


1 2 1nx X


3 2 1nx X

B3

2 2nx X
 

Fig. ‎2.1: RNS forward converter for the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1}  [1] 

The RNS representation of X according to the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1}, 

 
2

1 1 2 3 1 2 32 1 2 1 2 12 1
2 2

  
      n n nn

n nx X B B B B B B   ( 2.2) 

 
2

2 1 2 3 32 2 22
2 2    n n nn

n nx X B B B B     ( 2.3) 

2

3 1 2 3 1 2 32 1 2 1 2 12 1
2 2

  
      n n nn

n nx X B B B B B B   ( 2.4) 

Equations ( 2.2), ( 2.3) and ( 2.4) are extracted based on the following, 

2 12 1 2 1

22

2 12 1 2 1

2 2 1 1 1

2 0

2 2 1 1 1

nn n

nn

nn n

n n

n

n n

 

 

   



    

     ( 2.5) 

According to equations ( 2.2), ( 2.3) and ( 2.4), the general structure of the forward 

converter for the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1} is shown in Fig.  2.1  [1], 
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2.2.2   Residue to binary converters 

Unlike forward converters, residue to binary converters (reverse converters) gained much 

more interest due to their complexity. This component is considered the most time consuming 

component in the whole RNS system. It is also used for performing difficult RNS operations 

(division, scaling, comparison, overflow and sign detection). Researchers continuously try to 

reduce the delay of the reverse converters, due to the reason that having a slow reverse 

converter may counteract the speed gain of the residue arithmetic unit, hence, ruining the 

whole advantages of using the RNS.  

Reverse conversion algorithms are based on the Chinese remainder theorem (CRT), 

mixed-radix conversion (MRC) and new Chinese remainder theorems (new CRTs). Every 

algorithm has its own advantages and disadvantages. The decision to use any of them is based 

on the used moduli set, the application being designed and the design’s requirements (time, 

area, power). All reverse conversion methods depend on computing multiplicative inverses. 

The multiplicative inverse x
-1

 of residue x relative to modulo m is defined as follows, 

 
1 11 ; 0 ,    

m
x x x x m     ( 2.6) 

It is clear that finding x
-1

 is not a simple task. However, using special moduli sets can 

make the computation of multiplicative inverses easier.  

According to the CRT, a weighted number X can be calculated from its residues (x1, 

x2,…, xn) by the following equation  [1],  [2], 

1

 
i

n

i i im
i M

X x N M      ( 2.7) 

where, 1 2    nM m m m , /i iM M m  and 1

i
i i m

N M  is the multiplicative inverse of 

Mi relative to modulo mi. 

The CRT-based converter can be implemented in parallel. However, it needs a large 

modular adder, which can be very difficult for hardware implementation. Reverse converters 

based on the CRT were proposed in  [4],  [6],  [7],  [10] and  [14]. 

By using the MRC, a residue number (x1, x2,…, xn) can be converted back into its 

weighted equivalent X by, 

1

3 2 1 2 1 1

1

...




    
n

n i

i

X v m v m m v m v     ( 2.8) 
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where,  

1 1v x        ( 2.9) 

2
2

1

2 2 1 1( )   
m

m

v x v m      ( 2.10) 

 
3 3

3

1 1

3 3 1 1 2 2(( ) )     
m m

m

v x v m v m    ( 2.11) 

As illustrated in equation ( 2.8), the MRC does not need any special modular adder. 

However, it is a sequential algorithm, which makes it not suitable for systems with more than 

four moduli within the set  [7],  [8]. To overcome such a case (more than four moduli), a two-

level structure consisting of the MRC and one of the CRTs is proposed in  [11],  [16],  [17]. 

The new CRT-I is a modification of the original CRT, where the size of the final modular 

adder is reduced by one modulo. Using this algorithm, a residue number (x1, x2,…, xn) can be 

converted back into its weighted equivalent X by, 

2 3
1 1 1 2 1 2 2 3 2 1 2 3 1 1( ) ( ) ( )          

n
n n n n m m m

X x m k x x k m x x k m m m x x  ( 2.12) 

where, 

 
2 3

1 1 1 
nm m m

k m      ( 2.13) 

 
3

2 1 2 1  
nm m

k m m     ( 2.14) 

 1 1 2 1 1     
n

n n m
k m m m    ( 2.15) 

As can be noticed in equation ( 2.12), the final modular adder is reduced by one modulo. 

This can bring a great benefit when the first modulo is of the 2
k
 form, and the multiplication 

of the rest moduli is of the (2
k
 – 1) form. Such reverse converters are reported in  [9],  [12]. 

The new CRT-II even further reduces the size of the final modular adder. A residue 

number (x1, x2,…, xn) can be converted back into its weighted equivalent X by the new CRT-II 

by, 

3 4

2

4

1 2 1

1 1 2 2 1

3 3 3 4 3

( )

( )

( )

m m

m

m

X Z m m k Y Z

Z x m k x x

Y x m k x x

  

  

  

     ( 2.16) 

where, 
3 4 2 4

1 1 2 2 1 3 31, 1, 1
m m m m

k m m k m k m    
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This algorithm is very efficient. It is used with sets that have four or more moduli. 

Reverse converters based on the new CRT-II are presented in  [13],  [15]. 

2.3 Residue Arithmetic Units  

The RNS contains a number of residue arithmetic units corresponding to the number of 

moduli. These RAUs are totally independent and perform arithmetic operations in parallel. 

As aforementioned before, addition, subtraction and multiplication are easy operations in 

the RNS (RNS-friendly operations). On the other hand, division, scaling, comparison, 

overflow and sign detection are complex and preferred to be avoided as much as possible.  

The RNS friendly operations are carried out by individually performing that operation on 

each residue corresponding to the moduli. Thus, no carry is propagated from one residue to 

another. This leads to parallel arithmetic operations, reduced carry propagation length in 

adders and smaller sizes of multipliers, hence, providing considerably reduced-delay and area 

applications. 

 
1 2

1 2 1 2

1 1 2 2

1 2

( , , , ) , ( , , , )

, , , ; ( , , )

( , , , )

 

     



n

n n

n nm m m

n

X x x x Y y y y

Z X Y x y x y x y

Z z z z

  ( 2.17) 

The structure of the RAU is based on one of the following three methods; a pure memory 

structure, a combinational structure or a mix of both  [1],  [2],  [22]. The first approach is 

realized by using ROMs  [23]. The main drawback of this approach is the exponential growth 

of the memory size for large moduli. Therefore, this approach is suitable only for small 

moduli. The second approach depends on pure combinational structure. This approach is 

suitable for large moduli  [24]. A RAU based on the third approach, that uses both memory 

and combinational circuits, is presented in  [25]. 

2.3.1   Modular addition 

Modular addition is a fundamental operation in the RNS. It is used in almost every part of 

the RNS (forward converter, reverse converter, modular multipliers, modular subtractors and 

modular adders themselves). Therefore, designing efficient modular adders has gained a wide 

interest. The primary equation for performing general modular addition, which was hardware-

realized in  [22], is defined by,  

; 0

;m

x y if x y m
x y

x y m if x y m

   
  

   
   ( 2.18) 
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Assuming that the width of modulo m is n bits, the structure of the general modular adder 

is shown in Fig.  2.2  [22]. It consists of two n-bit adders, an OR gate and a multiplexer. 

ADD

n bit

ADD

n bit
Cout

Cout

MUX
01

2 – m
n

x y

 
m

z x y
 

Fig. ‎2.2: The structure of general modulo adder  [22] 

As stated above, using special moduli sets can considerably simplify the realization of 

arithmetic circuits. Regarding the most famous moduli set {2
n
 – 1, 2

n
, 2

n
 + 1}, three modular 

adders are specially designed corresponding to each modulo.  

A modulo (2
n
) adder can be simply realized using an n-bit binary adder, with ignored 

carry-out.  A modulo (2
n
 – 1) adder, can also be simply realized using an n-bit binary adder 

with EAC (end around carry)  [26].  

However, modulo (2
n
 + 1) adder is considered to be more complex, due to the (n + 1)-bit 

operands and results. It represents the bottleneck of the system. Its arithmetic circuits suffer 

from the longest delay among all three channels. Therefore, many researchers have focused 

on this type of modular adders. Diminished-one number system has been used in  [27],  [28]. In 

this number system, (n + 1)-bit operands are represented using just n bits, which results in 

speeding-up the execution time. However, this speed-up is at the cost of more area 

consumption occupied by converters to/from the diminished-one representation and special 

treatment required for operands equal to zero  [29]. A quite interest publication  [26] has 

illustrated different structures of modular adders for both general and special moduli sets. In 

this publication, both standard binary and diminished-one representation for modulo (2
n 

+ 1) 

adders have been used. 
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Much investigation and research was devoted in order to improve timing performance of 

modular adders. One of the suggested means is by utilizing faster binary adders, such as 

parallel prefix adders  [28],  [29] and  [30]. 

In principal, the general structures of modular adders based on the moduli set {2
n
 – 1, 2

n
, 

2
n
 + 1} are illustrated in Fig.  2.3  [1],  [26]. These structures have been utilized during the 

study on different moduli sets, which is presented in Section  4.1.  

ADD

n bit

ADD

n bit
coutcout

cin 1

01
MUX


 

2 1nz x y

x y

ADD

n bit

 
2nz x y

cout

x y

     

MUX
01

2 – 1
n

x y


 

2 1nz x y

ADD

(n+1) bit
cout

ADD

(n+1) bit
cout

 

Fig. ‎2.3: General structures of modular adders based on the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1}  [1],  [26] 

2.3.2   Modular subtraction 

RNS subtraction is an operation greatly used in many fields of DSP, such as, the mean 

error estimation, mean square error estimation and calculation of sum of absolute differences 

 [1],  [2]. Since modulo arithmetic is also frequently used in these types of applications, 

efficient modulo subtraction circuits are welcome. However, modular subtraction can be 

considered as a special case of modular addition, where an additive inverse is used. It is 

defined as follows,  

 
m m mm m

y y m y x y x y           ( 2.19) 

Assuming the width of modulo m is n bits and according to equation ( 2.19), a general 

modulo subtractor can be designed using an n-bit subtractor followed by a general modulo m 

adder. The structure of this subtractor is illustrated in Fig.  2.4  [1],  [2]. 
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Very little work was dedicated for studying and designing modular subtractors. 

According to Property 1, a modulo (2
n
 – 1) subtractor can be simply realized using modulo 

(2
n
 – 1) adder and a few inverters.  

Property 1: The residue of a negative residue number (–x) in modulo (2
n
 – 1) is the one’s 

complement of x, where 0 ≤ x < 2
n
 – 1.  

Therefore, most studies were dedicated for designing efficient modulo (2
n
 + 1) 

subtractors, such as  [31],  [32]. The authors of  [31] presented novel architectures of modulo 

(2
n
 + 1) subtractors, which are efficient in terms of delay and area using both normal and 

diminished-one number representation. Moreover, zero handling was also taken into account 

and a special unit that treats the operands equal to zero was designed. 

ADD mod m

SUB
n bit

m

x

y

 
m

z x y

y

 

Fig. ‎2.4: The structure of general modular subtractor  [1],  [2] 

2.3.3   Modular multiplication 

Modular multiplication is a very important operation in the RNS. It is used in many 

applications such as FIR (finite impulse response) filters, Fourier transforms and digital image 

processing  [1],  [2]. The speed gain of modular multipliers is indeed the most attractive aspect 

for using RNS-based DSP applications. 

There are two general methods for performing modular multiplication  [33]; the first 

method depends on multiplication then reduction with regard to modulo. This method 

requires a large space to store the product of the multiplication in order to perform the 

reduction process thereafter  [33]. The basic structure of the modular multiplier based on this 

method consists of a binary multiplier followed by a reduction unit. This reduction unit can be 

further simplified in case of using the special moduli sets. This approach has been utilized in 

 [34],  [35]. An example of this method is shown in Fig.  2.5. The structure of this multiplier is 

based on the product-partitioning approach presented in  [1]. 
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2n-bit

Multiple

Modulo (m)
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cU

L n-bitU

 
m

z x y
 

Fig. ‎2.5: The structure of general modulo multiplier  [1] 

The second approach is based on interleaving multiplication and reduction. Many 

publications used this approach. A modular multiplier based on the Montgomery reduction 

algorithm was presented in  [36]. In this structure, the reduction is performed at each iteration 

step of the multiplication process. Montgomery reduction algorithm is efficient for very large 

dynamic ranges; where the width of modulo is several hundred bits. Another efficient 

hardware implementation method for multiplying integers – Wallace tree – was used in RNS 

multipliers for both moduli (2
n
 – 1, 2

n
 + 1)  [37],  [38]. Two RNS multipliers for moduli (2

n
 – 

1, 2
n
 + 1) based on modified Booth were published in  [39],  [40]. According to the authors, 

these modular multipliers offer fast and completely regular structures, because the modified 

Booth algorithm reduces the number of partial products to about half of that of the Booth 

algorithm. An RNS multiplier that depends only on binary adders has been published in  [41]. 

This multiplier is an improved design of  [42], whose architecture is almost exclusively 

composed of full and half adders. 

2.3.4   Complex operations in the RNS (overflow detection, sign detection and 
residue comparison) 

As aforementioned before operations as division, overflow detection, sign detection and 

magnitude comparison are problematic and very complex in the RNS. In some cases, some of 

these operations are essential and cannot be avoided. Hence, a number of methods for solving 

these problems have been suggested. A survey of the methods for overflow detection, sign 

detection and magnitude comparison is briefly presented below.  
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In principle, the general way to detect overflow in the RNS is via comparing the result of 

addition with one of the addends. Suppose two integers x, y. These two integers are being 

added modulo m. If x ≥ 0 and y < m  [1],  [2],  

1 ;

0 ;

m
if x y x

Overflow
otherwise

  
 


    ( 2.20) 

One of the fastest and most efficient ways to detect overflow in the RNS is via parity 

checking  [2],  [43],  [44]. It indicates whether an integer is even or odd. However, this 

technique can only be used with odd dynamic ranges. Suppose two integers x and y have the 

same parity,  

1 ;

0 ;

m
if x y is odd

Overflow
otherwise

 
 


   ( 2.21) 

 Contrary, if x and y have different parity,  

1 ;

0 ;

m
if x y is even

Overflow
otherwise

 
 


   ( 2.22) 

The parity checking technique is one of the best and fastest proposed methods to detect 

overflow in the RNS. It depends on look-up tables (LUTs) or on an extra modulo (a redundant 

modulo). However, this technique can only be used with moduli sets that have just odd 

members, i.e. odd dynamic range, which is not suitable for many moduli sets that uses 2
n
 as 

one of its moduli, especially the most famous moduli set {2
n
 – 1, 2

n
, 2

n
 + 1}. RNSs with even 

dynamic ranges have more attractive features than those with odd ones. Due to the reason, 

that using 2
n
 modulo greatly simplifies and reduces the delay and complexity of the residue 

arithmetic operations and the residue-to-binary conversion. Thus, overflow detection in the 

RNS with even dynamic range is a very important issue.  

On the other hand, according to equation ( 1.5) for signed RNS, the general way for sign 

detection in the RNS is via comparing the numbers, after reverse converting them back to the 

weighted form, with half of the dynamic range  [1],  [2].  

Concerning magnitude comparison in the RNS, many comparators based on residue to 

binary converters were proposed. In principal, the straightforward way to compare two 

residue numbers in the RNS is to reverse convert them into weighted representation and then 

carry out a conventional comparison  [1]. However, this method is costly; therefore, many 

approaches were suggested in order to perform comparison on the residue numbers  [45],  [48].  
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One of the first suggested approaches is based on a diagonal function that is defined as 

the sum of suitable quotients of the number named as SUM of Quotients Technique (SQT) 

 [45]. This approach uses an extra modulo that is inserted in the used set of moduli. Another 

residue comparator, based on the new CRT-II, was suggested in  [46].  Contrary to the 

previous comparator, this one does not use any extra modulo and provides smaller modulo 

operation. One of the simplest ways to perform residue comparison is based on the new CRT-

I  [4]. This approach utilizes two parallel binary comparators of 2n bits and n bits. A residue 

comparison algorithm based on the CRT for general moduli sets was suggested in  [47]. In this 

paper, an efficient ROM-free residue comparator for {2
n
 – 1, 2

n
, 2

n
 + 1} was also presented. 

According to the authors, this comparator is faster and reduces the hardware close to the half 

of the one based on the new CRT-I  [4]. In  [48],  [49], efficient methods based on the parity 

checking technique were proposed. However, these methods can only be used with odd 

moduli sets. Thus, they cannot be used in an RNS based on {2
n
 – 1, 2

n
, 2

n
 + 1}. 

2.4 RNS Applications  

Due to the carry-free, residue independence and parallelism features of the RNS, it has 

been intensively used in many fields, such as digital signal processing, digital filtering, digital 

communications, cryptography, error detection and correction  [1],  [2]. Moreover, new trends 

to use the RNS in low-power design have also arisen. In principal, this system is of great 

benefit in areas where addition, subtraction and multiplication are dominant and division, 

comparison, overflow and sign detection are minor. Hence, the RNS has become a tough 

candidate for high-performance, fault tolerant and secure DSP applications. 

One of the main fields for RNS-based applications is finite impulse response (FIR) filters 

 [50]- [55]. In  [50], the authors explore the design workspace of FIR filters with respect to 

structure, characteristics and number of taps. According to the authors, the proposed RNS-

based filter operates at the same throughput as binary filters and has smaller area and power 

consumption, when the number of taps is larger than 16. In  [51], a FIR filer was implemented 

using the RNS based on any number of moduli of the form {2
n
 – 1, 2

n
, 2

n
 + 1}. As reported in 

this paper, the proposed filter provides a significant overall area-delay product gain ranged 

from 35% to 60% for a 16-tap filter with dynamic range from 20 to 40 bits. A very interesting 

and detailed FIR filter performance analysis between RNS and binary is presented in  [52]. 

According to this study, the RNS-based FIR filter is more than 3 times faster and consumes 

only about 60% of the area of binary-based FIR, when the number of taps is larger than 32.  

Furthermore, a number of attempts to design RNS-based infinite impulse response (IIR) 

filters have been also arisen  [56],  [57]. However, the results were not impressive as in FIR 

filters. 
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Trends to use the RNS for reducing power consumption have also appeared  [50],  [53]-

 [55]. In principal, the power dissipation is reduced due to the parallelism feature in the RNS. 

Since the filtering process is divided into a number of smaller word-length filters that operate 

in parallel, hence, these smaller computation units require lower supply voltage for specific 

frequency. One of the most efficient low-power RNS-based FIR filters is presented in  [54]. 

This filter showed static power dissipation reduction of 50% and total power reduction of 

40% compared to the binary filters. However, the dynamic range in this filter was limited to 

20 bits only and the reduced power consumption was achieved for more than 15 taps. 

Digital image processing is another field for benefiting of the RNS’s features. Many 

researches were dedicated for exploiting the RNS features for enhancing digital image 

processing applications  [58]- [62]. One of the first papers that suggested using the RNS in 

image processing are  [58],  [59]. However, the main concentration of these papers was on the 

security aspect rather than benefiting from the parallelism feature of the RNS. An RNS based 

application for filtering digital images was presented in  [60]. The filtering is done in both 

spatial and frequency domains. Since pixel values have the range [0, 255], the authors 

suggested using the moduli set {5, 7, 8} as it provides a dynamic range [0, 279], which they 

considered to be enough for image filtering applications. However, during my study, I have 

found out that this is not true. An example that clarifies this confusion is presented in Section 

 4.7.2. In  [61],  [62], similar structures for edge detection and spatial filtering were also 

introduced.  

In addition, error detection and correction applications greatly benefit from the RNS’s 

features  [63],  [64]. Due to the carry-free and the lack of weighted significance of residue 

digits properties, an error in a digit does not propagate, hence, does not affect other digits. 

One of the suggested methods for detecting and correcting errors is via the redundant RNS 

(RRNs)  [63]. This system uses redundant moduli, thus, errors can be precisely detected and 

corrected. In this system, the dynamic range is divided into two intervals; the legitimate range 

and illegitimate range. A single-digit error is detected if the binary result after reverse 

conversion belongs to the illegitimate range. In order to detect a single-digit error, a single 

redundant modulo is sufficient. On the other hand, in order to detect and correct a single-digit 

error, at least two redundant moduli should be utilized. In  [64], a new technique for error 

detection and correction has been proposed. Contrary to  [63], the proposed technique is based 

on dividing the legitimate range into two subsets; legitimate subset and illegitimate subset. 

Moreover, architecture of a FIR filter with error detection and correction capabilities has been 

also presented in that paper. 
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The RNS has also been used in communication for many purposes, such as parallel 

transmitting a set of orthogonal signals  [65] and direct sequence spread spectrum  [66]. 

Furthermore, cryptography is another area where RNS can be efficiently used. The major 

usage of the RNS is with RSA (Rivest, Shamir and Adleman) algorithm  [67]. 
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3 Aims of Dissertation 

The main objective of this thesis is, designing, simulation and FPGA implementation of 

RNS based building blocks for applications in the field of DSP (binary-to-residue converter, 

residue-to-binary converter, residue adder and residue multiplier). 

Since the RNS results in carry free arithmetic operations and supports high-speed 

concurrent computations, it will be useful to use RNS-based building blocks for DSP 

applications.  

Therefore, the main objective of this thesis is improving these building blocks by 

developing new algorithms and improving existing ones. Hence, the aims of this thesis can be 

categorized as follows, 

Studying different moduli sets, analyzing the relation between moduli number and the 

dynamic range it provides, and evaluating the most efficient ones for different applications 

with different dynamic range requirements. 

Improving and designing novel RNS converters including both forward and reverse 

converters. However, the main focus will be concentrated on the reverse converters, since 

they are the most time and hardware consuming components in the RNS. Comparing ROM-

based structures with combinational ones and analyzing the most suitable converters for 

different applications based on FPGA implementation. 

Improving and designing novel structures of residue arithmetic units including 

modular adders, modular subtractors and modular multipliers with respect to different moduli 

sets. 

Suggesting solutions to simplify RNS difficult operations needed in some DSP 

applications; such as comparison, overflow and sign detection. 

Comparing RNS-based applications with binary-based ones and analyzing the cases 

when using the RNS will be the most efficient. 

Verifying the functionality and efficiency of the proposed designs and comparing 

them against other published ones based on FPGA implementation. 
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4 Dissertation Results 

This part of the thesis is devoted for presenting the proposed work, findings and results of 

the doctoral dissertation. In addition to the proposed designs, comparisons of known 

structures with their analyzing and evaluations are also presented in this Chapter. 

Before beginning, aspects that have been taken into account during my research are 

presented below. 

Blocks within the proposed designs have been described using VHDL. ROMs and RAMs 

have been designed using Xilinx core generator v. 13.4. The proposed designs were simulated 

using Xilinx ModelSim tool and implemented on different FPGA boards. The maximum 

frequencies and power consumptions were calculated using Xilinx Timing Analyzer and 

XPower Analyzer tools v. 13.4. The hardware consumptions are the ones shown in the post 

place and route reports in Xilinx ISE v. 13.4. The design main goal and strategy was mostly 

set to “balanced”. The individual cases, when other strategies were adopted, are specifically 

mentioned. 

Most of the designs were implemented on FPGA boards. However, for the sake of a fair 

comparison, the unit gate model was sometimes adopted  [75],  [76],  [81] and  [82]. Thus, the 

considerations that have been taken into account concerning the unit gate model are illustrated 

in the appendix in Tab.  6.1.  

4.1 The most efficient moduli set for each dynamic range 

In this section, a study on the effect of the moduli number in a moduli set on the overall 

speed of the RNS is presented. Choosing a proper moduli set greatly affects the performance 

of the whole system. The widely known issue is that as the number of moduli increases the 

speed of the residue arithmetic units increases, whereas the residue-to-binary converters 

become slower and more complex. It is a double-edged sword, since the greater this number 

is, the faster residue arithmetic units are and more complex and difficult reverse converters to 

design. Thus, I carried out a detailed study on different moduli sets with different moduli 

numbers and different dynamic ranges, and compared timing performance of systems based 

on them in order to determine the moduli number effect on the overall RNS timing 

performance and find out the most efficient set for each dynamic range. Timing performance 

of the reverse converters and residue arithmetic units based on three precise DRs, (12 bits 

(medium DR), 24 bits (large DR) and 60 bits (very large DR)) is compared, and the most 

efficient and inefficient set for each DR is evaluated. For the sake of a fair comparison, the 

unit gate model is adopted. Furthermore, I have used same basic blocks among all designs 

(e.g. adders and multipliers). 
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As aforementioned in Section  2.1, many moduli sets were suggested in order to enhance 

the dynamic range, timing performance and hardware complexity of the residue arithmetic 

units and reverse converters within the RNS. Generally, the main concentration of 

publications that introduced these sets was only on the reverse converters rather than the 

overall performance of the system based on these sets. Thus, I have observed a lack to a 

detailed comparative study that fairly compares these sets, in terms of DR, number of moduli, 

time and hardware requirements for implementing reverse converters and residue arithmetic 

units based on them. 

The study has been published in an international conference in Dubai, UAE  [75] and an 

extended version of it has been published in the international journal of Emerging Trends in 

Computing and Information Sciences  [76]. The first paper  [75] presents a detailed comparison 

between different moduli sets based on (delay × complexity) ratio for each component 

according to three precise DRs (12 bits, 24 bits and 60 bits), i.e. the main concentration of the 

study is on systems whose main goal and strategy are set to “balanced”. Whereas, the second 

one  [76] compares different moduli sets based on the delay of each component. Hence, it 

presents the moduli number effect on the timing performance of the overall system, i.e. the 

main concentration of the study is on systems whose main goal and strategy are set to “timing 

performance”. 

4.1.1   Time and hardware requirements of residue arithmetic units and reverse 
converters based on different moduli sets 

In the appendix in Tab.  6.2, Tab.  6.3, Tab.  6.4 and Tab.  6.5, different moduli sets, the 

delay and hardware complexity of the RAUs and reverse converters based on them are 

illustrated. In these tables, different moduli sets, are categorized according to the dynamic 

range they provide (3n, 4n, 5n and 6n) bits. Each of these sets, its DR, the possible n values 

that can be used in this set, the number of its moduli, the critical channel that presents the 

longest delay, time and hardware requirements for implementing reverse converters, modular 

adders and modular multipliers are described in details. The values of the least delays and 

hardware requirements are bold and underlined in order to highlight them.  

These tables show that modular adders and multipliers with respect to modulo (2
k
 + 1) 

have longer delays than those based on modulo (2
k
 – 1). For example, the unit gate delays of 

modulo (2
n
 + 1) adder and multiplier are less than those of modulo (2

n+1
 – 1), even though, 

modulo (2
n+1

 – 1) has a greater amplitude than that of (2
n
 + 1).  

Tab.  4.1 and Tab.  4.2 summarize the reuslts illustrated in Tab.  6.2 - Tab.  6.5 and present 

only the most efficient sets with respect to the reverse converters and RAUs for each dynamic 

range category. The efficiency of these sets has been estimated based on (delay × complexity) 
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ratio. It is clear from Tab.  4.1, that the most efficient reverse converters in each DR category 

are based on the moduli sets whose members can be combined in such a way to produce a 

final modulo of the form (2
k
 – 1). Hence, the structure of the reverse converter based on one 

of the new CRTs becomes rather simple. Regarding the residue arithmetic units, the moduli 

sets of more members are more efficient, as shown in Tab.  4.2. However, evaluating the 

performance of these components altogether and comparing these sets for three precise 

dynamic ranges are presented in details in Section  4.1.2. 

Tab. ‎4.1:  The most efficient moduli sets regarding reverse converters for each dynamic range category 

Dynamic 

range 
Moduli set 

Moduli 

# 

RC 

Delay Complexity 

3n  {2
n
 – 1, 2

n
, 2

n
 + 1}  [4] 3 16n + 8  31n + 13 

4n {2
n
 – 1, 2

n
 + 1, 2

2n
 + 1}  [9] 3 32n + 8 62n + 8 

5n {2
n
, 2

2n
 – 1, 2

2n
 + 1}  [10] 3 32n + 4 44n + 8 

6n 

{2
n
 – 1, 2

2n
, 2

n
 + 1,          

2
2n

 + 1}  [13]-II  
4 32n + 12 88n + 24 

Tab. ‎4.2:  The most efficient moduli sets regarding RAUs for each dynamic range category 

Dynamic 

range 
Moduli set 

Moduli 

# 

Critical 

channel 

Modular adders Modular multipliers 

Delay Complexity Delay Complexity 

3n – 1 
{2

n–1
 – 1, 2

n
 – 1, 

2
n
}  [6] 

3 (2
n
 – 1) 8n 21n – 7 16n – 7 

24n
2
 – 35n 

+ 12 

4n + 1 
{2

n
 – 1, 2

n
, 2

n
 + 1, 

2
n+1

 – 1}  [11]-I 
4 (2

n
 + 1) 8n + 11 45n + 25 

16n + 

12 

32n
2
 + 19n 

+ 19 

5n 

{2
n
 – 1, 2

n
, 2

n
 + 1, 

2
n–1

 – 1, 2
n+1

 + 1} 

 [16] 

5 (2
n+1

 + 1) 8n + 19 62n + 36 
16n + 

28 

40n
2
 + 25n 

+ 72 

6n + 1 
{2

n
 + 1, 2

n
 – 1,   

2
2n

, 2
2n+1

 – 1}  [19] 
4 (2

2n+1
 – 1) 16n + 8 52n + 25 32n + 9 

80n
2
 + 20n 

+ 19 
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4.1.2   The most efficient set for each dynamic range requirement 

In order to find out the effect of moduli number on the system’s performance and 

determine the most efficient set for each DR, I have calculated the delay of each component 

based on each of the studied sets for three precise DRs: medium (12 bits), large (24 bits) and 

very large (60 bits), as illustrated in Fig.  4.1, Fig.  4.2 and Fig.  4.3, respectively.  

In each set, n has been chosen in order to provide the required DR. For example, for DR 

= 12 bits, n was (4, 3, 3, 2) for sets with DR (3n, 4n, 5n, 6n). However, in some cases there 

was some inconsistency (e.g. for sets with DR = 5n, n = 3 provides a DR greater than the 

required 12 bits). Nevertheless, as mentioned in  [76], I have dealt with this issue and 

estimated the approximate delay for the required DR. 

Not all sets are illustrated in the graphs, due to the reason that some of these sets can only 

be used with even values of n ( [10],  [11]-I,  [16],  [17] and  [18]) or odd values of n ( [11]-II and 

 [14]), which does not fit the chosen value of n in order to acquire the required DR. 

Fig.  4.1 shows the delays of the reverse converters, modular adders and modular 

multipliers based on each of the sets  [4],  [6] –  [9],  [11] –  [15],  [19] and  [20], for DR = 12 bits 

(medium DR). In order to acquire this DR, n was chosen (4, 3, 3, 2) for sets with DR (3n, 4n, 

5n, 6n), respectively.  

 

Fig. ‎4.1: The delay of each basic component based on the moduli sets for DR = 12 bits (medium DR) 

As illustrated in Fig.  4.1, the adder with least delay was the one based on the five-moduli 

set {2
n
 – 1, 2

n
, 2

n
 + 1, 2

n
 – 2

(n+1)/2
 + 1, 2

n
 + 2

(n+1)/2
 + 1}  [14]. However, the unexpected thing 

was that the second fastest adder is the one based on the three-moduli set {2
n–1

 – 1, 2
n
 – 1, 2

n
} 
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 [6]. The fastest multipliers were the ones based on the three-moduli set {2
n–1

 – 1, 2
n
 – 1, 2

n
} 

 [6] and four-moduli set {2
2n+1

, 2
2n

 + 1, 2
n
 + 1, 2

n
 – 1}   [20]. Whereas, the slowest ones were 

based on the three-moduli set {2
n
 – 1, 2

n
 + 1, 2

2n
 + 1}  [9] and the four-moduli set {2

n
 – 1, 2

n
 + 

1, 2
2n

 – 2, 2
2n+1

 – 3}   [15]. Concerning the reverse converters, the fastest one is {2
n
 – 1, 2

n
, 

2
n+1

 – 1}  [7] and the slowest one is based on the four-moduli set {2
n
 – 1, 2

n
, 2

n
 + 1, 2

n+1
 + 1} 

 [11]-II.  

Considering the delay of the three components, it is obvious that the three-moduli set {2
n
 

– 1, 2
n
, 2

n+1
 – 1}  [7] and the four-moduli set {2

2n+1
, 2

2n
 + 1, 2

n
 + 1, 2

n
 – 1}  [20] are the most 

efficient, since the components based on these sets have relatively small delays. Thus, for DR 

= 12 bits, we see that the number of moduli does not affect the overall speed of the system. 

Fig.  4.2 shows the delays of the RCs, modular adders and multipliers based on each of the 

sets  [4],  [6] –  [9],  [11] –  [15] and  [18] –  [20], for DR = 24 bits (large DR). In order to acquire 

this DR, n was chosen (8, 6, 5, 4) for sets with DR (3n, 4n, 5n, 6n), respectively.  

Fig.  4.2 shows that the delay trends of the basic components are similar to those in DR = 

12 bits. The fastest adder is the one based on the five-moduli set {2
n
 – 1, 2

n
, 2

n
 + 1, 2

n
 – 

2
(n+1)/2

 + 1, 2
n
 + 2

(n+1)/2
 + 1}  [14]. The four-moduli set {2

n
 – 1, 2

n
, 2

n
 + 1, 2

n+1
 – 1}  [11]-I has 

the fastest multiplier and one of the best adders. However, its RC is the worst. The fastest RC 

is the one based on the three-moduli set {2
n
 – 1, 2

n
, 2

n+1
 – 1}  [7].  

 

Fig. ‎4.2: The delay of each basic component based on the moduli sets for DR = 24 bits (large DR) 
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1, 2
n
 – 1}  [20], since the three components based on these sets have relatively small delays. 

Again, it is clear that five-moduli set {2
n
 – 1, 2

n
, 2

n
 + 1, 2

n
 – 2

(n+1)/2
 + 1, 2

n
 + 2

(n+1)/2
 + 1} does 

not show impressive timing performance. 

Fig.  4.3 shows the delays of the RCs, modular adders and multipliers based on each of the 

sets  [4],  [6] –  [13],  [15] –  [17],  [19] and  [20], for DR = 60 bits (very large DR). In order to 

acquire this DR, n was chosen (20, 15, 12, 10) for sets with DR (3n, 4n, 5n, 6n), respectively.  

Fig.  4.3 shows that the fastest adder and multiplier are the ones based on the five-moduli 

set {2
n
 – 1, 2

n
, 2

n
 + 1, 2

n–1
 – 1, 2

n+1
 + 1}  [16]. However, their RC is the slowest one. The 

fastest RC is the one based on the three-moduli set {2
n
 – 1, 2

n
, 2

n+1
 – 1}  [7]. This set also has 

rather fast adder and multiplier. 

 

Fig. ‎4.3: The delay of each basic component based on the moduli sets for DR = 60 bits (very large DR) 

Considering the delay of the three components, we can say that the most efficient moduli 

sets for this DR = 60 bits are the three-moduli sets {2
n
 – 1, 2

n
, 2

n
 + 1}   [4] and {2

n
 – 1, 2

n
, 2

n+1
 

– 1}  [7], and the four-moduli sets {2
n
 – 1, 2

2n
, 2

n
 + 1, 2

2n
 + 1}  [13]-II and {2

2n+1
, 2

2n
 + 1, 2

n
 + 

1, 2
n
 – 1}  [20], as the components based on these sets have relatively small delays.  

Since the most competent sets are not the five-moduli ones for all three DRs and the three 

moduli sets  [4] and  [7] showed the best timing performance concerning all the three 

components, we conclude that the number of moduli does not affect that much the overall 

delay of the system considering all its components. There is no point for choosing a five-

moduli set if the overall timing performance will be worse than that based on three or four-

moduli sets. 
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A comparison between the most efficient sets for different dynamic ranges based on 

timing performance  [76] and delay × complexity ratio  [75] is illustrated in Tab.  4.3. In  [75], 

the most efficient set for medium DR, in terms of (delay × complexity) ratio, is the three-

moduli set  [6]. Whereas in  [76], the most efficient set for the same DR, in terms of timing 

performance, is the three-moduli set  [7]. Regarding the large dynamic range, the most 

efficient set in  [75] is the four-moduli set  [11]-I, whereas, it is the three-moduli set  [7] in  [76]. 

In a similar manner, the most competent set with the relatively best (D × C) ratios for very 

large DR was the four moduli set  [13]-II. In  [76], the most efficient set for the same DR is 

again the three-moduli sets  [7].  

It is obvious that five-moduli sets were not mentioned in the above comparison. These 

sets show better timing performance in medium and large DRs than that in very large DR. 

Although their RAUs were of the best ones for the very large DR, their RCs were the worst. 

According to this research, the unexpected issue I have ascertained is that five-moduli sets do 

not show any superiority over other sets taking into account the three components of RNS 

(modular adders, modular multipliers and RCs). 

Tab. ‎4.3:  Comparison between best moduli sets based on (D × C)  [75] and timing performance  [76]  

Dynamic 

range 

Best moduli sets based on (D × C) ratio 

 [75] 

Best moduli sets based on timing 

performance  [76] 

moduli set moduli #  moduli set moduli #  

Medium 

(12 bits)  
{2

n–1
 – 1, 2

n
 – 1, 2

n
}  [6] 3 {2

n
 – 1, 2

n
, 2

n+1
 – 1}  [7] 3 

Large    

(24 bits) 

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

n+1
 – 1}  [11]-

I 
4 {2

n
 – 1, 2

n
, 2

n+1
 – 1}  [7] 3 

Very large 

(60 bits) 

{2
n
 – 1, 2

2n
, 2

n
 + 1, 2

2n
 + 1} 

 [13]-II 
4 {2

n
 – 1, 2

n
, 2

n+1
 – 1}  [7] 3 
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4.2 Proposed forward converter 

Due to the fact that binary to residue converters are rather simple, little work has been 

dedicated to enhance their performance. Since my research dealt with special moduli sets 

rather than general moduli sets, the utilized components to obtain residues with respect to the 

moduli set {2
n
 – 1, 2

n
, 2

n
 + 1} are presented in this section.  

Since the majority of moduli, within the moduli sets aforementioned in Section  4.1, have 

one of the following forms (2
k
 – 1), (2

k
) or (2

k
 + 1), thus, the illustrated forward converters 

can be used to obtain the RNS representation with respect to any of those sets. 

The most straightforward residue to obtain is the one with respect to modulo 2
n
. 

According to equation ( 2.3), this residue represents the least n bits of the binary number. 

Thus, no adders or any logical components are needed.  

However, according to equation ( 2.2), computing a residue with respect to modulo (2
n
 – 

1), demands two consecutive modulo (2
n
 – 1) adders, as illustrated in Fig.  2.1. Instead of 

using this structure, a carry save adder with end around carry (CSA-EAC) followed by a carry 

propagate adder with end around carry (CPA-EAC) can perfectly fulfill the task. This 

structure is shown in Fig.  4.4. 

CSA-EAC
n bit

1B
2B3B

CPA-EAC
n bit


1 2 1nx X

 

Fig. ‎4.4: Modulo (2
n
 – 1) channel of the binary to residue converter 

The most difficult residue to obtain is the one with respect to (2
n
 + 1) modulo. According 

to equation ( 2.4), this one requires a modulo (2
n
 + 1) subtractor followed by a modulo (2

n
 + 1) 

adder, as illustrated in Fig.  2.1. This structure is rather complicated, since both components 

are complex and time consuming.  

As stated in Section  2.2.1, 

2

3 1 2 3 1 2 32 1 2 1 2 12 1
2 2

  
      n n nn

n nx X B B B B B B   ( 4.1) 



Residue Number System Based Building Blocks for Applications in Digital Signal Processing 
 

 

- 43 - 

 

 

According to equation ( 2.19), 2 2 1nB


 can be rewritten as follows,  

2 22 1 2 1
2 1n n

nB B
 

         ( 4.2) 

Based on the two’s complement properties,  

2 2 22 1 2 1 2 1
2 1 2 1 1 2 2

n n n

n n nB B B
  

            ( 4.3) 

where, 2B refers to the one’s complement of 2B . 

Hence, the structure of the component that computes the residue with respect to modulo 

(2
n
 + 1) can be realized using two parallel binary adders followed by a modulo (2

n
 + 1) adder. 

The structure is shown in Fig.  4.5. 

Since the adder that adds 2"100 010" B  has one constant operand, this structure can 

be further simplified. According to the full adder equations for obtaining the sum and carry-

out,  

, ( ) ( ) ( )sum a b cin cout a b b cin a cin            ( 4.4) 

where, a, b, cin, sum and cout refer to the two addends, carry-in, sum of the two addends and 

carry-out, respectively. The width of each of these operands is 1 bit. ( , , )   refer to the 

logical gates, XOR, AND, OR, respectively. 

ADD
n bit

1B
3B

ADD
(n + 1) bit

1

"10 010"

n bit

2'0 '& B

ADD mod
(2 1)n


3 2 1nx X

&cout sumsum

(n +1) bit

 

Fig. ‎4.5: Proposed component for computing a residue with respect to modulo (2
n
 + 1) channel of the binary 

to residue converter 

By replacing each bit of the second addend by its corresponding of "100 010" , 
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2 2'0 '& "10 010" '1'& "10 010"B B        ( 4.5) 

0 2,0 0

1 2,1 1 2,1

2, 1 2, 1

1

, 0

,

, ; [2, 1]

, 1

i i i i i i

n n n

sum B cout

sum B cout B

sum B cout cout B cout i n

sum cout cout

 



 

 

     

 

  ( 4.6) 

where, 
2,iB refers to the i

th
 bit of 2B . 

From equations ( 4.6), it is obvious that the (n + 1) full adders can be replaced by (n – 2) 

half adders. However, this simplification does not reduce the delay (due to the second adder 

that adds B1 + B3), but the overall hardware complexity decreases. 

The proposed forward converter along with pure ROM-based one has been implemented 

on Virtex-4 XC4VSX25 FPGA. The proposed design was implemented for different dynamic 

range requirements (12 bits, 15 bits, 24 bits and 33 bits).  Timing performance of the 

proposed design was very impressive. The maximum frequency of this converter was (353.4 

MHz, 292.8 MHz, 275.8 MHz and 231.3 MHz) for (n = 4, 5, 8 and 11), respectively.  

A ROM-based converter was also implemented on Virtex-4 FPGA. However, due to the 

lack of the integrated BRAM count, this converter could only be implemented for two 

dynamic ranges (12 bits and 15 bits). The maximum frequency of this design was (383.4 MHz 

and 258.1 MHz) for (n = 4 and 5), respectively. However, the unexpected issue that has been 

observed is, that timing performance of the combinational converter for dynamic range = 15 

bits is better than the ROM-based one by 13.4%. 

Therefore, for large dynamic range requirements, ROM-based converters are not efficient 

to be implemented (at least on this FPGA device), due to the lack of the integrated BRAM 

count. Moreover, using external ROMs is not preferable, since they are considerably slower 

than the built-in ones. 

Thus, for applications that require small dynamic ranges, e.g. digital image processing, 

ROM-based converters are sufficient and are able to provide better performance than 

combinational ones. However, for applications that require larger dynamic ranges, 

combinational forward converters are preferable to be used.  
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4.3 Proposed residue arithmetic units 

The proposed residue arithmetic units including modular adders, modular subtractors and 

modular multipliers are introduced in this section. All proposed designs can be used with any 

modulo of the form (2
k
 ± 1), hence, they can be used with majority of the moduli sets 

mentioned in Section  4.1. The proposed designs that deal with complex operations in the RNS 

are stated after the reverse conversion section, since these operations are partially based on 

this process. The proposed designs have been published in different international conferences 

and journals  [77] –  [80]. 

4.3.1   Proposed modular adders 

This section contains the proposed structures of modular adders. Three modular adders 

were proposed; two of them are specified for modulo (2
n
 + 1), and one for modulo (2

n
 – 1).  

Modulo (2
n
) adders, as mentioned before, have the simplest structures. They can be 

realized using an n-bit binary adder with ignored carry-out. Therefore, my research is focused 

on modulo (2
n
 ± 1) adders.  

Modulo (2n – 1) adder 

Majority of the published structures of modulo (2
n
 – 1) adder perform addition first, and 

then apply the necessary correction, in order to get the correct result that corresponds to this 

modulo. The standard structure of this adder depends on two binary adders and a multiplexer. 

However, the proposed modular adder employs the prefix adders’ concept in order to pre-

calculate the carry-out needed for the correction process. Hence, this proposed adder uses 

only one binary adder and a prefix carry-out computation unit. That is why it is considered 

more time/area efficient. This design has been published in an international conference in 

Brno  [77] and an extended version has been published in ElectroScope journal  [78]. 

Assuming x and y are two modulo (2
n
 – 1) residues of n bits. Their modulo (2

n
 – 1) 

addition is defined by, 

 
2 1

2 1 1 2

1 2 1 1 2
n

n n

n n

x y if x y x y
x y

x y if x y x y


        
  

        
  ( 4.7) 

Therefore, if the carry-out of (x + y + 1) is computed in advance, then this carry-out can 

be fed into a binary adder in order to compute the correct result.  

The prefix carry computation depends on carry generating and propagating signals 

denoted as G, P respectively.  

( ) ( ) ( ) , ( ) ( ) ( ) g i x i and y i p i x i xor y i    ( 4.8) 



Residue Number System Based Building Blocks for Applications in Digital Signal Processing 
 

 

- 46 - 

 

 

1

( 1) ( ) ( ) ( 1) ( ) ( 1) ( 2) ...

( ) ( 1) (1) (0)

( ) ( 1) ( 2) (1) (0) 

           

     

       

c i g i p i g i p i p i g i

p i p i p g

p i p i p i p p C

  ( 4.9) 

where, x(i), y(i) is the i
th

 bit of the n-bit residues x, y, respectively. C–1 is the carry-in, c(i) is 

the carry from the i
th

 to the (i + 1)
th

 bit, and (+, •) refer to the logical operators: inclusive OR, 

AND, respectively. 

By using equations ( 4.8) and ( 4.9), the carry-out can be calculated as follows,  

1 00

1

1 1 1

( ) ( ) ( )




     

   
      

   
  

n

k n i k i n

Cout p i g k p i C    ( 4.10) 

where, (Σ, Π) refer to a sequence of logical operators: inclusive OR, AND, respectively. g, p 

are carry generate and carry propagate signals, respectively, computed by equation ( 4.8).       

C–1 = 1. The proposed adder’s structure is illustrated in Fig.  4.6. In this figure, thick lines refer 

to n-bit buses, while thin lines refer to 1 bit. 

As illustrated in Fig.  4.6, this design contains only one binary adder and a carry-out 

computation unit, instead of two adders and a multiplexer as stated in  [26]. This decreases 

time and area consumptions in the FPGA, especially when using a carry propagate adder 

(CPA), due to its features when implemented on FPGAs. The FPGA has dedicated carry 

ripple logic built-in FPGA  [69]. 

xy
00

xy
11

xy
22

xy
n-1n-1

Carry-out 

Computation Unit
1 Cout Cin

Sum

n-bit

x y

CPA

n-bit
x

y
i

i

g p
i i

n-bit

 

Fig. ‎4.6: Proposed modulo (2
n
 – 1) adder – based on prefix carry-out computation  [78] 

The proposed adder was compared with an already published design  [26], which was 

denoted as (f). The choice of this adder (f) has been done based on its superiority over other 

adders stated in  [26]. Both adders were implemented on Spartan-3 xc3s200 FPGA. According 

to the implementation results stated in Tab.  4.4 and Tab.  4.5, the proposed adder has proven 

its superiority, with savings up to (14.7%, 14.3%) in time, area consumptions, respectively. 
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Tab. ‎4.4: Comparison between the proposed modulo (2
n
 – 1) adder with its counterpart (f) in  [26] in terms of 

critical path delay [ns] 

n Dynamic range Proposed (f) in  [26] Improvements% 

4 12 bits (medium DR) 10.5 12.2 13.9% 

8 24 bits (large DR) 15.4 17.5 12% 

16 48 bits (very large DR) 23.2 27.2 14.7% 

 

Tab. ‎4.5: Comparison between the proposed modulo (2
n
 – 1) adder with its counterpart (f) in  [26] in terms of 

area consumption [slices] 

n Dynamic range Proposed (f) in  [26] Savings % 

4 12 bits (medium DR) 6 7 14.3% 

8 24 bits (large DR) 13 15 13.3% 

16 48 bits (very large DR) 29 31 6.5% 

  

Modulo (2n + 1) adder 

It is well known, that modulo (2
n
 + 1) channel is the most time consuming among all 

other moduli channels, due to the (n + 1)-bit operands and results that this channel deals with. 

That is why; the major part of my research on residue arithmetic units was concentrated on 

modulo (2
n
 + 1) arithmetic.  

Two different architectures of modulo (2
n
 + 1) adder were designed. Both adders use 

normal binary representation instead of diminished-one representation that has two main 

problems: difficulties in zero representation, and the necessity to converters that convert 

from/to diminished-one representation. Therefore, I have focused on acquiring the benefits of 

both representations, i.e. how to speed up the computation process and not face the difficulties 

in diminished-one representation. 

Simple modulo (2
n
 + 1) adder - by using only n-bit circuits 

The structure of this adder is an improved version of that published in an international 

conference in Brno  [79]. The feature of this design is the usage of only n-bit circuits instead 

of (n + 1)-bit. In other words, this design uses normal binary representation and at the same 

time utilizes just n-bit circuits, thus, it has the benefits of the two representation methods 

simultaneously. 



Residue Number System Based Building Blocks for Applications in Digital Signal Processing 
 

 

- 48 - 

 

 

Assuming x and y are two modulo (2
n
 + 1) residues; ((n + 1)-bit numbers). Modulo (2

n
 + 

1) addition of them is defined as,  

 
2 1

2 1

2 1 2 1
n

n

n n

x y if x y
x y

x y if x y


    
  

     
   ( 4.11) 

The structure of this adder encloses an n-bit binary adder, an n-bit binary subtractor and a 

multiplexer. The output is obtained by separately processing the first n bits and the MSBs of 

the operands. The structure of this adder is illustrated in Fig.  4.7. Again, thick lines refer to n-

bit buses, whereas thin lines refer to 1 bit. 

This adder was compared with the second proposed modulo (2
n 

+ 1) adder – based on 

prefix carry computation. This comparison is stated at the end of the next section.  

CPA

(n bit)

1 0( )

n bit

nx x





1 0( )n

n bit

y y


ny
nx

cout

SUB

(n bit)0

sum1sum1

n bit

n bit

MUX

sum2

sum1

sum2
0

cout



(n+1) bit

(n+1) bit

2 1nx y



(n+1) bit

 

Fig. ‎4.7: Improved structure of the proposed modulo (2
n
 + 1) adder – that uses n-bit components  [79]  

Modulo (2
n
 + 1) adder – based on prefix carry computation 

Contrary to the previously proposed modulo (2
n
 + 1) adder, this one consists of (n + 1)-

bit circuits. However, it utilizes the concept of prefix carry computation used in parallel prefix 

adders in order to speed-up the computation process. This modular adder has been published 

in an international conference in Brno  [77] and an extended version has been published in 

ElectroScope journal  [78]. This adder depends on prefix carry computation, in order to 

compute the n
th

 bit (MSB) of (x + y – 1).  

From equation ( 4.11),  

2 1

2 1 1 2

2 1 2 1 1 2
n

n n

n n n

x y if x y x y
x y

x y if x y x y


        
  

         
  ( 4.12) 
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As can be seen in equation ( 4.12), the structure of the proposed adder depends on the 

prefix carry computation, in order to compute the n
th

 bit (MSB; most significant bit) of (x + y 

– 1). This bit cannot be computed the same way as in the proposed modulo (2
n
 – 1) adder, 

since the operands (inputs) here are represented using (n + 1) bits, therefore the carry-out 

from the (n – 1)
th

 bit to the n
th

 bit will not be sufficient. MSB of the sum of (x + y – 1) can be 

calculated as follows,  

( ) ( ) ( 1)    thMSB n bit x n y n c n    ( 4.13) 

where, x(n), y(n) represent the n
th

 bit of x, y, respectively.   refers to the logical operator 

XOR. c(n – 1) is the carry from the (n – 1)
th

 bit to the n
th

 bit, and can be computed by equation 

( 4.9).  
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Fig. ‎4.8: Proposed modulo (2
n
 + 1) adder - based on the prefix computation  [78] 

The structure of the proposed adder is illustrated in Fig.  4.8. It consists of a CSA that has 

a delay equal to that of a half-adder (HA) instead of a full-adder (FA), a prefix computation 

unit of MSB and a CPA. As mentioned before, the CPA was chosen due to its features when 

implemented on Spartan-3 FPGA. Hence, the main concept of this adder is based on the 

prefix computation of the MSB of (x + y – 1), and then applying the necessary correction. 

This correction is represented in applying the correct carry-in into the CPA. 

To prove the efficiency of this adder, it was compared with another already published 

one, which was published in  [26] and denoted as (k). This Modular adder (k) was chosen due 
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to its superiority over other modular adders stated in  [26]. However, this adder produces an 

increased-by-one result. Therefore, an additional component has been added, in order to make 

it produce the correct sum.  

Both adders were implemented on Spartan-3 xc3s200 FPGA. The implementation results 

showed savings up to (37.5%, 13.3%) in time, area consumptions, respectively. These 

savings, as well as the detailed consumptions for different values of n are illustrated in Tab. 

 4.6 and Tab.  4.7. 

Tab. ‎4.6: Comparison between the proposed modulo (2
n
 + 1) adder with its counterpart (k) in  [26] in terms of 

critical path delay [ns] 

n Dynamic range Proposed 
(k) in  [26] Improvements% 

x + y + 1 x + y x + y + 1 x + y 

4 12 bits (medium DR) 14.4 13.5 15.5 - 7.1% 

8 24 bits (large DR) 15.7 24.3 25.1 35.4% 37.5% 

16 48 bits (very large DR) 25.8 39.6 40.9 34.9% 36.9% 

 

Tab. ‎4.7: Comparison between the proposed modulo (2
n
 + 1) adder with its counterpart (k) in  [26] in terms of 

area consumption [slices] 

n Dynamic range Proposed 
(k) in  [26] Savings % 

x + y + 1 x + y x + y + 1 x + y 

4 12 bits (medium DR) 13 8 15 - 13.3% 

8 24 bits (large DR) 24 16 26 - 7.7% 

16 48 bits (very large DR) 50 32 51 - 1.2% 

 

Concerning comparing the two proposed modulo (2
n
 + 1) adders; the one that uses n-bit 

components  [79] with the one based on the prefix computation  [78]. The implementation 

results showed that  [79] is superior in terms of area consumption, whereas  [78] is superior in 

terms of time consumption  (due to the usage of a CSA that has a delay equal to that of a HA, 

and the usage of a prefix carry computation). However, both proposed adders have better 

performance than that of adder (k) in  [26] in terms of time and area consumptions. 
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4.3.2   Proposed modular subtractor 

This section introduces the proposed structure of a modulo (2
n
 + 1) subtractor. As 

aforementioned in Section  2.3.2, a modulo (2
n
 – 1) subtractor can be simply realized using a 

modulo (2
n
 – 1) adder and a few inverters. Therefore, only a modulo (2

n
 + 1) subtractor has 

been proposed. It has been published in an international conference in St. Maarten, the 

Netherlands Antilles  [80]. However, the presented structure is further improved than the one 

stated in  [80]. This subtractor was intentionally designed to be used in the proposed modulo 

(2
n
 + 1) multiplier, which has been published in the same paper  [80], as will be described 

later.  

Assuming x and y are two modulo (2
n
 + 1) residues; ((n + 1)-bit numbers). Modulo (2

n
 + 

1) subtraction of them is defined by,  

2 1

0

2 1 0
n n

x y if x y
x y

x y if x y

  
  

    
   ( 4.14) 

The structure of the improved modular subtractor consists of an (n + 1)-bit binary 

subtractor followed by an (n + 1)-bit binary adder, as shown in Fig.  4.9. The output “Bout” 

refers to the borrow-out, that indicates whether the difference is less than zero or not. In case 

of a negative result (Bout = 1), modulo (2
n
 + 1) should be added back, in order to correct the 

result. This subtractor has been efficiently utilized in the proposed modulo (2
n
 + 1) multiplier. 

SUB

(n + 1) 
bit

ADD

(n + 1) 
bit

x

y

(n + 1) bit

0

(n + 1) bit
(n + 1) bit

2 1nx y



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Fig. ‎4.9: Improved structure of proposed modulo (2
n
 + 1) subtractor  

4.3.3   Proposed modular multipliers 

The proposed structures of modulo (2
n
 ± 1) multipliers are presented in this section. The 

first part contains a comparison between two structures of a modulo (2
n
 – 1) multiplier. Each 

of these structures belongs to a different category of modular multipliers, mentioned in 

Section  2.3.3. The second part illustrates the proposed modulo (2
n
 + 1) multiplier that uses the 

above mentioned modulo (2
n
 + 1) subtractor as a fundamental component. 
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Modulo (2n – 1) multipliers 

A modulo (2
n
 – 1) multiplier can be designed according to the following equations,  

 

2 1 1 2 1

2 1 2 1
0 02 1 2 1

2 2 2 2n n

n n

n n n
i i n i n

i i i

i i i n

z x y z z z
  



 
   

         ( 4.15) 

 
2 12 1

2 nn

nz a b a b


         ( 4.16) 

This means that this modular multiplier consists of an n-bit binary multiplier followed by 

a modulo (2
n
 – 1) adder. The structure of this multiplier is illustrated in Fig.  4.10. 
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1n

z

z 

2 1

n

n

z

z 

ADD mod

(2 1)n

2 1nx y



n bit

 

Fig. ‎4.10: Proposed modulo (2
n
 – 1) multiplier – based on multiplication-then-reduction approach 

This multiplier belongs to the multiplication-then-reduction category mentioned in 

Section  2.3.3. However, such a multiplier is quite expensive comparing to the one based on 

Property 2. 

Property 2: The multiplication of a residue number x by 2
P
 in modulo (2

n
 − 1) is carried out 

by P bit circular left shift, where P is a natural number  [71]. 

According to the above property and assuming x and y are two modulo (2
n
 – 1) residues 

(n-bit numbers). Their modulo (2
n
 – 1) multiplication can be written as follows, 

1

1 0 1 0 1 02 1 2 1
0 2 1

1 0 0 2 0 1 1 0 1 1 1 2 1

( ) ( ) ( ) (2 )

( ) ( ) ( )

n n

n

n

n
P

n n n P

P

n n n n n

x y x x y y x x y

x x y x x x y x x x y



   
 

     

     

      


 ( 4.17) 

Thus, the structure of this multiplier consists of a rotation unit, a Wallace tree adder to 

perform multi-operand addition and a modulo (2
n
 – 1) adder. This structure is shown in Fig. 

 4.11. Contrary to the previous design, this one belongs to the interleaving multiplication and 

reduction category. 
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0x1x1nx 

0y

0Operand

1nx 0x2nx 

1y

1Operand

1x1nx 0x
1ny 

1nOperand 

Wallace tree adder

Rotation 
Unit

Adder mod

2 1nx y




n bit

n bit

  

(2 1)n

 

Fig. ‎4.11: Proposed modulo (2
n
 – 1) multiplier – based on interleaving multiplication and reduction approach 

Tab.  4.8 illustrates time and area improvements when using the structure shown in Fig. 

 4.11 over the one shown in Fig.  4.10. It is obvious that the second structure shows better 

timing performance as the dynamic range increases, whereas, area saving gradually decreases. 

Therefore, for systems with very large dynamic ranges (more than 60 bits) and whose main 

goal and strategy is “area reduction”, the structure shown in Fig.  4.10 is more effective. 

Tab. ‎4.8: Time and area improvements of multiplier’s structure Fig.  4.11 over Fig.  4.10  

Dynamic range Time improvements % Area improvements % 

12 bits, n = 4 28.1% 10.7% 

21 bits, n = 7 30.5% 5.8% 

30 bits, n = 10 34% 3.9% 

60 bits, n = 20 39.6% 1.9% 

 

Modulo (2n + 1) multiplier 

This modulo (2
n 

+ 1) multiplier has been published along with the previous modular 

subtractor in  [80]. Its structure is based on the multiplication-then-reduction approach 

mentioned in Section  2.3.3. 

Assuming x and y are two modulo (2
n
 + 1) residues; ((n + 1)-bit numbers). Their modulo 

(2
n
 + 1) multiplication is defined by, 

 

2 1 2

2 1
0 0 2 1

2 2 2 2
n

n

n n n
i i n i n

i i i

i i i n

z x y z z z





   

          ( 4.18) 
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2 12 1

2 nn

nz a b a b


         ( 4.19) 

Equation ( 4.19) was obtained by splitting the product of x × y into two parts a and b, and 

then applying equation ( 2.5), that converts (+ 2
n 

· b) into (– b). 

The necessity to a modulo (2
n
 + 1) subtractor is clear in equation ( 4.19). This step 

performs the reduction process according to modulo (2
n
 + 1). The structure of the proposed 

multiplier is illustrated in Fig.  4.12. 

   MUL

      (n+1)
        bit

x

y

0

1n

z

z 

2

n

n

z

z

SUB 
mod

(2 1)n

2 1nx y



(n + 1) bit 0

 

Fig. ‎4.12: Proposed modulo (2
n
 + 1) multiplier  [80] 

The proposed multiplier was compared with an already published modulo (2
n
 + 1) 

multiplier  [70]. This multiplier was realized using modulo-reduced partial products, a modulo 

CSA and a modulo CPA. However, the operands and results in this structure are presented 

using n bits only, where the value 0 is not used, and the value 2
n
 is presented as “00..0”  [70]. 

Both multipliers were implemented on Spartan-3 FPGA. The implementation results along 

with the comparison are illustrated in Tab.  4.9. 

Tab. ‎4.9: Comparison between the proposed multiplier and its counterpart in terms of critical path delay [ns]  

n Dynamic range Proposed multiplier  [80]  [70] Improvements % 

4 12 bits 18.3 25 26.8% 

8 24 bits 27.5 31 11.3% 

11 33 bits 34.9 36 3.1% 

12 36 bits 36.8 36.2 - 

14 42 bits 43.7 40.6 - 

 

The results showed time saving up to 26.8% for medium dynamic range = 12 bits. 

However, the proposed design shows better timing performance than its counterpart for 

dynamic range up to 33 bits. The reason is that, for DR ≥ 36 bits, the delay of the binary 
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multiplier considerably increases, hence the overall delay of the whole design does. However, 

for systems with dynamic rages less than 36 bits, the proposed modular multiplier is superior 

over  [70].  

4.4 Proposed Reverse converters 

This section is dedicated for presenting my work on residue to binary converters. It is 

divided into two subsections; the first one presents a comparison between two well-known 

algorithms for residue to binary conversion based on the moduli set {2
n
 – 1, 2

n
, 2

n
 +1}. The 

comparison is based on FPGA implementation of these two algorithms. 

The second part presents a novel algorithm for reverse conversion in the RNS and 

proposes an efficient reverse converter based on it. This algorithm is dedicated for the moduli 

set {2
n
 – 1, 2

n
, 2

n
 + 1}. 

4.4.1   Comparison between the new CRT-I and MRC 

This section presents a comparison between two well-known algorithms for residue-to-

binary conversion, namely the new CRT-I and MRC. The comparison is done in order to 

highlight the differences between the two algorithms when implemented on FPGA. Both 

converters are dedicated for the special moduli set (2
n
 – 1, 2

n
, 2

n
 + 1). The comparison was 

carried out in terms of delay and area consumptions on Spartan-3 FPGA. This study has been 

published in the Electronics journal  [83]. 

The two proposed structures of the reverse converters use Property 1 and Property 2 

mentioned in Section  2.3.2 and Section  4.3.3, respectively. By using these two properties, the 

necessity to multiplication during the reverse conversion process was eliminated.  

Proposed structure of residue to binary converter based on the new CRT-I 

The new CRT-I is a parallel algorithm, but it requires a special modular adder (a rather 

large one), in order to compute the equivalent binary number. The following equations 

illustrate how the multiplication was eliminated and converted into addition. The moduli set 

that has been used for this converter is ordered as follows,  

1 2 32 , 2 1 , 2 1    n n nm m m     ( 4.20) 

Based on equations ( 2.13) and ( 2.14) in Section  2.2.2, the multiplicative inverses k1, k2 

are computed as follows,  

21 12 1
2 1 2

n

n nk k


         ( 4.21) 

1

2 22 1
2 (2 1) 1 2

n

n n nk k 


          ( 4.22) 
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CSA-EAC
2n bit

CBA

CSA-EAC
2n bit

D

ADD 
     mod 2(2 1)n

2 1 0( , , )nE E E
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1 0 2 1 1 1, 1 1,0( , , , , , , ) & ( , , )

n bit n bit

n n n n nE E E E E x x   

X

3n bit

 

Fig. ‎4.13: Proposed structure of reverse converter - based on the new CRT-I  [83] 

By substituting equations ( 4.20), ( 4.21) and ( 4.22) into the main CRT-I equation ( 2.12), 

the equivalent binary number X is computed as follows,  

2

1

1 2 1 3 3 2

2 1

2 2 ( 2 2 2 )

n

n n n n

C B DA

X x x x x x x



          ( 4.23) 

By splitting equation ( 4.23) and according to Property 1 and Property 2, 

3 3 3 32 &

 

  n

n bit n bit

A x x x x       ( 4.24) 

2 2

2

1 1 12 1 2 1
1

2 1

2 0...0& &0 1...1& &1n n

nn bit n bit

B x x x
 

  

      ( 4.25) 

2

1 1

0...0&
 


n bit n bit

C x        ( 4.26) 

2 21 0 2 12 1 2 1
2 ,..., , ,...,

n n

n

n n nD C C C C C  
       ( 4.27) 

   E A B C D        ( 4.28) 

By substituting equation ( 4.28) in ( 4.23), 
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2

1

1 2 1
2 2

n

n nX x E


          ( 4.29) 

Again, according to Property 2,  

2

1

1 0 2 1 12 1

2

2 , ,..., , ,...,
n

n

n n n n

n bit

Z E E E E E E

  
      (  4.30)  

  

3

1

2

&

n bit

n bi n bit

X Z x         ( 4.31) 

According to the above equations, the reverse converter based on new CRT-I requires 

two (2n-bit) CSA-EACs and a modulo (2
2n

 – 1) adder. This modular adder has the same 

structure as that of the modulo (2
n
 – 1) adder, but it uses 2n-bit circuits instead of n-bit. 

Utilizing CSAs results in better timing performance of the design. The structure of this 

converter is illustrated in Fig.  4.13. 

Proposed structure of residue to binary converter based on the MRC 

This section illustrates the second reverse converter based on the MRC algorithm. This 

method does not require any special large modular adders, as in the previous converter. The 

same modular adders, which are used in the arithmetic unit, are utilized in this converter. 

The below equations are extracted from the MRC main equation, stated in Section  2.2.2. 

The utilized moduli set for this converter is ordered as follows,  

 1 2 32 1, 2 , 2 1    n n nm m m      ( 4.32) 

The order of the moduli within the set is important, since a proper order of the moduli can 

considerably simplify the multiplicative inverses needed for the reverse conversion process. 

These multiplicative inverses are computed as follows,  

 
2

1 1

1 2
(2 1) 1

n

n

m
m           ( 4.33) 

 
1

3

1 1

1
2 1

(2 1) 2
n

n n

m
m

 


        ( 4.34) 

 
3

1 1

2 2 1
(2 ) 1

n

n

m
m  


        ( 4.35) 

The above three equations proved the fact that, a proper ordering of the moduli results in 

an essential simplification of the multiplicative inverses. Two of the three multiplicative 

inverses are equal to 1. 
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0 1 2 1( , , ,..., )n nk k k k 
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ADD
2n bit
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3n bit

3 3& & 0 0
n bit

v v3v

2v

X  

Fig. ‎4.14: Proposed structure of reverse converter - based on the MRC  [83] 

By substituting equations ( 4.33), ( 4.34) and ( 4.35) into ( 2.10), ( 2.11), and by utilizing 

Property 1,  

 2 2 1 2 12 2
( ) 1 n nv x x x x          ( 4.36) 

 1

3 3 1 2
2 1

( ) 2
n

nv x x v


          ( 4.37) 

Hence, 

 

21

3 2 12 (2 1) (2 1)       n n n

tt

X v v v     ( 4.38) 

 1 2 1X t t v           ( 4.39) 

 1 3 3 3 32 ( 2 ) & &0..0


    n n

n bit

t v v v v     ( 4.40) 

 2 2 2 2 22 0..0& &


   n

n bit

t v v v v     ( 4.41) 

 1 2 1 1 2 1     X t t v t t x      ( 4.42) 

As inferred from the above equations, the multipliers were eliminated and replaced by 

concatenations. The structure of this converter is illustrated in Fig.  4.14. 
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Comparison between the new CRT-I and MRC converters - based on FPGA 
implementation 

The two converters were implemented on Spartan-3 xc3s200 FPGA. The implementation 

results have proven the theoretical considerations, that the new CRT-I is a parallel algorithm, 

but has more area consumption due to the usage of two 2n-bit CSAs and a large modular 

adder (modulo (2
2n

 – 1) adder). Although the MRC is a sequential algorithm, it does not 

require any special large modular adders, which results in less area consumption but longer 

delay.  

Time and area consumptions, for various dynamic range requirements, are stated in Tab. 

 4.10 and Tab.  4.11 for the new CRT-I and MRC-based converters, respectively. 

Tab. ‎4.10: Comparison between the new CRT-I and MRC-based converters in terms of pad-to-pad delay [ns] 

Dynamic range 12 bits 24 bits 48 bits 60 bits 

Based on the new CRT-I 6.9 7.1 9.7 9.1 

Based on the MRC 11.5 13.2 16.8 17.1 

Time improvements % (new CRT-I has shorter 
delay than MRC by) 

40% 46.2% 42.3% 46.8% 

Tab. ‎4.11: Comparison between the new CRT-I and MRC-based converters in terms of area consumption 

[slices] 

Dynamic range 12 bits 24 bits 48 bits 60 bits 

Based on the new CRT-I 67 129 253 315 

Based on the MRC 30 56 108 134 

Area improvements % (MRC has less hardware 
complexity than new CRT-I by) 

55.2% 56.6% 57.3% 57.5% 

 

Both converters were designed based on pure combinational structures, thus, timing 

performance is illustrated using pad-to-pad delay. Tab.  4.10 shows that the new CRT-I has 

shorter pad-to-pad delays than those of the MRC. The difference between the two algorithms 

gradually increases as the dynamic range increases. Time saving percentage of the new CRT-I 

over the MRC has a maximum value for the very large dynamic range (60 bits). 

In a similar manner, Tab.  4.11 shows that the MRC has considerably less hardware 

complexity than that of the new CRT-I. The difference between hardware complexity of the 
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new CRT-I and MRC gradually increases as the dynamic range increases. This difference 

achieves its greatest value (57.5 %) for the very large dynamic range (60 bits). 

Based on these percentages shown in Tab.  4.10 and Tab.  4.11, we conclude that the MRC 

is preferred over the new CRT-I for designs with balanced and minimum-area strategies. 

Whereas, new CRT-I should be used for designs that have critical timing requirements. 

4.4.2   Proposed algorithm for residue to binary conversion 

In this section, a novel algorithm for reverse conversion based on the moduli set {2
n
 – 1, 

2
n
, 2

n
 + 1} is presented. The majority of papers regarding reverse converters are principally 

based on one of the widespread algorithms; the MRC, the CRT or the new CRTs. The 

proposed algorithm is simpler and does not require multiplicative inverses neither 

multiplication. A paper, which presents the proposed algorithm, a reverse converter and a 

residue comparator based on it, is still under review in IEICE Electronics Express journal. 

Proposed algorithm for reverse conversion  

This section presents the proposed algorithm for performing residue to binary conversion. 

This algorithm does not need any multiplicative inverses neither multiplication processes. 

These calculations always have been the main obstacles in the reverse conversion methods. 

The proposed algorithm is based on the fact that, the numbers within the dynamic range [0, M 

– 1] can be divided into (2
2n

 – 1) groups. 

Suppose, x1, x2 and x3 are the residues of the binary number X corresponding to the 

moduli set {2
n
 – 1, 2

n
, 2

n
 + 1}. According to Tab.  4.12, the numbers within the dynamic range 

[0, M – 1] are divided into (2
2n

 – 1) groups. 

Tab. ‎4.12:  The Groups within the dynamic range M of the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1} 

X  1 2 1nx  2 2nx  3 2 1nx  

0

2 1n 

 2 2 1
0 nx


  2 2nx  2 2 1

0 nx


  

2

(2 2 ) 1

n

n 

 2 2 1
1 nx


  2 2nx  2 2 1

1 nx


  
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(2 2 )

(3 2 ) 1

n

n



 

 2 2 1
2 nx


  2 2nx  2 2 1

2 nx


  

    

2

2

(2 2) 2

((2 1) 2 ) 1

n n

n n

 

  

 
2

2 2 1
(2 2)

n

nx


   
2 2nx  

2

2 2 1
(2 2)

n

nx


   

 

It is obvious, that residues x1, x3 corresponding to moduli (2
n
 – 1), (2

n
 + 1), respectively, 

can be directly computed using x2 and the group that the binary number X belongs to. 

According to Tab.  4.12, x1 and x3 can be computed as follows,  

2

1 2 2 1
; [0,2 2]n

nx x G G


         ( 4.43) 

2

3 2 2 1
; [0,2 2]n

nx x G G


         ( 4.44) 

where, G is the group number that the binary number X belongs to. 

Afterwards, G will be used in order to acquire the binary number X from its residues x1, 

x2 and x3. From equations ( 4.43), ( 4.44) and congruence properties,  

1 22 1 2 1n ng x x
 
        ( 4.45) 

2 32 1 2 1n ng x x
 
        ( 4.46) 

where,  
2 1 2 1

,n ng g
 

 are the residues of G corresponding to moduli (2
n
 – 1, 2

n
 + 1), 

respectively. 

Since moduli in equations ( 4.45) and ( 4.46) are different, the obtained results 

 
2 1 2 1

,n ng g
 

 might be different, too. Therefore, the following step should be repeated in 

order to acquire the correct group number.  

1 22 1 2 1
(2 1) (2 1)n n

n ng k g k
 
         ( 4.47) 

where, 1 2, 0,1,k k  . 

The binary number X can be now easily computed using the group number G and x2,  
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22nX G x         ( 4.48) 

Example: Consider n = 3, thus, the moduli set is {7, 8, 9}. The dynamic range of this 

system is [0, 503]. The number of groups whining this dynamic range is 63, which is [0, 62]. 

Consider the following RNS number should be converted into its binary equivalent (x1, 

x2, x3) = (0, 1, 2).  

According to equations ( 4.45) and ( 4.46), 

1 22 1 2 1 7
0 1 6n ng x x

 
      

2 32 1 2 1 9
1 2 8n ng x x

 
      

Since  
2 1 2 1

,n ng g
 

 are different, equation ( 4.47) should be repeated until we obtain 

the correct G. 

1 28, 6 62k k G     

Hence, the binary equivalent of (0, 1, 2) is, 

62 8 1 497X      

Proposed residue to binary converter based on the proposed algorithm  

Generally, the structure of this converter is rather simple; it consists of two parallel 

modular subtractors followed by a binary (n + 1)-bit subtractor, a 2n-bit binary adder and a 

read only memory (ROM). The proposed structure is illustrated in Fig.  4.15. 

The step that computes G should be repeated many times in order to acquire the correct 

values of k1 and k2, thus obtaining the correct G. In order to get rid of this recurrence step that 

may consume much time, a ROM was used. This ROM contains the correct value of k2, 

according to the values of  
2 1 2 1

,n ng g
 

. The values range of 
2 1ng


and 
2 1ng


 are [0, 2
n
 

– 2] and [0, 2
n
], respectively. Thus, the values range of  

2 1 2 1n ng g
 
  is [–2

n
, 2

n
 – 2], 

which can be represented using (n + 1) bits. The width of k2 is n bits. Thus, the ROM size is 

(2
n+1

 × n) bits. 

According to equations ( 4.47) and ( 4.48),  

2 2 22 1 2 1
(2 1) &n n

nG g k g k k
 

         ( 4.49) 

2 22 &nX G x G x         ( 4.50) 
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According to Property 1 stated in Section  2.3.2, a modulo (2
n
 – 1) subtractor can be easily 

implemented using a modulo (2
n
 – 1) adder and n invertors. On the other hand, the structure 

of the modulo (2
n
 + 1) subtractor is the same illustrated in Fig.  4.9. It consists of an (n + 1)-bit 

subtractor followed by an (n + 1)-bit adder. 

SUB
      mod

2x

(2 1)n

3x1x

SUB
      mod (2 1)n

2x

SUB

(n + 1) bit

ROM
 1(2 )n n

2k

ADD

2n bit

2 1ng
 2 2&k k

2&G X G x 

2 1ng
2 1ng



 

Fig. ‎4.15: The structure of the reverse converter based on the proposed algorithm  [86] 

The proposed reverse converter was implemented on Virtex-4 XC4VSX25 FPGA. The 

ROM containing k2 values was designed as a single port ROM using Xilinx core generator 

v.13.4. The proposed design was implemented for different dynamic range requirements, 12 

bits, 15 bits (medium dynamic range), 24 bits and 33 bits (large dynamic range), 45 bits and 

48 bits (very large dynamic range). The proposed design could not be implemented for 

dynamic ranges greater than 48 bits, due to the BRAM limitation built-in Virtex-4 

XC4VSX25, where the maximum RAM size is 2304 Kb. 

A comparison between the proposed reverse converter and another one based on the new 

CRT-I  [4] has been carried out. The implementation results are illustrated in Tab.  4.13. The 

superiority of the proposed reverse converter timing performance is clear. It can operate at 

higher frequencies up to 78.5% than the one based on the new CRT-I  [4]. Concerning the area 

consumption, the savings are not very impressive. The total number of the 4-input look-up 
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tables (4-LUTs) used in the proposed converter is less for the dynamic ranges up to 33 bits. 

However, this number considerably increases for the very large dynamic ranges. Furthermore, 

the proposed design uses a number of BRAMS of 18 Kb. Nevertheless, the speed gain makes 

the proposed converter very attractive for further enhancements and improvements.  

The speed gain of the proposed reverse converter is about 23.4% for medium dynamic 

ranges. Then, it extensively increases to 78.5% for DR = 24 bits. This gain afterwards begins 

to gradually decrease until it reaches a break point (DR = 45 bits), where the speed gain 

becomes 0.2%. For DR = 48 bits, timing performance of the proposed reverse converter 

becomes worse than the new CRT-I based one  [4]. However, according to my researches 

stated in  [75] and  [76], the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1} is not efficient to be used in 

applications that require very large dynamic ranges.  

Tab. ‎4.13:  Comparison between reverse converters for different dynamic range requirements 

Dynamic range 

New CRT-I  [4] Proposed converter 
Time 

improving 

% 
Max. freq. 

[MHz] 
4-LUTs 

BRAMs 

[18 Kb] 

Max. freq. 

[MHz] 
 4-LUTs 

BRAMs 

[18 Kb] 

n = 4, DR = 12 bits 

(medium DR) 
241.6 54 - 296.1 47 1 22.6% 

n = 5, DR = 15 bits 

(medium DR) 
232.7 74 - 288.8 50 1 24.1% 

n = 8, DR = 24 bits 

(large DR) 
156.8 86 - 279.9 78 1 78.5% 

n = 11, DR = 33 

bits (large DR) 
148.9 118 - 257.3 105 3 72.8% 

n = 15, DR = 45 

bits (very large DR) 
136.3 132 - 136.5 322 56 0.2% 

n = 16, DR = 48 

bits (very large DR) 
118.2 173 - 107.3 530 120 - 

 

Moreover, the proposed reverse converter has been also compared with pure ROM-based 

reverse converter. Since the least n bits of the binary X is obtained by appending 2 2nx  to the 
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2n-bit operand, the size of this ROM-based reverse converter can be reduced from (2
3n+1

 × 3n) 

bits to (2
3n+1

 × 2n) bits.  

In a similar manner, this reverse converter has been implemented on Virtex-4 

XC4VSX25 FPGA. This converter could only be implemented for DR = 12 bits and 15 bits, 

due to the limitations of BRAMs built-in this device. Therefore, it is obvious that the 

application fields of this type of reverse converters are very limited. The implementation 

results and comparison between the proposed reverse converter and pure R0M-based one are 

illustrated in Tab.  4.14.  

Tab. ‎4.14:  Comparison between proposed reverse converter and pure-ROM based one 

Dynamic range 

Pure ROM-based converter Proposed converter 

Time 

improving 

% 
Max. freq. 

[MHz] 
4-LUTs 

BRAMs 

[18 Kb] 

Max. 

freq. 

[MHz] 

 4-LUTs 
BRAMs 

[18 Kb] 

n = 4, DR = 12 

bits (medium DR) 
401.3 - 6 296.1 47 1 - 

n = 5, DR = 15 

bits (medium DR) 
189.4 - 36 288.8 50 1 52.5% 

n = 8, DR = 24 

bits (large DR) 

could not be 

implemented 
- - 279.9 78 1 - 

 

For DR = 12 bits, the maximum frequency is 401.3 MHz. It is obvious that this converter 

is abundantly faster than the proposed one. However, DR = 15 bits, the maximum frequency 

of this converter considerably decreases (the proposed converter becomes faster by 52.5%). 

Hence, the above discussion leads to the fact that the proposed reverse converter is more 

efficient than both pure ROM-based and pure combinatorial ones. The main drawback of pure 

ROM-based converters is their size, whereas pure combinatorial converters suffer from poor 

timing performance comparing to the proposed one. However, for very large dynamic ranges 

(larger than 48 bits), these converters are more efficient. 
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4.5 Proposed residue comparator  

The proposed algorithm for reverse conversion has been also used to compare residue 

numbers in their RNS representation. According to equation ( 4.50), in order to compare two 

RNS numbers (x1, x2, x3), (y1, y2, y3), the following values should be compared, (Gx and Gy) 

and (x2 and y2). This comparison is done using binary comparators of 2n bits and n bits. 

However, since G is the sum of k2&k2 and
2 1ng


 , the 2n-bit binary comparator is split 

into two parallel binary comparators of n bits and (n + 1) bits. The proposed structure of the 

residue comparator based on the proposed algorithm is shown in Fig.  4.16. 

It is obvious that, the proposed residue comparator has the same structure as that of the 

proposed reverse converter except the 2n-bit adder that computes G. 

For the sake of fair comparison, a part of the internal structure of the residue comparator 

(the binary comparators, multiplexers and a 3-to-1 AND gate) was designed in a same manner 

as the one in  [47]. 

Comparator

n bit

Comparator

(n +1) bit

Comparator

n bit

2,Xk

2,Yk

2 1nXg


2 1nYg


2x

2y

2E

1E

3E

1C

2C

3C

MUX

MUX

2E

1E

C

1E
2E

3E
E

 

Fig. ‎4.16: The structure of the residue comparator based on the proposed algorithm  [86] 

The proposed residue comparator was implemented on Virtex-4 XC4VSX25 FPGA for 

different dynamic range requirements, 12 bits (medium dynamic range), 24 bits, 33 bits and 

39 bits (large dynamic ranges) and 48 bits (very large dynamic range). Similarly to the reverse 

converter proposed in Section  4.4.2, the proposed comparator could not be implemented for 

dynamic ranges greater than 48 bits, due to the BRAM limitation built-in Virtex-4 

XC4VSX25, where the maximum RAM size is 2304 Kb. 

The structure of the proposed comparator is very similar to the one of the proposed 

reverse converter shown in Fig.  4.15. The only differences are the ROMs and the final 2n-bit 

adder. The ROMs, containing k2 of the comparable numbers X and Y, were designed as dual 
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port ROMs and the final 2n-bit adder was omitted. Tab.  4.15 shows the implementation 

results of the proposed residue comparator and its counterparts  [4],  [47] for different dynamic 

range requirements. 

According to Tab.  4.15, the residue comparator  [47] can operate at higher frequencies 

than the one based on the reverse converter  [4]. However,  [4] utilizes less LUTs than  [47]. 

Thus, comparator  [47] can be considered as more time efficient, whereas, the one based on  [4] 

can be considered as more area efficient. 

Since the proposed comparator has a very similar structure to the one of the proposed 

converter and since this converter has been already compared with  [4] in the previous section, 

thus, timing improving percentages of the proposed design have been computed in association 

with  [47] only. The speed gain of the proposed comparator is about 9% for DR = 12 bits. 

Then, it extensively increases to 42.4% for DR = 33 bits. This gain afterwards begins to 

gradually decrease until it reaches a break point (DR = 39 bits), where the speed gain 

becomes 0.2%. From DR = 42 bits and larger, timing performance of the proposed reverse 

converter becomes worse than that of  [47]. Hence, the proposed comparator is efficient for 

dynamic ranges up to 39 bits, whereas the proposed reverse converter based on the same 

algorithm is efficient for dynamic ranges up to 45 bits. 

As stated in the previous section, the implementation results show that the proposed 

comparator is not suitable to be used in RNSs that provide very large dynamic ranges. Again, 

we can overlook this fact since the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1} is not efficient to be used in 

applications that require very large dynamic ranges  [75],  [76]. 

Tab. ‎4.15:  Comparison between different residue comparators for different dynamic range requirements 

Dynamic range 

New CRT-I based 

comparator  [4] 
 [47] Proposed comparator Time 

improving % 

proposed vs. 

 [47]  
Max. freq. 

[MHz] 
4-LUTs 

Max. freq. 

[MHz] 
4-LUTs 

Max. freq. 

[MHz] 
4-LUTs 

BRAMs 

[18 Kb] 

n = 4, DR = 12 bit  226.2 132 269.8 137 294.1 107 1 9% 

n = 8, DR = 24 bit 160.4 222 184.9 232 259.5 178 1 40.4% 

n = 11, DR = 33 bit 141.8 304 166.4 339 236.9 238 3 42.4% 

n = 13, DR = 39 bit 126.2 308 159.8 337 160.1 366 12 0.2% 

n = 16, DR = 48 bit 128.9 443 137.1 446 98.8 1114 120 - 
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4.6 Proposed designs for overflow and sign detection and correction in both 
signed and unsigned RNS systems 

This section presents two universal efficient approaches for overflow and sign detection 

and correction after adding of two numbers in unsigned and signed RNS. Both methods are 

designed to be used in systems based on the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1} that provides an 

even dynamic range. The importance of overflow detection in such systems has been already 

described in Section  2.3.4. 

Moreover, by applying a tiny modification, these designs can be used in any system that 

has (2
n
) as one of its moduli (i.e. has an even dynamic range). The proposed methods depend 

on a simple structure that provides fast and accurate detection and correction of the sign and 

overflow. The proposed designs are published in international conferences in Brno  [81] and 

Seville, Spain  [82]. 

4.6.1   Proposed component for overflow detection and correction in unsigned 
RNS                                         

As aforementioned in Section  2.3.4, the general way to detect overflow is via comparing 

the sum with one of the addends, i.e. If X ≥ 0 and Y < M then (X + Y) mod M causes overflow 

if and only if the sum is less than X. 

The proposed method also depends on comparison; however, it compares each of the 

addends with half of the RNS dynamic range (M/2). 

To detect overflow during the addition of two addends X and Y in unsigned RNS based 

on the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1}, a single bit, that indicates to which half of the dynamic 

range M that addend belongs, is used. Based on this bit, the following three cases should be 

considered.  

 The overflow will definitely occur if both of the addends are equal or greater than 

the half of dynamic range M/2.  

 No overflow will definitely occur if both of the addends are less than M/2. 

 If just one of the addends is equal to or greater than M/2, then the overflow 

prediction becomes complex and requires further processing and evaluation of the 

sum Z. 

The magnitude evaluation of the addends (X and Y) is represented by a single bit 

(evlt_bit).  

 
0 ; / 2

_
1 ; / 2

X

X M
evlt bit

X M


 


    ( 4.51) 
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The processing of evlt_bit of the two addends results in the three following cases,  

 

0 ; _ _ 0

1 ; _ _ 1

' ' ; _ _ 1

X Y

X Y

X Y

evlt bit evlt bit

overflow evlt bit evlt bit

u evlt bit evlt bit

 


 
  

    ( 4.52) 

where, ‘u’ indicates the undetermined case of overflow occurrence and ( , , )   refer to the 

logical gates (OR, AND, XOR), respectively. 

In order to solve the undetermined case ‘u’, evlt_bit of the binary sum Z should be 

calculated by equation ( 4.51). Then the overflow can be indeed detected,  

 
0 ; ' ' & _ 1

1 ; ' ' & _ 0

Z

Z

u evlt bit
overflow

u evlt bit


 


    ( 4.53) 

Fig.  4.17 shows the structure of the proposed design that detects the overflow in unsigned 

RNS based on {2
n
 – 1, 2

n
, 2

n
 + 1}. The magnitude evaluation of the addends and their sum, 

based on equation ( 4.51), is realized by a 2n-input AND gate and a 2-input OR gate. The 

magnitude evaluation unit is shown in Fig.  4.17 (a). 

The overflow detection unit, based on equations ( 4.52) and ( 4.53), is realized by a 2:1 

multiplexer and a XOR gate. This unit is shown in Fig.  4.17 (b) 

The last component of the proposed design is the overflow correction unit, which is 

shown in Fig.  4.17 (c). This unit adds back M to the sum Z in order to correct the overflow 

and obtain the final accurate result. The adder that performs the final addition can be of any 

type, according to the design’s goal and strategy. 

Example: Consider n = 3, thus the moduli set {7, 8, 9}, M = 504. In case of unsigned 

RNS, the dynamic range of representable numbers is [0, 503]. The two numbers to be added 

are X = 210, Y = 360.  

The outputs of magnitude evaluation units of the addends are _ 0,Xevlt bit 

_ 1Yevlt bit  . 

X = 210 = (0, 2, 3), Y = 360 = (3, 0, 0).  

The output of RAUs is (3, 2, 3). After residue to binary conversion Z = 66.  

The output of magnitude evaluation unit of the sum Z is _ 0Zevlt bit  . 

The output of overflow detection unit is, overflow = 1. 

Thus, overflow has been detected and further corrected as illustrated in Fig.  4.17. 
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Fig. ‎4.17: The internal structure of the proposed overflow detection & correction component for unsigned 

numbers  [82] 

(a) Magnitude evaluation unit. (b) Overflow detection unit. (c) Overflow correction unit 

4.6.2   Proposed component for overflow and sign detection and correction in 
signed RNS 

In a similar manner, to detect overflow and sign in the addition of two addends X and Y in 

signed RNS based on the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1}, a single bit (evlt_bit), that indicates 

to which half of the dynamic range M that addend belongs, is used. 

As mentioned previously, in signed RNS, the positive numbers fall in the first half of the 

dynamic range, whereas, the negative ones fall in the second half. Thus, we have the 

following two cases that should be considered.  

 No overflow will definitely occur if each of the addends has a different sign (fall 

in a different interval of M).  

 Overflow may or may not occur if both addends have the same sign. 

Consequently, further processing should be done. 

The sign evaluation of the addends is also represented by a single bit evlt_bit that is 

calculated by ( 4.51). 

The processing of evlt_bit of the two addends results in the two following cases,  
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0 ; _ _ 1

' ' ; _ _ 0

X Y

X Y

evlt bit evlt bit
overflow

u evlt bit evlt bit

 
 

 
   ( 4.54) 

where, ‘u’ indicates the undetermined case of overflow occurrence and   refers to the 

logical gate XOR. 

In order to solve the undetermined case ‘u’, evlt_bit, that determines the sign of the 

binary sum Z should be calculated by ( 4.51). Then the overflow can be indeed detected,  

 
0 ; ' ' & _ _

1 ; ' ' & _ _

Z X

Z X

u evlt bit evlt bit
overflow

u evlt bit evlt bit


 


   ( 4.55) 

where,  _ Xevlt bit  refers to the logical negation of _ Xevlt bit . 

Fig.  4.18 shows the structure of the proposed design that detects the sign and overflow in 

signed RNS based on {2
n
 – 1, 2

n
, 2

n
 + 1}. 

The sign evaluation of the addends and their sum, based on equation ( 4.51), is realized by 

an identical structure to that of the magnitude evaluation unit of the proposed design for 

unsigned RNS. It is shown in Fig.  4.18 (a). 

The overflow detection unit, based on equations ( 4.54) and ( 4.55), is realized by a similar 

structure to that shown in Fig.  4.17 (b). It consists of a 2:1 multiplexer and two XOR gates. 

This unit is shown in Fig.  4.18 (b). 

The overflow correction unit has an identical structure to that of the unsigned RNS. It is 

shown in Fig.  4.18 (c). Similarly, the adder that performs the final addition can be of any type. 

Example: Consider n = 3, thus the moduli set {7, 8, 9}, M = 504. In case of signed RNS, 

the dynamic range of representable numbers is [-252, 251]. The two numbers to be added are 

X = -150, Y = -240.  

Since the calculations within the RNS are based on unsigned arithmetic,  

X = 504 – 150 = 354, Y = 504 – 240 = 264. 

It is clear that both addends belong to the second half of the dynamic range as stated in 

equation ( 1.5). 

The outputs of sign evaluation units of the addends are _ 1, _ 1X Yevlt bit evlt bit  .  

X = 354 = (4, 2, 3), Y = 264 = (5, 0, 3). 

The output of RAUs is (2, 2, 6). After residue to binary conversion Z = 114.  
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The output of the sign evaluation unit of the sum Z is _ 0Zevlt bit  . 

_ _ 0 _ _ 1X Y X Zevlt bit evlt bit overflow evlt bit evlt bit      . Thus, the output of 

overflow detection unit is, overflow = 1. 

Thus, overflow has been detected and further corrected as illustrated in Fig.  4.18. 

 

 Fig. ‎4.18: The internal structure of the sign and overflow detection & correction component for signed 

numbers  [82] 

 (a) Sign evaluation unit. (b) Overflow detection unit. (c) Overflow correction unit 

4.6.3  Evaluating the proposed overflow and sign detection and correction 
designs 

Since overflow and sign detection can be considered as a special case of comparison, the 

proposed designs were compared with other two. The first one represents the general 

approach for overflow detection, which consists of a binary comparator based on the residue-

to-binary converter presented in  [4]. Whereas, the second one is an efficient residue 

comparator for general moduli set introduced in  [47]. 

Since the authors of the counterparts designs have presented the delay and area 

consumption of their designs using the unit gate model, and for the sake of fair comparison, I 

have estimated the delay and area consumption of my designs by using it. Tab.  4.16 illustrates 

the delay and complexity of the proposed designs and the analogous ones. 
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The structures of the proposed designs are very similar; the only difference is the 

additional XOR gate in the overflow detection unit for signed RNS. Both designs enclose the 

following components, the residue-to-binary converter proposed in  [4], the operand 

evaluation units of the addends and their sum and the overflow detection unit. However, the 

evaluation of the addends is performed in parallel with the binary-to-residue conversion. 

Thus, no extra delay of these two units is presented. evlt_bit of the addends are stored in two 

cells of RAM, each of them has a size of 1 bit. The correction unit was not included in the 

comparison. Thus, the critical path is composed of the residue-to-binary converter, the 

operand evaluation unit of the sum and the overflow detection unit. 

The first analogous design is a binary comparator based on the reverse converter 

proposed in  [4]. This method uses two binary comparators with a 2:1 multiplexer. The sizes 

of the binary comparators are 2n bits and n bits. Thus, the critical path in this design is 

composed of the residue-to-binary converter, the 2n-bit comparator and the 2:1 multiplexer.  

The second analogous design presented in  [47] uses a special component for generating 

two numbers (Ax and Bx) which are further used in the comparison. Moreover, this method 

uses three binary comparators and two 2:1 multiplexers. The sizes if these comparators are n 

bits, n bits and (n + 1) bits. Thus, the critical path of this circuit is composed of Ax and Bx 

generator, the (n + 1)-bit binary comparator and the two 2:1 multiplexers. 

Tab. ‎4.16: Performance comparison between the proposed designs and the analogous ones 

Design Delay Area consumption 

Residue comparator based on  [4] 20n + 10 48n + 3 

 [47] 18n + 14 40n + 8 

Proposed-unsigned 16n + log n + 13 37n + 18 

Proposed-signed 16n + log n + 15 37n + 20 

 

According to Tab.  4.16, both proposed designs have less delay and complexity without 

compromising on accuracy. Generally, this lower area requirements leads to lower power 

consumption.  

In case of overflow occurrence, M is added back to the binary sum, in order to correct the 

sum (Z) and get the final accurate result. The adder that performs this addition can be of any 

type, based on the design’s goal and strategy. Moreover, the size of this adder is 2n bits 

instead of 3n bit, since the first n bits of M for the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1} are ‘0’.  
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   ( 4.56) 

Both proposed designs can be used with any RNS that uses any moduli set, which has 

(2
n
) as one of its moduli, i.e. has an even dynamic range. This can be simply performed by 

applying a tiny modification on the evaluation units, represented in changing the input 

number of the AND gate, according to the dynamic range provided by the used moduli set. 

Moreover, in case of changing the number and the order of the AND gate’s inputs, these two 

designs can be used with any other moduli set, even if it provides an odd dynamic range. 

However, for such systems, the parity checking technique will be faster and simpler than the 

proposed one. 

4.7 Proposed RNS-based application 

An RNS-based image processing application is presented in this section. This application 

applies a number of filters in spatial domain, such as sharpen, edge detection and enhancing 

on a gray-scale image. All the processing is done using the RNS instead of the binary number 

system (BNS). The proposed application proves that using the RNS results in faster and 

power-reduced image filtering applications. Moreover, the negative effects of using improper 

moduli sets in an RNS based image-processing applications are highlighted. This work has 

been published in Gdynia, Poland  [84]. An extended version of this work is under review to 

be published in ElectroScope journal  [85]. 

4.7.1  The proposed RNS-based image processing application 

For performing filtering in spatial domain, a mask should be moved on the image 

according to the following equation  [72],  

( , ) ( , ) ( , )
a b

k a l b

y i j h k l x i k j l
 

        ( 4.57) 

where, x and y are the input and output images, respectively. h is the mask that is going to be 

applied on the image. a and b are positive integers. 

Theoretically, any spatial filter can be used based on the RNS, since the concept of its 

application is the same. 

During my research, I have implemented the following filters, 
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 Sharpening filter: 

0 1 0

1 5 1

0 1 0

 
 
 
 
  

 

 Edge enhancement filters: 

0 0 0

1 1 0

0 0 0

 
 

 
  

 , 

0 1 0

0 1 0

0 0 0

 
 
 
  

 and 

1 0 0

0 1 0

0 0 0

 
 
 
  

, for 

horizontal, vertical and diagonal edge enhancement, respectively. 

 Edge detection filters: 

0 1 0

1 4 1

0 1 0

 
 


 
  

and 

1 2 1

2 4 2

1 2 1

 
 
 
 
  

 

During this research, using ROM-based converters from binary to RNS and vice versa 

turned out to be the most efficient method for this application and its dynamic range. The 

proposed design is divided into three stages; the first one includes a ROM-based forward 

converter that converts the input pixels form binary to RNS. In the second stage, three parallel 

residue arithmetic units, corresponding to the three moduli, perform filtering operations 

(multiplying by the filter’s coefficients and adding). The third stage converts the output 

residues of the three RAUs into their binary equivalent using ROM-based reverse converter. 

Modulo 

16 

RAU

Modulo 

15 

RAU

Modulo 

7 

RAU

ROM

(Binary-to-Residue Conversion)

Original image

Filtered image

ROM

(Residue-to-Binary Conversion)

 

Fig. ‎4.19: The structure of the proposed RNS-based image-processing application  [84] 
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According to  [75], the most efficient moduli set for applications that require medium 

dynamic ranges (less than 22 bits) is {2
n – 1

 – 1, 2
n
 – 1, 2

n
}. We chose n = 4, so the used 

moduli set during our work is {7, 15, 16}. Its dynamic range = 1680 which is sufficient for 

image filtering application and eliminates the necessity to a special component for overflow 

detection and correction. 

As stated in Section  2.3, since the moduli set is of the form {2
n – 1

 – 1, 2
n
 – 1, 2

n
}, their 

residue arithmetic units are high-speed and efficient. Fig.  4.19  illustrates the structure of the 

proposed design. 

4.7.2   The moduli set effect on the output of image processing application 

In this section, the importance of using a proper moduli set that provides a sufficient 

dynamic range for a digital image-processing application is presented.  

Two examples are illustrated in order to show the effects of using a moduli set with 

insufficient dynamic range.  

As aforementioned in Section  4.7.1, the utilized moduli set is {7, 15, 16}. Its dynamic 

range = 1680 which is sufficient for image filtering application and eliminates the necessity to 

a special component for overflow detection. 

Many papers suggested using moduli sets with smaller dynamic ranges, such as {5, 7, 8} 

and {7, 8, 9} that provide M = 280 and M = 504, respectively  [60],  [59]. Since the possible 

pixel values in a digital image processing application have the range [0, 255], these papers 

considered that using these sets would be sufficient. However, the following two examples 

clarify the fact that this is not always true, except the case when using a special component for 

overflow detection, which was not mentioned in any of those papers. 

Example 1: the filtered pixel has a negative value 

Suppose the following pixel values in a part of a gray-scale image, 

23 20 35

23 16 34

24 16 32

 
 
 
  

 

Suppose the following sharpening filter that is going to be applied on that image, 

0 1 0

1 5 1

0 1 0

 
 
 
 
  
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1. Using the weighted number system 

According to equation ( 4.57), the filtered pixel value is, 

23 20 35 0 1 0

23 16 34 1 5 1 13

24 16 32 0 1 0

   
   

    
   
      

 

In standard image processing applications, negative numbers (in our case –13) are 

considered to be 0 (which refers to black color). 

2. Using the RNS based on the moduli set {5, 7, 8} 

After forward conversion according to the moduli set {5, 7, 8}, 

(3,2,7) (0,6,4) (0,0,3) (0,0,0) (4,6,7) (0,0, 0)

(3,2,7) (1,2,0) (4,6,2) (4,6,7) (0,5,5) (4,6, 7) (2,1,3) 267

(4,3,0) (1,2,0) (2,4,0) (0,0,0) (4,6,7) (0,0, 0)

   
   

  
   
      

 

Positive integers greater than 255 (in our case 267) are considered 255 (which refers to 

white color) in standard image processing applications.  

It is obvious that the difference between the two results is huge; by using the weighted 

system, the result is a black pixel, but by using RNS based on {5, 7, 8} the result is a 

white pixel. 

3. Using the RNS based on the moduli set {7, 15 ,16} 

According to equation ( 1.5), I have divided the dynamic range into 2 parts; [0, 839] 

for positive integers, and [840, 1679] for negative ones. 

(2,8,7) (6,5,4) (0,5,3) (0,0,0) (6,14,15) (0, 0,0)

(2,8,7) (2,1,0) (6,4,2) (6,14,15) (5,5,5) (6,14,15) (1,2,3) 1667

(3,9,8) (2,1,0) (4,2,0) (0,0,0) (6,14,15) (0,0,0)

   
   

  
   
      

 

Since 1667 locates in the second half of the dynamic range, this means that it has a 

negative value, so we consider it 0, which is the same as the one computed using the 

weighted number system.  

A question can arise here, what if the dynamic range in the case of using {5,7,8} was 

divided into two parts for representing negative and positive values. Since the 

dynamic range of {5, 7, 8} = 280, therefore, it is not enough to be divided into two 

parts [0, 139] for positive values and [140, 279] for negative ones. 
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Example 2: the filtered pixel has a large positive value 

Suppose the following pixel values in a part of a gray-scale image, 

193 185 118

203 214 200

201 189 217

 
 
 
  

 

1. Using the weighted number system 

Suppose using the same sharpening filter, 

193 185 118 0 1 0

203 214 200 1 5 1 293

201 189 217 0 1 0

   
   

   
   
      

 

293 is considered 255 (white color) in standard image processing applications. 

2. Using the RNS based on the moduli set {5,7,8} 

(3,4,1) (0,3,1) (3,6,6) (0,0,0) (4,6,7) (0,0, 0)

(3,0,3) (4,4,6) (0,4,0) (4,6,7) (0,5,5) (4,6, 7) (3,6,5) 13

(1,5,1) (4,0,5) (2,0,1) (0,0,0) (4,6,7) (0,0, 0)

   
   

  
   
      

 

13 represents a dark color near to black. Again, the huge difference between the two 

results is clear. 

3. Using the RNS based on the moduli set {7,15,16} 

(4,13,1) (3,5,9) (6,13,6) (0,0,0) (6,14,15) (0,0,0)

(0,8,11) (4,4,6) (4,5,8) (6,14,15) (5,5,5) (6,14,15) (6,8,5) 293

(5,6,9) (0,9,13) (0,7,9) (0,0,0) (6,14,15) (0,0,0)

   
   

  
   
      

 

293 belongs to the first part of the dynamic range, which represents positive integers. 

The result based on our moduli set is the same as the one computed using the weighted 

system.  

From the above two examples, the importance of choosing a proper moduli set with a 

sufficient dynamic range is clear. Even though the pixel values range in [0, 255], the overflow 

case should be taken into account, or at least a component that detects overflow should be 

utilized, which is not an easy task when using moduli sets with even dynamic ranges and 

presents further delay and complexity to the design  [1],  [75]. 



Residue Number System Based Building Blocks for Applications in Digital Signal Processing 
 

 

- 79 - 

 

 

4.7.3   Performance evaluation and comparison 

The proposed design was compiled and implemented on XC4VLX15 Virtex-4 FPGA 

device. A 256×256 gray-scale image was stored in a RAM, which was designed using Xilinx 

core generator v.13.4. Both forward and reverse converters were implemented as ROMs. 

Since the concept of spatial filters is the same, I have only illustrated the implementation 

results of applying sharpening and edge detection filters. 

Tab.  4.17 presents the maximum frequency and power consumption at clock frequency of 

100 MHz after implementing the filters using the BNS and the RNS based on the moduli set 

{7, 15, 16}. The proposed design has shown considerably more impressive characteristics 

than its counterpart. It can operate at higher frequency (by approx. 39.1%) and has less power 

consumption (by approx. 23.7%) when operating at frequency of 100 MHz.  

Tab. ‎4.17: Comparison between binary and RNS-based image processing application that applies spatial 

filters on a gray-scale image 

 Binary-based application RNS-based application Improvements % 

Max. frequency [MHz] 127.08 176.75 39.1% 

Power consumption at 
100 MHz [mW] 

489 373 23.7% 

 

Fig.  4.20 shows the results of applying edge detection and sharpening filters using the 

RNS based on {7, 15, 16} and {5, 7, 8}. The original input gray-scale image is shown in Fig. 

 4.20 (a). The output-filtered images using the RNS based on the moduli sets {7, 15, 16} and 

{5, 7, 8} are show in Fig.  4.20 (b) – (e).  

Again, the negative effect of using a moduli set with insufficient dynamic range is clear. 

Fig.  4.20 (c) and (e) show the distorted output filtered images after applying edge detection 

and sharpening filters using the RNS based on the set {5, 7, 8}. Whereas, these images based 

on the proposed design, which uses the moduli set {7, 15, 16}, are identical to those based on 

the BNS. 
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(a) 

  
(b)    (c) 

  
(d)    (e) 

Fig. ‎4.20: The Output images after applying edge detection and sharpening filters, 

 (a) The original gray-scale image.  

(b) After applying edge detection filter using the RNS based on the moduli set {7,15,16}  [84].  

(c) After applying edge detection filter using the RNS based on the moduli set {5,7,8}  [60]. 

(d) After applying sharpening filter using the RNS based on the moduli set {7,15,16}  [84].  

(e) After applying sharpening filter using the RNS based on the moduli set {5,7,8}  [60]. 

4.8 When to use the RNS (Binary vs. RNS) 

This section can be considered as the conclusive outcome of this thesis. It illustrates the 

main issues that should be taken into account when deciding to use the RNS instead of BNS. 

In Section  4.1, a detailed comparison between different moduli sets is presented. 

However, during my research, I have observed that a number of these sets result in 

applications with worse timing performance than that of its equivalent binary-based one. In 

other words, there is no point of using the RNS based on these sets, at least in cases when the 
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main goal of the design is “timing performance”. Therefore, the first part of this section 

establishes the main aspect that should be considered when choosing a moduli set in order to 

achieve better timing performance than that of the BNS. 

On the other hand, the second part studies the cases when utilizing the RNS would be the 

most advantageous. As aforementioned before, using the RNS is of great benefit in 

applications where addition, subtraction and multiplication are dominant. However, dominant 

is an abstracted word. Thus, a detailed discussion about this issue is presented below. It 

compares the performance of binary and RNS-based applications and highlights the areas 

when using the RNS can be extremely useful in order to achieve higher timing performance 

and less power consumption. 

4.8.1   The effect of the critical modulo within a moduli set 

The key concept of the RNS is that the delay of the RAU corresponding to the critical 

channel is less than the delay of its equivalent binary arithmetic unit (BAU). However, the 

presence of RNS converters affects the whole RNS, since their delay is rather long. Typically, 

an RNS that performs one arithmetic operation suffers from longer delay than that of its 

binary equivalent. Therefore, the essential point of using the RNS is ascertained via 

performing many arithmetic operations, so the delay of BAUs exceeds the delay of residue 

arithmetic units plus the RNS converters. Nevertheless, the issue of performing many 

arithmetic operations is discussed in details in the next section. 

As aforementioned before, many moduli sets of different forms and moduli number have 

been suggested. However, the unpredictable issue is that, using some of these moduli sets 

results in worse timing performance than that of binary-based ones. In systems based on such 

sets, the delay of RAU corresponding to the critical channel exceeds the delay of its 

equivalent BAU, regardless the delay of RNS convertors. An example that clarifies this issue 

is presented below. 

Example 

Considering a system that uses the moduli set {2
n
 – 1, 2

n
 + 1, 2

2n
 + 1}  [9]. The width of 

its dynamic range is 4n bits. The critical modulo within this system is (2
2n

 + 1). Its width is 

(2n + 1) bits 

According to Tab.  6.1, the delay of a modulo (2
2n

 + 1) adder 2mod (2 1)n add
T


 and a modulo 

(2
2n

 + 1) multiplier 2mod (2 1)n mul
T


 are as follows, 

2 22mod (2 1) mod (2 1)
16 log 5 , 32 9n nadd mul

T n n T n
 

      
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On the other hand, since the DR width is 4n bits, the delay of the binary adder and 

multiplier on operands of 4n bits are as follows, 

(4 ) (4 )16 , 32 7bin add n bit bin mul n bitT n T n    

In order to get the benefit of using the RNS, the following two conditions should be met,  

critical mod ulo add bin add

critical mod ulo mul bin mul

T T

T T




     ( 4.58) 

According to the above conditions and by substituting the delay values of both modular 

and binary adders, 

2 2mod (2 1)
16 log 5 16n bin addadd

T T n n n


      

It is obvious, that this inequality is not true. The delay of the binary adder is longer than 

that of the critical modular one. 

In a similar manner, by substituting the delay values of both modular and binary 

multipliers, 

2mod (2 1)
32 12 32 9n bin mulmul

T T n n


      

Again, the above inequality is also not true. The delay of the binary multiplier is longer 

than that of the critical modular one. 

Therefore, we can see that using the moduli set {2
n
 – 1, 2

n
 + 1, 2

2n
 + 1}  [9] results in 

RAU with longer delay than that of the BAU, regardless the delay presented by the RNS 

converters. i.e. there is no benefit of using the RNS based on this set in order to obtain higher 

timing performance. 

End of example 

According to the above discussion, setting a concrete condition, that should be met when 

choosing a moduli set, is obligatory. 

Assuming an RNS-based application that uses one of the previously stated moduli sets, 

the width of its DR is m bits. According to the studied moduli sets stated in Tab.  2.1, the 

smallest critical channel is of the form (2
n
 – 1). 

According to the unit gate model and Tab.  6.1, the delay of the modular adder 

corresponding to the critical channel (2
n
 – 1) is as follows, 

mod(2 1)
8n add

T n


  
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Since the width of the DR is m bits, the delay of binary adder is as follows, 

( ) 4bin add m bitT m  

Again, in order to get the benefit of using the RNS, inequality ( 4.58) should be met. 

Hence, 

8 4 2critical mod ulo add bin addT T n m n m        ( 4.59) 

Consequently, inequality  ( 4.59) clarifies the fact, that in order to obtain better 

timing performance of addition using the RNS, the dynamic range width should be greater 

than the critical channel width by more than two times. 

In a similar manner, the condition that should be met in order to obtain higher timing 

performance of multipliers than that of the BNS, is as follows, 

16 7 8 7 2critical mod ulo mul bin mulT T n m n m         ( 4.60) 

Inequality ( 4.60) also illustrates the same fact that in order to obtain better timing 

performance of multiplication using the RNS, the dynamic range width should be greater than 

the critical channel width by more than two times. 

However, the above-concluded results are only based on a theoretical point of view. 

Therefore, in order to verify these results, a comparison based on FPGA implementation has 

been held. Timing performance of three parallel RAUs based on the moduli set {2
n
 – 1, 2

n
 + 

1, 2
2n

 + 1}  [9] has been compared with their equivalent BAU. The RNS system has been 

implemented without converters, only RAUs with respect to the three moduli within the set. 

The implementation results are illustrated in Tab.  4.18.  

Tab. ‎4.18: A comparison between binary arithmetic unit and parallel RAUs (in terms of timing performance) 

based on moduli set {2
n
 – 1, 2

n
 + 1, 2

2n
 + 1}  [9], with DR = 4n bit 

DR 

Addition Multiplication  

Binary [MHz] RNS [MHz] Binary [MHz] RNS [MHz] 

n = 4, DR = 16 bit 465.1  253.7 317.5 131 

n = 8, DR = 32 bit 330.4  225.5 149.6 115.9 

n = 15, DR = 60 bit 174.6  171.6 79.3 65.3 
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According to Tab.  4.18, it is clear that the binary arithmetic unit can operate at higher 

frequencies than that of RAU. Again, the reverse converters were not included in the 

comparison. Thus, it is clear that using the RNS based on this moduli set does not improve 

timing performance. 

Hence, the main condition before choosing a moduli set in order to obtain better timing 

performance of addition or multiplication using the RNS, is as follows, “the critical modulo 

width (bits number) in the moduli set should be less than half of the dynamic range width this 

set provides”. Therefore, the moduli sets that should not be used in systems than concern 

about timing performance are those that do not meet this issue. During my research, I have 

observed a number of already published papers suggesting moduli sets that can be 

disadvantageous to use, such as {2
n
 – 1, 2

n
, 2

2n+1
 – 1}  [8], {2

n
 – 1, 2

n
 + 1, 2

2n
 + 1}  [9] and 

{2
n/2

 – 1, 2
n/2

 + 1, 2
n
 + 1, 2

2n+1
 – 1}  [18]. These sets are illustrated in Tab.  4.19. The 

inefficiency proofs, based on theoretical and implementation results, of using moduli set {2
n
 – 

1, 2
n
 + 1, 2

2n
 + 1}  [9],  are stated. The inefficiency of using the moduli sets  [8] and  [18] can 

be similarly proved. 

Tab. ‎4.19: Moduli sets that result in applications with worse timing performance than binary-based ones 

Moduli # Modulo set 

Critical 

modulo 

channel 

Critical 

channel width 

Dynamic 

range 

width 

3 

{2
n
 – 1, 2

n
, 2

2n+1
 – 1}  [8] (2

2n+1
 – 1) (2n + 1) bits (4n + 1) bits 

{2
n
 – 1, 2

n
 + 1, 2

2n
 + 1}  [9] (2

2n
 + 1) (2n + 1) bits (4n) bits 

4 
{2

n/2
 – 1, 2

n/2
 + 1, 2

n
 + 1, 2

2n+1
 – 1}       

 [18] 

(2
2n+1

 – 1) (2n + 1) bits (4n + 1) bits 

 

4.8.2   When is RNS superior than binary number system 

As previously stated, the main advantageous field of using the RNS instead of BNS is in 

applications that contain a dominant number of additions, subtractions and multiplications. 

Hence, this section discusses the issue of how many additions/multiplications should an 

application contain in order to obtain an RNS-based application faster than a binary-based 

one. 

Theoretically, in case of performing only one addition or multiplication, the binary-based 

application will be faster than the RNS-based one, due to presence of both converters.  
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Therefore, in order to get the benefit of the RNS’s properties, these arithmetic operations 

should be performed at least a certain number of times in order to make the profits gained in 

the RAUs exceeds the overhead of the converters. 

Assuming an application that performs a certain arithmetic operation, this application 

based on the RNS will be faster, if the delay of the binary arithmetic unit exceeds the delay of 

the residue arithmetic one corresponding to the critical modulo channel plus the delay of 

converters. 

bin operation critical mod ulo operation convT T T      ( 4.61) 

where, bin operationT  refers to the delay of binary arithmetic unit that performs that certain 

operation, critical mod ulo operationT  refers to the delay of the RAU corresponding to the critical 

modulo and  convT refers to the delay of both forward and reverse converters. 

Since the delay of the converters has always a rather big value, the above expression can 

only be achieved by repeating this operation a certain number of times k,  

   bin operation critical mod ulo operation convk T k T T       ( 4.62) 

Example 

Assuming an RNS-based application that uses the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1} with DR 

= 3n bits. The critical channel in this system is modulo (2
n
 + 1). 

According to the unit gate model and Tab.  6.1 stated in the appendix, timing requirements 

of the forward converter, reverse converter, modulo (2
n
 + 1) adder and modulo (2

n
 + 1) 

multiplier within this system are as follows, 

2mod (2 1) mod (2 1)

12 9 , 20 12 32 21

8 log 4 , 16 9n n

FC RC conv

add mul

T n T n T n

T n n T n
 

      

    
 

Since the width of the DR is 3n bits, timing requirements for performing addition and 

multiplication in a binary system are as follows, 

(3 ) (3 )12 , 24 7n bit add n bit mulT n T n    

According to equation ( 4.62), 

    212 8 4 32 21bin add critical mod ulo add conv

bin add convcritical mod ulo add

k T k T T k n k n log n n
  
             
    
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Thus,  

2

32 21

4 log 4

n
k

n n




 
      ( 4.63) 

This means that in order to achieve better timing performance of the RNS-based 

application, the addition should be repeated at least k times determined in equation ( 4.63). 

In a similar manner, regarding multiplication based on the same moduli set, this operation 

should be repeated at least l times in order to achieve better timing performance of the RNS-

based application.  

32 21

8 16

n
l

n





      ( 4.64) 

End of example 

According to equations ( 4.63) and ( 4.64), the minimum numbers of iterated additions and 

multiplications have been computed for different dynamic range requirements. Their values 

are shown in Tab.  4.20.  

Tab. ‎4.20: The least numbers of iterated additions and multiplications required to achieve better timing 

performance of the RNS-based application that uses moduli set {2
n
 – 1, 2

n
, 2

n
 + 1} 

n Dynamic range 
Minimum number of  

iterated additions  

Minimum number of  

iterated multiplications 

4 12 bits k ≥ 15 l ≥ 10 

8 24 bits k ≥ 12 l ≥ 6 

11 33 bits k ≥ 11 l ≥ 6 

16 48 bits k ≥ 10 l ≥ 5 

22 66 bits k ≥ 10 l ≥ 5 

 

From Tab.  4.20, it is clear that the RNS speed advantage is mainly manifested in 

multiplication rather than addition. It is also obvious that as the dynamic range increases, the 

minimum number of repeated operations decreases. For medium dynamic range (12 bits), an 

RNS-based application that performs 10 repeated multiplications is theoretically faster than 

the binary-based one. Whereas, for very large dynamic range (66 bits), this number decreases 
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to only five repeated multiplications to achieve better timing performance than the binary 

based one. 

However, this study is based on the theoretical point of view. Hence, in order to compare 

the theoretical results with the practical ones, two applications that perform different numbers 

of iterated additions and iterated multiplications, respectively, have been implemented on 

Virtex-4 XC4VSX25 FPGA. These applications are based on the moduli set {2
n
 – 1, 2

n
, 2

n
 + 

1}. 

The implementing results illustrating the maximum frequency and power consumption 

for different number of iterated additions/multiplications, for different dynamic ranges are 

detailed in Appendix in Tab.  6.6 - Tab.  6.13. The utilized components within these 

applications are based on the proposed designs stated in this thesis, including forward 

converter, reverse converter, modular adders and multipliers. 

Since the proposed reverse converter could not be implemented for DRs larger than 48 bit 

on Virtex-4 XC4VSX25 FPGA, thus, the maximum DR that the proposed designs were 

implemented for was 48 bit instead of 66 bit. 

In a similar manner as shown in Tab.  4.20, the least numbers of iterated 

additions/multiplications for different dynamic ranges, based on Virtex-4 implementation, are 

shown in Tab.  4.21. 

Tab. ‎4.21: The least numbers of iterated additions and multiplications required to achieve better timing 

performance of the RNS based on Virtex-4 implementation 

n Dynamic range 
Minimum number of 

iterated additions  

Minimum number of 

iterated multiplications 

4 12 bits k ≥ 3 l ≥ 2 

8 24 bits k ≥ 6 l ≥ 1 

11 33 bits k ≥ 6 l ≥ 1 

16 48 bits k ≥ 9 l ≥ 1 

 

The difference between the theoretical and implementation results is obvious. The 

implementation results are much better than the theoretical ones. Less numbers of iterated 

additions/multiplications are needed in order to achieve better timing performance of the 

RNS-based application. There are two reasons behind this improvement; the first one is the 

efficient reverse converter being used. Its structure is partially based on integrated block 
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RAMs, which can run at 500 MHz in the selected device  [73]. This presents a considerable 

improvement in timing performance of the overall system. The second reason is the usage of 

the dedicated XtremeDSP slices built-in Virtex-4 FPGA. These DSP slices can run at 500 

MHz and have small power consumption 2.3 mW/100 MHz per slice  [74]. 

However, as illustrated in the appendix in Tab.  6.10 - Tab.  6.13, the application based on 

iterated multiplications shows power-saving feature, for averagely 10 iterated multiplications. 

Therefore, for the sake of a clear discussion, the implementation results (maximum frequency, 

hardware and power consumption) of both applications based on 10 iterated 

additions/multiplications are shown in this section in Tab.  4.22, Tab.  4.23 and Tab.  4.24, 

respectively.  

Tab. ‎4.22: The maximum frequency of applications performing 10 iterated additions and 10 iterated 

multiplications using the RNS and BNS 

Dynamic 

range 

Application based on 10 additions  Application based on 10 multiplications  

RNS Binary 
Speed 

improvement % 
RNS Binary 

Speed 

improvement % 

12 bits 193.9 MHz 123.9 MHz 56.5 % 134.6 MHz 22.7 MHz 493 % 

24 bits 158.1 MHz 111.6 MHz 41.7 % 124.5 MHz 19.9 MHz 525.6 % 

33 bits 150.5 MHz 105.9 MHz 42.1 % 121.6 MHz 12.8 MHz 850 % 

48 bits 103.1 MHz 100.1 MHz 3 % 106.7 MHz 12.6 MHz 749.8 % 

 

As shown in Tab.  4.22, it is obvious that the application based on iterated multiplications 

has much more impressive results than the one based on additions. The reason is the DSP48 

units in FPGA. These DSP units are used in the case of application based on pure 

multiplications. Whereas, the one based on pure additions is implemented using LUTs only. 

Moreover, the application that performs only multiplications for dynamic ranges 33 bit 

and 48 bits, RNS-based application becomes more power efficient for multiplications iterated 

for more than 6 times and 5 times, respectively. As shown in Appendix in Tab.  6.12 and Tab. 

 6.13, these savings gradually increase as number of iterated multiplications increases. 

According to the application being under discussion (based on 10 iterated 

multiplications), compared to the binary-based application, the power consumption of the 

RNS-based one is reduced by 25.2% and 39.8% for dynamic ranges 33 bits and 48 bits, 

respectively, as shown in Tab.  4.23.  
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Tab. ‎4.23: Power consumption at 100 MHz running application performing 10 iterated multiplications using 

the RNS and BNS 

Dynamic range RNS Binary Power saving % 

33 bits 506 mW 676 mW 25.2 % 

48 bits 716 mW 1189 mW 39.8 % 

 

This power efficiency feature is evident in RNS-based application for large and very 

large dynamic ranges (33 bits and 48 bits). The reason is the huge increment in the utilized 4 

input look-up tables in binary-based application compared to the RNS-based one. Hardware 

requirements for implementing binary and RNS-based applications that perform 10 iterated 

multiplications are illustrated in Tab.  4.24. 

Tab. ‎4.24: Hardware requirements for implementing applications performing 10 iterated multiplications 

using the RNS and BNS on Virtex-4 XC4VSX25 FPGA 

Dynamic range 

RNS Binary 

4-LUTs DSP48s RAMB16s 4-LUTs DSP48s RAMB16s 

33 bits 610 23 3 3 301 15 0 

48 bits 1 246 23 120 11 206 12 0 

 

After implementing applications based on the moduli set {2
n
 – 1, 2

n
, 2

n
 + 1}, this study 

has been further extended to other moduli sets. The minimum numbers of iterated additions 

and multiplications required to achieve better timing performance of the RNS-based 

applications that use different moduli sets are shown in Tab.  4.25.  

During this study, an unexpected issue has been observed. The three-moduli set {2
n
 – 1, 

2
n
, 2

n+1
 – 1}  [7] has the best results for different dynamic ranges. It requires the minimum 

number of iterated additions and multiplications in order to achieve better timing performance 

than binary applications. Another surprising issue is, that the five-moduli set {2
n
, 2

n/2
 – 1, 2

n/2
 

+ 1, 2
n
 + 1, 2

2n–1
 – 1}  [17], contrary to all other sets, requires more additions and 

multiplications as the dynamic range increases.  

It should be mentioned that both moduli sets {2
n
 – 1, 2

n
, 2

n
 + 1, 2

n+1
 – 1}  [11]-I and {2

n
, 

2
n/2

 – 1, 2
n/2

 + 1, 2
n
 + 1, 2

2n–1
 – 1}  [17] can only be used with even values of n. Therefore, n 

was chosen in such a way to keep the acquired dynamic ranges as close as possible. 
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Thus, it is evident that using the RNS is more advantageous in applications that have 

large and very large dynamic ranges and contain multiplications rather than only additions.  

Tab. ‎4.25: The least numbers of iterated additions and multiplications required to achieve better timing 

performance of the RNS-based application that uses moduli set {2
n
 – 1, 2

n
, 2

n
 + 1} 

Moduli set Dynamic range n Min. add. #  Min. mul. # 

{2
n
 – 1, 2

n
, 2

n
 + 1}  [4] 

12 bits 4 k ≥ 15 l ≥ 10 

24 bits 8 k ≥ 12 l ≥ 6 

33 bits 11 k ≥ 11 l ≥ 6 

66 bits 22 k ≥ 10 l ≥ 5 

{2
n
 – 1, 2

n
, 2

n+1
 – 1}  [7] 

13 bits 4 k ≥ 9 l ≥ 5 

25 bits 8 k ≥ 7 l ≥ 4 

34 bits 11 k ≥ 6 l ≥ 3 

64 bits 22 k ≥ 5 l ≥ 3 

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

n+1
 – 1} 

 [11]-I 

9 bits 2 k ≥ 11 l ≥ 7 

25 bits 6 k ≥ 9 l ≥ 5 

34 bits 8 k ≥ 9 l ≥ 5 

64 bits 16 k ≥ 8 l ≥ 4 

{2
n
 – 1, 2

2n
, 2

n
 + 1, 2

2n
 + 1} 

 [13]-II 

12 bits 2 k ≥ 14 l ≥ 9 

24 bits 4 k ≥ 10 l ≥ 6 

36 bits 6 k ≥ 9 l ≥ 5 

66 bits 11 k ≥ 9 l ≥ 4 

{2
n
, 2

n/2
 – 1, 2

n/2
 + 1, 2

n
 + 

1, 2
2n–1

 – 1}  [17] 

9 bits 2 k ≥ 12 l ≥ 6 

19 bits 4 k ≥ 14 l ≥ 7 

39 bits 8 k ≥ 16 l ≥ 8 

69 bits 14 k ≥ 16 l ≥ 8 
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5 Conclusions 

The main aim of this dissertation was designing RNS based building blocks for 

applications in the field of DSP applications (binary-to-residue converter, residue-to-binary 

converter, residue adder and residue multiplier). The achieved results and key outcomes are 

summarized in this Chapter. 

Throughout this thesis, a general introduction into the RNS and its properties, including 

its basics, advantages and disadvantages, have been presented in Chapter  1. Chapter  2 

includes a brief survey on the recent trends and achievements in all RNS areas. The 

applications where RNS can be useful have been presented too. Chapter  3 states the main 

aims and objectives of this dissertation thesis. Chapter  4 details the proposed work and 

dissertation results. The main RNS components have been proposed including a binary to 

residue converter, modular adders, subtractors, multipliers, a residue comparator, components 

for overflow and sign detection and correction and a residue to binary converter. Moreover, 

discussions on the recently suggested moduli sets, the most efficient ones and those that 

should not be used have been also presented in Sections  4.1 and  4.8.1, respectively. A 

comparison between binary and RNS-based applications and the considerations that should be 

taken into account before designing a DSP application based on the RNS are also stated in 

Sections  4.7 and  4.8.2. The efficiency of those proposed designs have been proven by 

illustrating the implementation results and comparing them with already published designs. 

The majority of the proposed designs can be implemented with any system that has any 

moduli set of the form (2
k
 ± 1). Hence, the proposed components can be implemented with 

any RNS system that uses any of the published moduli sets. 

The proposed designs and outcomes of the doctoral thesis have been published in 

different national and international conferences and journals. 

5.1 Final remarks 

The final points of this thesis can be summarized as follows, 

 The RNS-based applications should be used in fields that have dominant 

multiplications or at least a mix of multiplications and additions rather than only 

additions. 

 The moduli set should be chosen in such a way that it contains as few moduli of 

the form (2
k 

+ 1) as possible, due to the complexity and delay caused by this 

channel. The most efficient set has been proven to be {2
n+1

 – 1, 2
n
, 2

n
 – 1}.  
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 Contrary to the prevalent issue, the number of moduli within a set is not as 

important as it is widely known. Moduli number does not play a crucial role in 

enhancing the speed of the RNS system. 

 Indeed, the form and magnitude of the largest modulo are the main concerns that 

should be taken into account. The width of the largest modulo should be at least 

less than half of the dynamic range‘s width. A number of published moduli sets 

that should not be used have been stated in Section  4.8.1. 

 Enlarging the dynamic range is more efficient than using overflow detection units, 

since such components present a considerably long delay. Therefore, timing 

performance of the RNS-based application that uses these components is worse 

than the one that has a larger dynamic range and does not contain overflow 

detection units. 

 Using the RNS in very large DRs results in so-called “super-efficient” 

applications compared to binary ones, (they provide considerably higher timing 

performance, reduced area and power consumption). 

 Using the RNS provides a kind of low-level security, since the operands and 

results are presented using a totally different system. 

 Choosing the type of forward and reverse converters should depend on the 

dynamic range (more than 15 bits, the proposed converters have been proven to 

be more efficient than pure memory ones). 

Hence, the points mentioned in the objectives of this thesis have been met. This work has 

led to new sights in the field of the residue number system. This system has very attractive 

and promising features if used in applications that require large and very large dynamic 

ranges. Rather than providing reduced power consumption with compromising timing 

performance or vice versa, both aspects can be fully met simultaneously. Since these two 

terms have become the key interests in nowadays technology, the RNS is the promising 

means that provides the so-called “super-efficient” applications. 

 



Residue Number System Based Building Blocks for Applications in Digital Signal Processing 
 

 

- 93 - 

 

 

Bibliography 
[1] OMONDI, A., PREMKUMAR, B. Residue Number System: Theory and Implementation. London: 

Imperial College Press. 2007. 312 pages. ISBN-13: 978-1860948664. 

[2] MOHAN, P.V.A., Residue Number System: Algorithms and Architectures. Massachusetts: Springer, 

2002. 272 pages. ISBN-13: 978-1402070310. 

[3] WANG, W., SWAMY, M.N.S., AHMAD, M.O. Moduli Selection in RNS for Efficient VLSI 

Implementation. In Proceedings of the International Symposium on Circuits and Systems, 2003, p. IV-

512 – IV-515. ISBN 0-7803-7761-3. 

[4] PIESTRAK, S.J. A High-Speed Realization of a Residue to Binary Number System Converter. In IEEE 

Trans. on Circuits and Systems-II: Analog and Digital Signal Processing, 1995, vol. 42, p. 661 – 663. 

ISSN 1057-7130. 

[5] NAVI, K., MOLAHOSSEINI, A.S., ESMAEILDOUST, M. How to Teach Residue Number System to 

Computer Scientists and Engineers. In IEEE Trans. on Education, 2011, vol. 54, p. 156 – 163. ISSN 

0018-9359. 

[6] WANG, W., SWAMY, M.N.S., AHMAD, M.O., WANG, Y.  A High-Speed Residue-to-Binary Converter 

for Three-Moduli (2
k
, 2

k
 – 1, 2

k–1
 – 1) RNS and a Scheme for its VLSI Implementation. In IEEE Trans. on 

Circuits and Systems-II: Analog and Digital Signal Processing, 2000, vol. 47, p. 1576 – 1581. ISSN 

1057-7130. 

[7] MOHAN, P.V.A.  RNS-to-Binary Converter for a New Three-Moduli Set {2
n+1

 – 1, 2
n
, 2

n
 – 1}. In IEEE 

Trans. on Circuits and Systems-II: Express Briefs, 2007, vol. 54, p. 775 – 779. ISSN 1549-7747. 

[8] MOLAHOSSEINI, A.S., NAVI, K., RAFSANJANI, M.K. A New Residue to Binary Converter Based on 

Mixed-Radix Conversion. In 3
rd

 International Conference on Information and Communication 

Technologies: From Theory to Applications, 2008, p. 1 – 6. ISBN 978-1-4244-1751-3. 

[9] WANG, W., SWAMY, M.N.S., AHMAD, M.O., WANG, Y. A Study of the Residue-to-Binary 

Converters for the Three-Moduli Sets. In IEEE Trans. on Circuits and Systems-I: Fundamental Theory 

and Applications, 2003, vol. 50, p. 235 – 243. ISSN 1057-7122. 

[10] HARIRI, A., NAVI, K., RASTEGAR, R. A New High Dynamic Range Moduli Set with Efficient Reverse 

Converter. In Computers & Mathematics with Applications Journal, 2008, vol. 55, p. 660 – 668. ISSN 

0898-1221. 

[11] MOHAN, P.V.A., PREMKUMAR, A.B. RNS-to-Binary Converters for Two Four-Moduli Sets {2
n
 – 1, 

2
n
, 2

n
 + 1, 2

n+1
 – 1} and {2

n
 – 1, 2

n
, 2

n
 + 1, 2

n+1
 + 1}. In IEEE Trans. on Circuits and Systems-I: Regular 

Papers, 2007, vol. 54, p. 1245 – 1254. ISSN 1549-8328. 

[12] CAO, B., CHANG, C.H., SRIKANTHAN, T. An Efficient Reverse Converter for the 4-Moduli Set {2
n
 – 

1, 2
n
, 2

n
 + 1, 2

2n
 + 1} Based on the New Chinese Remainder Theorem. In IEEE Trans. on Circuits and 

Systems-I: Fundamental Theory and Applications, 2003, vol. 50, p. 1296 – 1303. ISSN 1057-7122. 

[13] MOLAHOSSEINI, A.S., NAVI, K., DADKHAH, C., KAVEHEI, O., TIMARCHI, S. Efficient Reverse 

Converter Designs for the New 4-Moduli Sets {2
n
 – 1, 2

n
, 2

n
 + 1, 2

2n+1
 – 1} and {2

n
 – 1, 2

n
 + 1, 2

2n
, 2

2n
 + 



Residue Number System Based Building Blocks for Applications in Digital Signal Processing 
 

 

- 94 - 

 

 

1} Based on New CRTs. In IEEE Trans. on Circuits and Systems-I: Regular Papers, 2010, vol. 57, p. 823 

– 835. ISSN 1549-8328. 

[14] HIASAT, A.A. VLSI Implementation of New Arithmetic Residue to Binary Decoders. In IEEE Trans. on 

VLSI Systems, 2005, vol. 13, p. 153 – 158. ISSN 1063-8210. 

[15] ZHANG, W., SIY, P. An Efficient Design of Residue to Binary Converter for Four Moduli Set (2
n
 – 1, 2

n
 

+ 1, 2
2n

 – 2, 2
2n+1

 – 3) Based on New CRT-II. In Information Sciences Journal, 2008, vol. 178, p. 264 – 

279. ISSN 0020-0255. 

[16] CAO, B., CHANG, C.H., SRIKANTHAN, T. A Residue-to-Binary Converter for a New Five-Moduli Set. 

In IEEE Trans. on Circuits and Systems-I: Regular Papers, 2007, vol. 54, p. 1041 – 1049. ISSN 1549-

8328. 

[17] MOLAHOSSEINI, A.S., DADKHAH, C., NAVI, K. A New Five-Moduli Set for Efficient Hardware 

Implementation of the Reverse Converter,” In IEICE Electronics Express, 2009, vol. 6, p. 1006 – 1012. 

ISSN 1006-1012. 

[18] MOLAHOSSEINI, A.S., TEYMOURI, F., NAVI, K. A New Four-Modulus RNS to Binary Converter. In 

Proc. of IEEE International Symposium on Circuits and Systems, 2010, p. 4161 – 4164. ISBN 978-1-

4244-5308-5. 

[19] SOUSA, L., ANTÃO, S. MRC-Based RNS Reverse Converters for the Four-Moduli Sets {2
n
 + 1, 2

n
 – 1, 

2
n
, 2

2n+1
 – 1} and {2

n
 + 1, 2

n
 – 1, 2

2n
, 2

2n+1
 – 1}. In IEEE Trans. on Circuits and Systems II: Express 

Briefs, 2012, vol. 59, p. 244 – 248. ISSN 1549-7747. 

[20] ALIABADIAN, R., ALIABADIAN, A., BOLHASANI, A., HOSSEINI, S.Z., GOLSORKHTABAR, A. 

A Novel High Dynamic Range 4-Module Set {2
2n+1

, 2
2n

 + 1, 2
n
 + 1, 2

n
 – 1} with Efficient Reverse 

Converter and Review Improving Modular Multiplication’s Dynamic Range with this Module Set. In 

International Conference on Computer Communication and Informatics, 2012, p. 1 – 6. ISBN 978-1-

4577-1580-8. 

[21] PIESTRAK, S.J. Design of Residue Generators and Multioperand Modular Adders Using Carry-Save 

Adders. In IEEE Transactions on Computers, 1994, vol. 43, p. 68–77. ISSN 0018-9340. 

[22] BAYOUMI, M., JULLIEN, G., MILLER, W. A VLSI Implementation of Residue Adders. In IEEE 

Transactions on Circuits and Systems, 1987, vol. 34, p. 284-288. ISSN 0098-4094. 

[23] JULLIEN, G.A. Residue Number Scaling and Other Operations Using ROM Arrays. In IEEE 

Transactions on Computers, 1978, vol. C-27, p. 325-336. ISSN 0018-9340. 

[24] BANERJI, D.K. A Novel Implementation Method for Addition and Subtraction in Residue Number 

Systems. In IEEE Transactions on Computers, 1974, vol. C-23, p. 106-109. ISSN 0018-9340. 

[25] TAYLOR, F.J. A VLSI Residue Arithmetic Multiplier. In IEEE Transactions on Computers, 1982, col. C-

31, p. 540-546. ISSN 0018-9340. 

[26] BEUCHAT, J.L. Some Modular Adders and Multipliers for Field Programmable Gate Arrays. In IPDPS 

'03 Proceedings of the 17th International Symposium on Parallel and Distributed Processing, 2003, ISSN 

1530-2075. 

[27] VERGOS, H.T., EFSTATHIOU, C. Efficient Modulo 2
n
 + 1 Adder Architectures. In Integration, the 

VLSI Journal, 2009, vol. 42, p. 149–157. ISSN 0167-9260. 



Residue Number System Based Building Blocks for Applications in Digital Signal Processing 
 

 

- 95 - 

 

 

[28] VERGOS, H.T., EFSTATHIOU, C., NIKOLOS, D. Diminished-One Modulo 2
n
 + 1 Adder Design. In 

IEEE Transactions on Computers, 2002, vol. 51, p. 1389-1399. ISSN 0018-9340. 

[29] EFSTATHIOU, C., VERGOS, H.T., NIKOLOS, D. Fast Parallel Prefix Modulo 2
n 

+ 1 Adders. In IEEE 

Transactions on Computers, 2004, vol. 53, p. 1211-1216. ISSN 0018-9340. 

[30] KALAMPOUKAS, L. et al. High-Speed Parallel-Prefix Modulo 2
n
 – 1 Adders. In IEEE Transactions on 

Computers, 2000, vol. 49, p. 673–679. ISSN 0018-9340. 

[31] VASSALOS1, E., BAKALIS1, D., VERGOS, H.T. Novel Modulo 2
n
+1 Subtractors. In 16

th
 International 

Conference on Digital Signal Processing, 2009, p. 1-5. ISBN 978-1-4244-3297-4. 

[32] TIMARCHI, S., NAVI, K., HOSSEINZADE, M. New Design of RNS Subtractor for Modulo 2
n
 +1. In 

Information and Communication Technologies, 2006, vol. 2, p. 2803-2808. ISBN 0-7803-9521-2. 

[33] NEDJAH, N., MOURELLE, L.M. A Review of Modular Multiplication Methods and Respective 

Hardware Implementations. In Informatica Journal, 2006, vol. 30, p. 111–129. ISSN 0350-5596. 

[34] HIASAT, A.A., ZOHDY, H.S. Design and Implementation of a Fast and Compact Residue-Based Semi-

Custom VLSI Arithmetic Chip. In Proceedings of the 37
th

 Midwest Symposium on Circuits and Systems, 

1994, vol. 1, p. 428–431. ISBN 0-7803-2428-5. 

[35] HIASAT, A.A. New Memoryless, Mod (2
n
 – 1) Residue Multiplier. In Electronics Letters, 1992, vol. 28, 

p. 314-315. ISSN 0013-5194. 

[36] BAJARD, J.C., DIDIER, L.S., KORNERUP, P. An RNS Montgomery Modular Multiplication Algorithm. 

In IEEE Transactions on Computers, 1998, vol. 47, p. 766–776. ISSN 0018-9340. 

[37] WANG, Z., JULLIEN, G.A., MILLER, W.C. An Efficient Tree Architecture for Modulo 2
n
 + 1 

Multiplication. In Journal of VLSI Signal Processing Systems - Special Issue on VLSI Arithmetic and 

Implementations. 1996, vol. 14, p. 241–248. ISSN 0922-5773. 

[38] WANG, Z., JULLIEN, G.A., MILLER, W.C. An Algorithm for Multiplication Modulo (2
n
 – 1).  In IEEE 

39
th

 Midwest Symposium Circuits Systems, 1996, vol. 3, p. 1301–1304. ISBN 0-7803-3636-4. 

[39] EFSTATHIOU, C., VERGOS, H.T. Modified Booth 1's Complement and Modulo 2
n 

–1 Multipliers. In 

The 7
th

 IEEE International Conference on Electronics, Circuits and Systems, 2000, vol. 2, p. 637-640. 

ISBN 0-7803-6542-9. 

[40] SOUSA, L., CHAVES, R. A Universal Architecture for Designing Efficient Modulo 2
n
 + 1 Multipliers. In 

IEEE Transactions on Circuits and Systems I: Regular Papers, 2005, vol. 52, p. 1166–1178. ISSN 1549-

8328. 

[41] VEROGS, H.T., EFSTATHIOU, C. Design of Efficient Modulo 2
n
 + 1 Multipliers. In IET Computers & 

Digital Techniques, 2007, vol. 1, p. 49–57. ISSN 1751-8601. 

[42] WRZYSZCZ, A., MILFORD, D. A New Modulo 2
α
 + 1 Multiplier. In IEEE International Conference on 

Computer Design: VLSI in Computers and Processors, 1993, p. 614–617. ISBN 0-8186-4230-0. 

[43] ASKARZADEH, M., HOSSEINZADEH, M., NAVI, K. A New Approach to Overflow Detection in 

Moduli Set {2
n
 – 3, 2

n
 – 1, 2

n
 + 1, 2

n
 + 3}. In Second International Conference on Computer and 

Electrical Engineering, 2009, vol. 1, p. 439 – 442. ISBN 978-1-4244-5365-8. 



Residue Number System Based Building Blocks for Applications in Digital Signal Processing 
 

 

- 96 - 

 

 

[44] SHANG, M., JIANHAO, H., LIN, Z., XIANG, L. An Efficient RNS Parity Checker for Moduli Set {2
n
 − 

1, 2
n
 + 1, 2

2n
 + 1} and its Applications. In Springer Journal of Science in China Series F: Information 

Sciences, 2008, vol. 51, p. 1563 – 1571. ISSN 1862-2836. 

[45] DIMAURO, G., IMPEDOVO, S., PIRLO, G. A New Technique for Fast Number Comparison in the 

Residue Number System.  In IEEE Transactions on Computers, 1993, vol. 42, p. 608 – 612. ISSN 0018-

9340. 

[46] WANG, Y., SONG, X., ABDOULHAMID, M. A New Algorithm for RNS Magnitude Comparison Based 

on New Chinese Remainder Theorem II.  In Proceedings Ninth Great Lakes Symposium on VLSI, 1999, 

vol. 1, p. 362 – 365. ISSN 1066-1395. 

[47] BI, S., GROSS, W.J. Efficient Residue Comparison Algorithm for General Moduli Sets. In 48th Midwest 

Symposium on Circuits and Systems, 2005, vol. 2, p. 1601 – 1604. ISBN 0-7803-9197-7.  

[48] Sousa, L. Efficient Method for Magnitude Comparison in RNS Based on Two Pairs of Conjugate Moduli. 

In 18th IEEE Symposium on Computer Arithmetic, 2007, vol. 1, p. 240 – 250. ISSN 1063-6889. 

[49] ZAREI, B., ASKARZADEH, M., DERAKHSHANFARD, N., HOSSEINZADEH, M. A High-Speed 

Residue Number Comparator for the 3-Moduli Set {2
n
−1, 2

n
+1, 2

n
+3}. In International Signals Systems 

and Electronics, 2010, vol. 1, p. 1 – 4. ISBN 978-1-4244-6352-7.  

[50] NANNARELLI, A., RE, M., CARDARILLI, G.C. Tradeoffs between Residue Number System and 

Traditional FIR Filters. In IEEE International Symposium on Circuits and Systems, 2001, vol. 2, p. 305 – 

308. ISBN 0-7803-6685-9. 

[51] CONWAY, R., NELSON, J. Improved RNS FIR Filter Architectures. In IEEE Transactions on Circuits 

and Systems II: Express Briefs, 2004, vol. 51, p. 26–28. ISSN 1549-7747. 

[52] SHAHANA, T.K., JAMES, R.K., JOSE, B.R., JACOB, K.P. Performance Analysis of FIR Digital Filter 

Design: RNS Versus Traditional. In International Symposium on Communications and Information 

Technologies, 2007, vol.1, p. 1 – 5. ISBN 978-1-4244-0977-8. 

[53] FREKING, W.L., PARHI, K.K. Low-Power FIR Digital Filters Using Residue Arithmetic. In Conference 

Record of the 31st Asilomar Conference on Signals, Systems & Computers, 1997, vol. 1, p. 739-743. 

ISBN 0-8186-8316-3. (LOW POWER) 

[54] CARDARILLI, G.C., DEL RE, A., NANNARELLI, A., RE, M. Low Power and Low Leakage 

Implementation of RNS FIR Filters. In Conference Record of the Thirty-Ninth Asilomar Conference on 

Signals, Systems and Computers, 2005, vol. 1, p. 1620 – 1624. ISSN 1058-6393. (LOW POWER) 

[55] CARDARILLI, G.C, NANNARELLI, A., RE, M. Residue Number System for Low-Power DSP 

Applications. In Conference Record of the Forty-First Asilomar Conference on Signals, Systems and 

Computers, 2007, vol. 1, p. 1412 – 1416. ISSN 1058-6393. 

[56] RAMNARAYAN, R., TAYLOR, F. Analysis of Errors in Residue Number System (RNS) Based IIR 

Digital Filters. In IEEE International Conference on Acoustics, Speech and Signal Processing, 1982, vol. 

7, p. 56 – 59. 

[57] SODERSTRAND, M.A., SINHA, B. A Pipelined Recursive Residue Number System Digital Filter. In 

IEEE Transactions on Circuits and Systems, 1984, vol. 31, p. 415 – 417. ISSN 0098-4094. 



Residue Number System Based Building Blocks for Applications in Digital Signal Processing 
 

 

- 97 - 

 

 

[58] AMMAR, A., AL KABBANY, A., YOUSSEF, M., AMAM, A. A Secure Image Coding Scheme Using 

Residue Number System. In Proceedings of the Eighteenth National Radio Science Conference, 2001, vol. 

2, p. 339 – 405. ISBN 977-5031-68-0. 

[59] WANG, W., SWAMY, M.N.S., AHMAD, M.O. RNS Application for Digital Image Processing. In 4th 

IEEE international workshop on system-on-chip for real-time applications, 2004, vol. 1, p. 77–80. ISBN 

0-7695-2182-7. 

[60] TALESHMEKAEIL, D.K., MOUSAVI, A. The Use of Residue Number System for Improving the Digital 

Image Processing. In IEEE 10th International Conference on Signal Processing, 2010, vol. 1, p. 775–780. 

ISBN 978-1-4244-5897-4. 

[61] TALESHMEKAEIL, D.K., MOHAMAMDZADEH, H., MOUSAVI, A. Using Residue Number System 

for Edge Detection in Digital Images Processing. In IEEE 3rd International Conference on 

Communication Software and Networks, 2011, vol. 1, p. 249–253. ISBN 978-1-61284-485-5. 

[62] MOHARRAMI, S., TALESHMEKAEIL, D.K. The Application of the Residue Number System in Digital 

Image Processing: Propose a Scheme of Filtering in Spatial Domain. In Research Journal of applied 

science, 2012, vol. 7, p. 286–292. ISSN 1815-932X. 

[63] YANG, L.L., HANZO, L. Redundant Residue Number System Based Error Correction Codes. In IEEE 

Vehicular Technology Conference, 2001, vol. 3, p. 1472–1476. ISBN 0-7803-7005-8. 

[64] PONTARELLI, S., CARDARILLI, G.C., RE, M., SALSANO, A. A Novel Error Detection and 

Correction Technique for RNS Based FIR Filters. In IEEE International Symposium on Defect and Fault 

Tolerance of VLSI Systems, 2008, vol. 1, p. 436 – 444. ISSN 1550-5774. 

[65] YANG, L.L., HANZO, L. A Residue Number System Based Parallel Communication Scheme Using 

Orthogonal Signaling .I. In System outline. In IEEE Transactions on Vehicular Technology, 2002, vol. 

51, p. 1534-1546. ISSN 0018-9545.  

[66] YOUSSEF, M.I., EMAM, A.E., ABD ELGHANY M. Direct Sequence Spread Spectrum Technique with 

Residue Number System. In International Journal of Electrical & Electronics Engineering, 2009, vol. 3, p. 

223-230. ISSN 2010-3972. 

[67] BAJARD, J.C., IMBERT, L. Brief Contributions: A Full RNS Implementation of RSA. In IEEE 

Transactions on Computers, 2004, vol. 53, p. 769-774. ISSN 0018-9340. 

[68] TIMARCHI, S., NAVI, K. Improved Modulo 2
n
+1 Adder Design. In World Academy of Science 

Engineering and Technology, 2008, vol. 39, p. 577 – 584. ISSN 2010-3778. 

[69] HAOHUAN, F., MENCER, O., LUK, W. Optimizing Residue Arithmetic on FPGAs. In International 

Conference on ICECE Technology, 2008, vol. 1, p. 41 – 48. ISBN 978-1-4244-2796-3. 

[70] ZIMMERMANN, R. Efficient VLSI Implementation of Modulo (2
n 

± 1) Addition and Multiplication. In 

Proceedings of 14th IEEE Symposium on Computer Arithmetic, 1999, vol. 1, p. 158 – 167. ISBN 0-7695-

0116-8. 

[71] HIASAT, A., SWEIDAN, A. Residue Number System to Binary Converter for the Moduli Set (2
n-1

, 2
n
-1, 

2
n
+1). In Journal of Systems Architecture: the EUROMICRO Journal, 2003, vol. 49, p. 53 – 58. ISSN 

1383-7621. 



Residue Number System Based Building Blocks for Applications in Digital Signal Processing 
 

 

- 98 - 

 

 

[72] SMITH, S.W. Digital Signal Processing: a Practical Guide for Engineers and Scientists. USA: Newnes 

an Imprint of Elsiever.2003. 650 pages. ISBN-13:978-0-7506-7444-7. 

[73] XILINX, Virtex-4 FPGA User Guide. 2008, 406 pages. [Online] Cited 2012-09-04. Available at 

http://www.xilinx.com/support/documentation/user_guides/ug070.pdf 

[74] XILINX, XtremeDSP for Virtex-4 FPGAs. 2008, 121 pages. [Online] Cited 2012-09-11. Available at 

http://www.xilinx.com/support/documentation/user_guides/ug073.pdf 

http://www.xilinx.com/support/documentation/user_guides/ug070.pdf
http://www.xilinx.com/support/documentation/user_guides/ug073.pdf


Residue Number System Based Building Blocks for Applications in Digital Signal Processing 
 

 

- 99 - 

 

 

Author’s publications 
[75] YOUNES, D., STEFFAN, P. A Comparative Study on Different Moduli Sets in Residue Number System. 

In International Conference on Computer Systems and Industrial Informatics, Dubai, UAE, 2012, vol. 1, 

p. 1 – 6. ISBN 978-1-4673-5155-3. 

[76] YOUNES, D., STEFFAN, P., A Detailed Study on the Moduli Number Effect on RNS Timing 

Performance. In Journal of Emerging Trends in Computing and Information Sciences, Islamabad, 

Pakistan, 2013, vol. 4, p. 85 – 93. ISSN 2079-8407. 

[77] YOUNES, D., STEFFAN, P. Novel Architectures of Modulo 2
n
 ± 1 Adders for Field Programmable Gate 

Array. In Electronic Devices and Systems IMAPS CS International conference, Brno, Czech republic, 

2011, vol. 1, p. 51 – 56. ISBN 978-80-214-4303- 7. 

[78] YOUNES, D., STEFFAN, P. New Structures of 2
n
 ± 1 Modular Adders for FPGAs. In ElectroScope 

Journal, Czech Republic, 2011, vol. 5, p. 11 – 14. ISSN 1313-1842.  

[79] YOUNES, D., STEFFAN, P. Improved Design for Modulo 2
n
+ 1 Adder. In Electronic Devices and 

Systems IMAPS CS International Conference, Brno, Czech republic, 2010, vol. 1, p. 346 – 348. ISBN 

978-80-214-4138- 5. 

[80] YOUNES, D., STEFFAN, P. Novel Modulo 2
n
+ 1 Subtractor and Multiplier. In the Sixth International 

Conference on Systems ICONS, St. Maarten, the Netherlands Antilles, 2011, vol. 1, p. 36 – 38. ISBN 

978-1-61208-002- 4. 

[81] YOUNES, D., STEFFAN, P. Efficient Method for Overflow Detection and Correction in Residue Number 

System. In Electronic Devices and Systems IMAPS CS International Conference, Brno, Czech republic, 

2012, vol. 1, p. 183 – 188. ISBN 978-80-214-4539- 0. 

[82] YOUNES, D., STEFFAN, P. Universal Approaches for Overflow and Sign Detection in Residue Number 

System Based on {2
n
 – 1, 2

n
, 2

n
 + 1}. In the Eighth International Conference on Systems, Seville, Spain, 

2013, vol. 1, p. 1 – 5. ISBN 978-1-61208-246- 2. 

[83] YOUNES, D., STEFFAN, P. FPGA Implementation of Residue-to-Binary Converters: A Comparison 

between New CRT-I and MRC Converters for the Moduli Set (2
n 

– 1, 2
n
, 2

n
 + 1). In Electronics Journal, 

Sofia, Bulgaria, 2011, vol. 5, p. 11 – 14. ISSN 1313- 1842. 

[84] YOUNES, D., STEFFAN, P. Efficient Image Processing Application Using Residue Number System. In 

20th International Conference Mixed Design of Integrated Circuits and Systems, Gdynia, Poland, 2013. p. 

468 – 472. ISBN 978-83-63578-00- 8. 

[85] YOUNES, D., STEFFAN, P. Fast and Power Reduced RNS-Based Image Filtering in Spatial Domain. In 

ElectroScope Journal, Czech Republic, 2013. ISSN 1313-1842. Under review. 

[86] YOUNES, D., STEFFAN, P. Efficient Reverse Converter and Residue Comparator Based on a Novel 

Algorithm in RNS. In IEICE Electronics Express Journal. ISSN 1349-2543. Under review. 



Residue Number System Based Building Blocks for Applications in Digital Signal Processing 
 

 

- 100 - 

 

 

6 Appendix 

Tab. ‎6.1: Delay and hardware complexity of different components using unit gate model 

Component Delay (T) Area (A) 

NOT gate, circular shifting and bits rearrangement ignored ignored 

OR, AND, NOR, NAND gates 1 1 

XOR, XNOR gates 2 2 

2:1 multiplexer 2 3 

Half adder (HA) 2 3 

Full adder (FA) 4 7 

Carry propagate adder (CPA) of n bits 4n 7n 

Carry propagate adder with end-around carry (CPA-EAC) of 
n bits 

8n 7n 

Carry save adder (CSA) of n bits 4 7n 

Carry save adder with end-around carry (CSA-EAC) of n bits 4 7n 

General modulo adder of n bits  [5] 8n + 3 17n + 1 

Modulo (2
n
 – 1) adder (1

st
 complement adder)  [1] 8n 7n 

Modulo (2
n
 + 1) adder  [68] 8n + 11 17n + 18 

Proposed modulo (2
n
 + 1) adder  [79] 8n + log2 n + 4  n n2

35
log 7

2
 

Binary multiplier (array multiplier  [1]) of n bits 8n – 7  8n
2
 – 11n  

General modulo multiplier (based on the product-partitioning 
method  [1]) of n bits 

24n – 11  16n
2
 – 5n + 1 

Modulo (2
n
 – 1) multiplier 16n – 7  8n

2
 – 4n 

Modulo (2
n
 + 1) multiplier  [80] 16n + 9 8n

2
 + 22n + 15 
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Tab. ‎6.2: Comparison between reverse converters, modular adders and modular multipliers for systems based 

on sets that provide DR = 3n 

Moduli set DR 
n odd/ 
even 

mod # 

RC 

Critical 
Channel 

Modular adders Modular multipliers 

Delay Complexity Delay Complexity Delay Complexity 

{2
n
 – 1, 2

n
, 2

n
 + 1}  [4] 3n any 3 16n + 8 31n + 13 (2

n
 + 1) 8n + 11 38n + 18 16n + 12 24n

2
 + 7n + 15 

{2
n–1

 – 1, 2
n
 – 1, 2

n
}  [6] 3n–1 any 3 24n – 2 54n – 45 (2

n
 – 1) 8n 21n – 7 16n – 7 24n

2
 – 35n + 12 

{2
n
 – 1, 2

n
, 2

n+1
 – 1}  [7] 3n+1 any 3 8n + 30 110n + 159 (2

n+1
 – 1) 8n + 8 21n + 7 16n + 9 24n

2
 – 27n + 4 

 

Tab. ‎6.3: Comparison between reverse converters, modular adders and modular multipliers for systems based 

on sets that provide DR = 4n 

Moduli Set DR 
n 

odd/ 
even 

mod 
# 

RC 

Critical 
Channel 

Modular Adders Modular Multipliers 

Delay Complexity Delay Complexity Delay Complexity 

{2
n
 – 1, 2

n
, 2

2n+1
 – 1}  [8] 4n+1 any 3 40n + 20 69n + 20 (2

2n+1
 – 1) 16n+ 8 38n + 25 32n + 9 48n

2
 + 9n + 4 

{2
n
 – 1, 2

n
 + 1, 2

2n
 + 1}  [9] 4n any 3 32n + 8 62n + 8 (2

2n
 + 1) 16n + 11 58n + 36 32n + 12 48n

2
 + 62n + 15 

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

n+1
 – 1} 

  [11]-I 
4n+1 even 4 46n + 28 

15n + 5 + 7/2(n
2
 

– 3n – 4) 
(2

n
 + 1) 8n + 11 45n + 25 16n + 12 32n

2
 + 19n + 19 

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

n+1
 + 1} 

 [11]-II 
4n+1 odd 4 48n + 62 

7n
2
 + 102n + 
108 

(2
n+1

 + 1) 8n + 19 55n + 53 16n + 28 32n
2
 + 45n +60 

{2
n/2

 – 1, 2
n/2

 + 1, 2
n
 + 1, 

2
2n+1

 – 1}  [18] 
4n+1 even 4 32n + 37 68n + 37 (2

2n+1
 – 1) 16n + 8 43n + 43 32n + 9 44n

2
 + 59n + 34 
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Tab. ‎6.4: Comparison between reverse converters, modular adders and modular multipliers for systems based 

on sets that provide DR = 5n 

Moduli Set DR 
n 

odd/ 
even 

mod 
# 

RC 

Critical 
Channel 

Modular Adders Modular Multipliers 

Delay Complexity Delay Complexity Delay Complexity 

{2
n
, 2

2n
 – 1, 2

2n
 + 1}  [10] 5n even 3 32n + 4 44n + 8 (2

2n
 + 1) 16n + 11 55n + 18 32n + 12 72n

2
 + 25n + 15 

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

2n
 + 1}  

  [12] 
5n any 4 32n + 12 95n + 39 (2

2n
 + 1) 16n + 11 72n + 36 32n + 12 56n

2
 + 51n + 30 

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

2n+1
 – 1} 

  [13]-I 
5n+1 any 4 48n + 20 74n + 14 (2

2n+1
 – 1) 16n + 8 52n + 25 32n + 9 56n

2
 + 31n + 19 

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

n
 – 

2
(n+1)/2

 + 1, 2
n
 + 2

(n+1)/2
 + 1}  

  [14] 
5n odd 5 32n + 20 184n – 9 

(2
n
 + 2

(n+1)/2
 

+ 1) 
8n + 11 72n + 37 24n + 13 56n

2
 + 29n + 28 

{2
n
 – 1, 2

n
, 2

n
 + 1, 2

n–1
 – 1, 

2
n+1

 + 1}   [16] 
5n even 5 

72n + 4l + 
28 

7×(5n
2
 + 43n + 

m)/6 + 112n – 7 
(2

n+1
 + 1) 8n + 19 62n + 36 16n + 28 40n

2
 + 25n + 72 

{2
n
, 2

n/2
 – 1, 2

n/2
 + 1, 

2
n
 + 1, 2

2n–1
 – 1}   [17] 

5n–1 even 5 52n + 4 97n + 11 (2
2n–1

 – 1) 16n – 8 50n + 29 32n – 23 52n
2
 – 20n + 42 

 

Tab. ‎6.5: Comparison between reverse converters, modular adders and modular multipliers for systems based 

on sets that provide DR = 6n 

Moduli Set DR 
n 

odd/ 
even 

mod 
# 

RC 

Critical 
Channel 

Modular Adders Modular Multipliers 

Delay Complexity Delay Complexity Delay Complexity 

{2
n
 – 1, 2

n
 + 1, 2

2n
 – 2, 2

2n+1
 – 3}    

  [15] 
6n+1 any 4 56n + 39 188n + 57 (2

2n+1
 – 3) 16n + 11 92n + 37 48n + 13 144n

2
 + 62n + 28 

{2
n
 – 1, 2

2n
, 2

n
 + 1, 2

2n
 + 1} 

  [13]-II 
6n any 4 32n + 12 88n + 24 (2

2n
 + 1) 16n + 11 72n + 19 28n + 12 80n

2
 + 40n + 30 

{2
n
 + 1, 2

n
 – 1, 2

2n
, 2

2n+1
 – 1}  

  [19] 
6n+1 any 4 40n 98n + 7 (2

2n+1
 – 1) 16n + 8 52n + 25 32n + 9 80n

2
 + 20n + 19 

{2
2n+1

, 2
2n

 + 1, 2
n
 + 1, 2

n
 – 1}  

 [20] 
6n+1 any 4 32n + 12 88n + 28 (2

2n
 + 1) 16n + 11 72n + 34 28n + 12 80n

2
 + 72n + 27 
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Tab. ‎6.6: The maximum frequency and power consumption of application performing a number of iterated 

additions using the RNS and BNS for DR = 12 bits (implemented on Virtex-4 XC4VSX25 FPGA) 

Number of 

iterated adding 

operations 

RNS-based Binary-based RNS improvement% 

Max freq. [MHz] PWR at 100 MHz [mW] Max freq. [MHz] PWR at 100 MHz [mW] 
Freq. 

increment % 

PWR 

reduction % 

1 220.6 425 788 345 - - 

5 225.6 440 215.8 389 4.5% - 

10 193.9 454 123.9 395 56.5% - 

15 156.6 442 100.7 396 55.5% - 

20 141.5 460 82 399 72.6% - 

 

Tab. ‎6.7: The maximum frequency and power consumption of application performing a number of iterated 

additions using the RNS and BNS for DR = 24 bits (implemented on Virtex-4 XC4VSX25 FPGA) 

Number of 

iterated adding 

operations 

RNS-based Binary-based RNS improvement% 

Max freq. [MHz] PWR at 100 MHz [mW] Max freq. [MHz] PWR at 100 MHz [mW] 
Freq. 

increment % 

PWR 

reduction % 

1 186.5 458 446.6 417 - - 

5 174.3 484 204 444 - - 

10 158.1 500 111.6 452 41.7% - 

15 147.6 534 95.6 455 54.4% - 

20 126.8 550 69.1 462 83.5% - 
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Tab. ‎6.8: The maximum frequency and power consumption of application performing a number of iterated 

additions using the RNS and BNS for DR = 33 bits (implemented on Virtex-4 XC4VSX25 FPGA) 

Number of 

iterated adding 

operations 

RNS-based Binary-based RNS improvement% 

Max freq. [MHz] PWR at 100 MHz [mW] Max freq. [MHz] PWR at 100 MHz [mW] 
Freq. 

increment % 

PWR 

reduction % 

1 161.5 496 316.3 443 - - 

5 166.5 517 173.7 484 - - 

10 150.5 568 105.9 493 42.1% - 

15 116.8 589 93.2 499 25.3% - 

20 107.7 614 66.7 504 61.5% - 

 

Tab. ‎6.9: The maximum frequency and power consumption of application performing a number of iterated 

additions using the RNS and BNS for DR = 48 bits (implemented on Virtex-4 XC4VSX25 FPGA) 

Number of 

iterated adding 

operations 

RNS-based Binary-based RNS improvement% 

Max freq. [MHz] PWR at 100 MHz [mW] Max freq. [MHz] PWR at 100 MHz [mW] 
Freq. 

increment % 

PWR 

reduction % 

1 115.7 703 307.9 493 - - 

5 116.7 758 158.9 555 - - 

10 103.1 802 100.1 567 3% - 

15 114.9 833 87.8 575 30.9% - 

20 108.2 867 63.4 583 70.7% - 
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Tab. ‎6.10: The maximum frequency and power consumption of application performing a number of iterated 

multiplications using the RNS and BNS for DR = 12 bits (implemented on Virtex-4 XC4VSX25 FPGA) 

Number of 

iterated 

multiplying 

operations 

RNS-based Binary-based RNS improvement% 

Max freq. [MHz] PWR at 100 MHz [mW] Max freq. [MHz] PWR at 100 MHz [mW] 
Freq. 

increment % 

PWR 

reduction % 

1 141.4 410 146.8 340 - - 

5 137.4 417 43.5 343 215.9% - 

10 134.6 425 22.7 347 493% - 

15 134.1 435 15.4 348 770.8% - 

20 132.2 441 11.7 350 1029.9% - 

 

Tab. ‎6.11: The maximum frequency and power consumption of application performing a number of iterated 

multiplications using the RNS and BNS for DR = 24 bits (implemented on Virtex-4 XC4VSX25 FPGA) 

Number of 

iterated 

multiplying 

operations 

RNS-based Binary-based RNS improvement% 

Max freq. [MHz] PWR at 100 MHz [mW] Max freq. [MHz] PWR at 100 MHz [mW] 
Freq. 

increment % 

PWR 

reduction % 

1 135.4 419 92.2 355 46.9% - 

5 125.9 437 35.9 360 250.7% - 

10 124.5 465 19.9 366 525.6% - 

15 121.3 476 13.7 380 785.4% - 

20 120.6 489 10.5 383 1048.6% - 
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Tab. ‎6.12: The maximum frequency and power consumption of application performing a number of iterated 

multiplications using the RNS and BNS for DR = 33 bits (implemented on Virtex-4 XC4VSX25 FPGA) 

Number of 

iterated 

multiplying 

operations 

RNS-based Binary-based RNS improvement% 

Max freq. [MHz] PWR at 100 MHz [mW] Max freq. [MHz] PWR at 100 MHz [mW] 
Freq. 

increment % 

PWR 

reduction % 

1 125.8 457 78.7 360 59.9% - 

5 122.9 486 26.4 362 365.5% - 

10 121.6 506 12.8 676 850% 25.2% 

15 120.1 529 9.1 832 1219.8% 36.4% 

20 119.8 545 7 1026 1611.4% 46.9% 

 

Tab. ‎6.13: The maximum frequency and power consumption of application performing a number of iterated 

multiplications using the RNS and BNS for DR = 48 bits (implemented on Virtex-4 XC4VSX25 FPGA) 

Number of 

iterated 

multiplying 

operations 

RNS-based Binary-based RNS improvement% 

Max freq. [MHz] PWR at 100 MHz [mW] Max freq. [MHz] PWR at 100 MHz [mW] 
Freq. 

increment % 

PWR 

reduction % 

1 114.7 663 54.7 411 109.7% - 

5 113.7 684 20.9 661 444% 3.5% 

10 106.7 716 12.6 1189 749.8% 39.8% 

15 114.1 757 8.9 1567 1182% 51.7% 

20 105 777 
Too large to be 
implemented on 

device 

Too large to be 
implemented on device 

  

 

 

 

 

 

 

 


