
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

IOT GATEWAYS NETWORK COMMUNICATION
ANALYSIS
ANALÝZA SÍŤOVÉ KOMUNIKACE IOT BRAN

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR JAN ZBOŘIL
AUTOR PRÁCE

SUPERVISOR Mgr. KAMIL MALINKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

 Department of Intelligent Systems (DITS) Academic year 2021/2022

 Bachelor's Thesis Specification

Student: Zbořil Jan
Programme: Information Technology
Title: IoT Gateways Network Communication Analysis
Category: Security
Assignment:

1. Familiarise yourself with the concept of IoT gateway and its networking capabilities and
methods for data analysis of network traffic generated by IoT devices.

2. Create at least 3 instances of environment (based on gateway type) consisting of gateway
and multiple IoT devices communicating through gateway, simulate network traffic of these
devices. Focus on gateway outbound traffic.

3. Capture and analyze relevant data from different environment instances, compare them and
present them in uniform and comprehensible format.

4. Based on results, discuss possible attack vectors such as gateway traffic fingerprinting or
end-device classification.

5. Compare your results with expected results and other studies already carried in this field of
research.

Recommended literature:
Amar, Yousef & Haddadi, Hamed & Mortier, Richard & Brown, Tosh & Colley, James &
Crabtree, Andy. (2018). An Analysis of Home IoT Network Traffic and Behaviour.
P. Junges, J. François and O. Festor, "Passive Inference of User Actions through IoT
Gateway Encrypted Traffic Analysis," 2019 IFIP/IEEE Symposium on Integrated Network
and Service Management (IM), 2019, pp. 7-12.
Cvitić, Ivan & Perakovic, Dragan & Periša, Marko & Botica, Mate. (2020). Definition of the
IoT Device Classes Based on Network Traffic Flow Features.
10.1007/978-3-030-34272-2_1.

Requirements for the first semester:
Items 1 to 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Malinka Kamil, Mgr., Ph.D.
Consultant: Hujňák Ondřej, Ing., UITS FIT VUT
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 11, 2022
Approval date: November 3, 2021

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/24407/2021/xzbori20 Page 1/1

Abstract
Modern IoT gateways are mainly developed by private companies behind closed doors.
This results in a closed ecosystem, where only a tiny amount of information about traffic is
available to the public. Therefore, to gain knowledge regarding the operation and commu-
nication of such gateways, it is necessary to examine and analyse network traffic flowing to
and from such gateways.

This thesis’s primary goal is to capture and process network traffic data of multiple
commercially available gateways intended for home use, analyse their communication be-
haviour, compare the results to other studies carried out in this area, and discuss possible
attacks on used gateways, based on gathered data. Communication data were obtained
by deploying a controlled environment and analysed using Zeek, together with Wireshark
software. Collected communication data can be further used by researchers in the areas of
networking or security.

Abstrakt
Současné brány internetu věcí jsou nejčastěji vyvíjené soukromými společnostmi. Toto tvoří
základ pro proprietární software, o němž výrobci zveřejňují jen málo informací. Proto je
pro získání znalostí o způsobů chování těchto zařízení nutné sledovat jejich síťový provoz.

Cílem této práce je prozkoumat síťovou komunikaci několika komerčně dostupných bran
pro domácí použití a na základě získaných dat porovnat jednotlivé brány, ověřit výsledky
již existujících studií v tomto odvětví IT a zjistit možné bezpečnostní nedostatky těchto
produktů. Síťový provoz byl odchycen v rámci uzavřeného prostředí. Získaná data prošla
analýzou pomocí nástrojů Zeek a Wireshark. Získané znalosti zhodnocují stav zabezpečení
IoT bran pro domácnost. Odchycená datová sada je volně publikovaná za účelem dalšího
výzkumu.

Keywords
IoT, IoT gateways, network traffic analysis, attacks on IoT devices

Klíčová slova
Internet věcí, brány internetu věcí, analýza síťového provozu, útoky na zařízení internetu
věcí

Reference
ZBOŘIL, Jan. IoT Gateways Network Communication Analysis. Brno, 2022. Bachelor’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Mgr. Kamil Malinka, Ph.D.

Rozšířený abstrakt
V současné době zažívá internet věcí pro domácí použití výrazný nárůst z mnoha pohledů.
V domovech má chytrá zařízení více lidí, než kdykoliv v historii. Na trhu vystupuje nejvíce
různých výrobců s nespočtem produktů. Tento rozvoj začal ve druhé polovině druhého
desetiletí 21. století, když na trh přinesly své zboží technologičtí giganti jako Amazon,
Apple či Google. Ostatní společnosti se rychle přizpůsobily situaci na trhu a pokusily se
připojit do nově vznikajícího segmentu.

Tento rychlý rozvoj, kdy každá společnost hledala vlastní řešení, položil základ mnoha
problémům se současným Internetem věcí (IoT). Vzniklá řešení si společnosti chránily, což
vyústilo ve výrobu a prodej closed-source produktů. Utrpěla též kompatibilita mezi za-
řízeními. Toto výrobci pojali jako svou výhodu a další šanci, jak finančně profitovat, když
kolem svých řešení vytvořili uzavřené ekosystémy, často s jednoduchým, uživatelsky přívě-
tivým, prostředím, jež značně abstrahuje jednotlivé akce a chod zařízení.

Vznikl požadavek sjednotit komunikaci mnoha koncových zařízení a senzorů. Tento
problém řeší brány internetu věcí (IoT gateways). Tato zařízení dnes již umožňují kromě
samotné komunikace více zařízení také agregaci dat na společné médium, nečastuji Eth-
ernet, a ovládání zařízení vzdáleně s využitím cloudových řešení. K těmto vlastnostem
výrobci začaly postupně přidávat další, například hlasové asistenty. Hranice mezi bránou
a zařízením internetu věcí se tedy tenčí. Pomocí IoT bran mnozí výrobci také sbírají uži-
vatelská data určené pro další různá využití.

Akademická sféra může působit jako protipól a kontrolní prvek vzhledem ke komerčním
zájmům výrobců. Je potřeba zkoumat chování IoT bran a hledat v nich bezpečnostní chyby
s cílem upozornit na tyto bezpečnostní mezery výrobce a dožadovat se jejich nápravy. Vzhle-
dem k uzavřené architektuře IoT bran je často jedinou možností získání dat o jejich chování
analýza jejich síťové komunikace. Právě toto si klade za cíl tato bakalářská práce. Na třech
vybraných, komerčně dostupných, branách pro domácí použití (Aeotec Smart Home Hub,
Amazon Echo, Google Nest Mini) a jedné, vyznávající filozofii open-source (softwarová
brána Home Assistant), byl proveden odchyt síťového provozu za běžného provozu.

Odchyt byl proveden ve dvou režimech – aktivním a pasivním. V rámci aktivního režimu
bylo cílem získání dat obsahující záznamy o opakovaném provedení operace zapnutí a vyp-
nutí chytré žárovky Phillips Hue. Pasivní odchyt spočíval v sestavení prostředí a sledování
provozu po dobu jednoho týdnu bez vnějšího zásahu do prostředí. Cílem bylo získat data
o síťovém provozu v době, kdy s branou nikdo aktivně nezachází. Sledované byly DNS
dotazy, jednotlivé datové toky komunikující skrze protokoly TCP/TLS, UDP, HTTP, NTP,
a jejich vlastnosti. Odchycená data jsou volně publikována za účelem dalšího výzkumu.

Nad získanými daty byla provedena analýza pomocí program Zeek (dříve známým jako
Bro). Takto zpracovaná data byla podrobena ruční analýze v tabulkovém editoru se vzájem-
nou kontrolou údajů a získáváním dalších podrobností o datových tocích pomocí nástroje
Wireshark. Výsledkem analýzy je vytvoření virtuálního otisku komunikace, podle nějž
je možné bránu identifikovat (tzv. Fingerprinting), poukázat na zajímavé prvky komu-
nikace, zhodnotit zabezpečení jednotlivých bran, uvést statistiky pro jednotlivé brány i je-
jich celkový souhrn a porovnat výsledky s již existujícími studiemi, například Amar a spol
[2]. Ve výsledcích jsou prezentovántovány očekávané prvky komunikace, jakožto například
zjištění, že komerční brány generují více provozu než open-source brány, nebo že na základě
parametrů komunikace (DNS koncové body, poměr protokolů v komunikaci, vzory nalezené
v komunikaci), je možné vyvinout nástroj detekující přítomnost brány v síti, Výsledky
také obsahují potvrzení či vyvrácení některých tvrzení prezentovaných studiemi zmíněných
v Kapitole 3.

IoT Gateways Network Communication Analysis

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Mgr. Kamil Malinka Ph.D. The supplementary information was
provided by Ing. Ondřej Hujňák. I have listed all the literary sources, publications and
other sources, which were used during the preparation of this thesis.

. .
Jan Zbořil

May 11, 2022

Acknowledgements
I would like to thank both the supervisor of this thesis Mgr. Kamil Malinka Ph.D., and my
consultant Ing. Ondřej Hujňák, for their advice on the form, content and other necessities,
which had to be done in order to complete this thesis.

My biggest thanks comes to my family, who supported me in everything, not only
writing this thesis. My gratitude belongs to my friend Tim, who provided me with his
excellent moral support.

Contents

1 Introduction 2

2 Introduction to IoT 4
2.1 The Purpose of an IoT Gateway . 4
2.2 IoT devices . 5

3 Related Work 7

4 Overview of Network Traffic, its Capturing and Analysis 9
4.1 The principle of network communications 9
4.2 Delivering Data to the Point of Capture . 11
4.3 Means of Capturing . 13
4.4 Means of Traffic Analysis . 16

5 Setup, Implementation, Capturing and Data Processing 18
5.1 Selection of IoT gateways . 18
5.2 Selection of IoT devices . 19
5.3 Turris MOX Router . 19
5.4 Environment Deployment and Capturing Methodology 20
5.5 Analysis methodology and process . 22

6 Experimental Results 24
6.1 Aeotec Smart Home Hub . 24
6.2 Amazon Echo . 27
6.3 Google Nest Mini . 32
6.4 Raspberry Pi with Home Assistant . 38
6.5 Global results . 43
6.6 Learned Information and Possible Attacks Discussion 43

7 Conclusion 48

Bibliography 49

1

Chapter 1

Introduction

Today, the world of Internet of Things (IoT) is largely incompatible. Companies conducting
business in this area of information technology are, figuratively, waging wars on each other.

IoT faces many problems, fitting into many categories. According to the article by
Hua-Dong Ma [29].These categories are:

• Non-uniformity – the format of data from different devices is inconsistent.

• Inaccuracy - sensors may use various sampling methods, which are not always accu-
rate.

• Discontinuities – network outages or other problems can disturb the continuous stream
of data.

• Incomprehensiveness - not enough relevant information is used to come to a conclu-
sion.

• Incompleteness – dynamic changes in the environment may cause the loss of data.

In the last ten or so years, there has been a great industry push to enable the devices
to communicate with each other to establish a global network of interconnected points.

Before this initiative to standardise IoT communication, there existed, and still exist,
manufacturers, developers, and facilitators of IoT devices who operate without regulation
or a thought about the security of their products [37]. All of this is happening despite
ISO’s many studies that proved that the economic improvement, increased innovation, and
simplification of the manufacturing process could be the direct consequence of applying
standardization.

Without this urge for standardization, each manufacturer used a slightly different way
and format of the massages when communicating with an IoT sensor.

The breaking point happened in the 2010s when IoT transformed from being an instru-
ment for modernization of industry to being a convenience in the everyday life of many
people around the globe. With the coming of product families of devices like Amazon
Echo, Google Home, or Apple HomeKit, there came the need of producing user-oriented
IoT gateways which would provide simple UI for managing user’s home automation net-
work, and which would be able to aggregate all the communication protocols and standards
into one box. This box’s purpose is to abstract anything regarding the setup of devices and
communication with them.

This development brings new problems to the light of the day. Manufacturers often de-
veloped these gateways behind closed doors. This situation has evolved to the current state

2

when few big players exist on the market with IoT gateways for home use (Called Smart
Home IoT, SHIoT, by Cvitić et al. [10]). These companies provide means of integration
and development for their respective platform.

Therefore, there emerges a problem regarding data coming out from these closed-off
gateways into the cloud. Due to no standardization, cooperation between manufacturers
and proprietary solutions, there is no easy way of getting insight into the operation of
devices in question.

This thesis aims to create a network traffic analysis of a few commercially available IoT
gateways marketed towards home use. Chosen gateways are Aeotec Smart Home Hub, Ama-
zon Echo Dot, Google Nest Mini and Raspberry Pi with Home Assistant software installed.
This analysis suggests attack vectors, such as traffic fingerprinting or device classification,
and the prevention of exploitation of these attack vectors. Comparison with already re-
searched information in this area is made to validate the results of the aforementioned
analysis.

To achieve the aforementioned target, the following steps had to be carried out:

• Select IoT gateways to experiment with.

• Create a functional physical network consisting of given gateways and other devices
to simulate network traffic.

• Capture and analyse network traffic of selected IoT gateways.

• Present the newly learned information. Compare the results to existing research, like
[2, 11, 26], and discuss possible vulnerabilities.

The points listed above together form the practical part of this thesis.
The Chapter 2 explains the basic concepts of IoT devices and gateways.
The Chapter 3 provides a broader context regarding IoT research as a whole. This

knowledge can help to better comprehend topics related to this work.
The next Chapter, 4, introduces the ways of capturing network data and means of its

analysis. In the following Chapter, 5, the selection of devices used in this thesis is described
in more detail, together with particular methods used for the experiments.

The final Chapter, 6, presents the results of the conducted analysis. It discusses possible
security deficiencies and their countermeasures. It demonstrates the analysis results in
relation to other studies already carried out, and it points out the differences or similarities.

3

Chapter 2

Introduction to IoT

This Chapter introduces the primary division of devices used in IoT networks and links
that interconnect them to one working network. Section 2.1 describes IoT gateways—the
foundation of this thesis. Section 2.2 explains the use of IoT devices as the end devices of
IoT networks.

2.1 The Purpose of an IoT Gateway
The things in the Internet of Things would be completely utterly unless they had a conve-
nient way of communication between themselves and other non-IoT enabled devices con-
nected to the Internet. It is, in fact, the goal of these things to be constantly connected
and provide means of control to the user no matter of his physical location. IoT gateways
are one of the links which make this interconnectivity possible.

The concept of an IoT Gateway can be comprehended similarly to the one of a router
in the realm of classic computer networks. Likewise a router is a border point between the
local network and the outer world, which can be shrunk behind one of its interfaces; the
IoT Gateway forms a border between the devices and the Internet. Moreover, unlike the
classical router, it brings together all the different forms of protocols like ZigBee or Z-Wave
[31] used in communication between various IoT devices and a gateway and transposes
them to be able to flow through the twisted pairs of the Ethernet from the gateway to the
cloud.

Categorization of IoT Gateways

IoT gateways, also known as IoT hubs, can be devised into categories based on many
parameters. These range from type and location of use (gateways for home or industrial
use) to the mean of implementation (dedicated hardware or software gateway running on
a multipurpose device).

Another purpose of an IoT gateway is to process data before forwarding them to the
cloud. Deduplication or aggregation can be one of these processes whose goal is to reduce
the amount of data flowing into the cloud. Improved security is often cited as a benefit
of using an IoT gateway [32]. This is not an absolute truth, because security can be
a significant pitfall of such devices in some cases. Security vulnerabilities can appear,
especially if a gateway is being used after the end-of-life or a period of support from its
manufacturer. The role of an IoT gateway in a network is manifested in Figure 2.2.

4

(a) Aaeon AIOT-IGWS01 industrial IoT
gateway. Original image is taken from [1]

(b) Aeotec Smart Home Hub, intended for
home use. Original image is taken from [31]

Figure 2.1: Visual comparison between an industrial 2.1a and home-use 2.1b IoT gateway.

IoT Gateways for Industrial Use

Industrial gateways, such as is shown in Figure 2.1a, can be a part of the backbone of
entire company-wide or city-wide operation [34]. This use values open standards, flexible
architectures, an enormous amount of devices connected simultaneously, security, big data
processing in local or edge environments and analytical tools working, often in real-time,
for monitoring and failure detection.

IoT Gateways for Home Use

On the other hand, gateways used in a home environment, like Aeotec Smart Home Hub,
shown in 2.1b, are mainly made to be easily operated by the end-user. These products
often have lower connectivity, are designed to be operated via a smartphone application,
and are more energy efficient than their industrial counterparts. This means these gateways
are often just a proxy, pre-processing data at the edge [44] and sending it to the cloud to
be further processed there.

Nowadays, the line between a gateway and a device is getting blurry in the home
segment of IoT business. Home monitoring centres like Amazon Echo, Google Nest or
Apple HomePod serve simultaneously as a gateway and as a device in a sense that, for
example, voice assistant included as a feature of the products mentioned above enables
a user to get info from the cloud.

2.2 IoT devices
IoT devices form the lowest tier in the IoT network hierarchy, which is demonstrated in
Figure 2.2. They play a role of end devices. Similarly to IoT gateways, their foremost
purpose differs based on the environment they are deployed in and features desired by
a customer. In IoT networks targeted towards home use, devices are usually used to form
a Smart Home. This umbrella term contains the simplest devices like humidity sensor or
window or door contact sensor, which entire use case is to detect real-life status of an object
or an environment and send the data to a user, traditionally via an IoT gateway.

On the other hand, a more complex device, smart television, for example, can be also
categorised as an IoT device. In connection with an IoT gateway, these devices can coop-

5

Figure 2.2: The diagram shows the basic architecture of an IoT network consisting of
devices, a gateway, cloud operations, and a control station. Original image is taken from
[17].

erate and provide more elaborate actions. This can be, for example, turning off a heater,
and rolling down the blinds when the temperature and light sensor measures values beyond
a certain threshold.

In industrial settings, devices are mainly performance, real-time and security oriented
[28]. These devices also have to be more physically robust than they home-use counterparts
in order to sustain sometimes extreme environments in industrial production. Their fault
rate also has to be kept to minimum. These requirements result in devices often being
certified by international organizations like IEC.

IoT devices usually do not communicate with other nodes in a network via typical
network protocols like Ethernet or Wi-Fi. Instead, they take an advantage of low power
wireless protocols specially designed for this use. Their purpose is to relatively frequently
transfer only a small amount of data to a gateway, or a control station if the IoT gateway
is omitted from the network. There are more types of these protocols [21], depending
on their use. Therefore, these protocols can be classified either as IoT data protocols or
Network protocols for IoT, depending on which network layer they operate, when parallels
to TCP/IP model are used. Detailed information about TCP/IP is located in Chapter 4.1.

Protocols belonging to the category of data protocols are MQTT (Message Queuing
Telemetry Transport), CoAP (Constrained Application Protocol), AMQP (Advanced Mes-
sage Queuing Protocol), DDS (Data Distribution Service), or standard HTTP (Hypertext
Transfer Protocol). Network protocols for IoT are Wi-Fi, Bluetooth, ZigBee, Z-Wave or
LoRaWan. However, this thesis is concerned with data sent from an IoT gateways to the
Internet. More detailed description of the device protocols is therefore not needed.

6

Chapter 3

Related Work

This Chapter aims to provide a wider view to the academic research concerned with IoT
gateways and their properties. An overview of the research, which went into this section
of IT in the last decade can be helpful in order to fully comprehend, how the topic of this
thesis slots in the whole area of IoT research. Sections of this Chapter reflect on periods
and main concerns of researchers in these periods.

Researchers have already carried out studies in the field of the traffic and security of
IoT gateways. Amar et al. [2] built out an environment consisting of many devices and
gateways, and captured the traffic for 22 days. Their work explains the learned device
characteristics or other non-expected results, especially in how the devices were set up
and how they operated. They talk about how devices communicated during the 22 days
of capturing their traffic, and they discuss global statistics, including total bytes sent per
device, per protocol, etc. This thesis methodology is based on the one in this study, in order
to have files, which can be compared to each other and therefore the discoveries in Amar’s
study can be either confirmed or disproved. Unlike this thesis, which only research IoT
gateways, their work also discusses the traffic of end devices and network infrastructure.

Ivan Cvitić et al. published a research [11], in which they were successfully able to
sort IoT devices into several classes based on characteristic of their network traffic flows.
The paper also includes devices communicating via a Zigbee protocol, among those using
Ethernet or Wi-Fi. Based on the coefficient of variation of received and sent data (𝐶𝑢 index),
and data transformation, used for the data to behave like a normal distribution, so statistical
tests for this particular distribution could be used; they were able to link the device to one
of four classes of devices sharing similar behaviour.

In his book [30], Petr Matoušek also discusses the methods of packet classifications
and data filtering. He explains the algorithms (prefix based search, divide and conquer
methods) and data structures (tries) used to classify data; how to implement them for
packet filtration on routers and switches, and the working principle of access control lists
(ACLs). Information contained in headers of packets is used to achieve this goal. He also
briefly mentions the existence of DPI—deep packet inspection.

In a research [26], Pierre-Marie Junges et al. used captured traffic analysis to infer user
actions, such as turning the smart light on or off. They took the position of an outsider,
looking into the traffic between the LAN and the cloud. They noted, that identification of
the devices, especially from the TLS handshake, can be extracted from such traffic. First,
they identified the problems of deducting information from the traffic. They claim they
are the following: no individual IoT device signature, gateway abstraction and encryption.
They also made several assumptions, on which their later action is based on: sending actions

7

to the IoT devices-actions in one command are sent as one; incidence of the actions on
the packet size, command size stability and data structures similarity. They then captured
network traffic, while operating multiple IoT devices, using combinations of different actions
on various devices. After measuring the size of datagrams from the start of captured TLS
streams, and doing computations, they were able to distinguish the correct operation taken
with 98.4% accuracy. However, authors rely heavily on assumption, that the IoT device
sends traffic to the cloud after an action inside the network is taken, which is not always
true, as is later revealed in this work.

8

Chapter 4

Overview of Network Traffic, its
Capturing and Analysis

To analyse the traffic flowing through the network, one must first understand how the
messages are sent and received and what their content is. To standardise this content
format, two network communication models had emerged—TCP/IP and OSI.

This standardization is one of the reasons that IoT devices now can cooperate and
function together, despite using different protocols to communicate. This Chapter concerns
the network traffic due to the nature of this work, which deals with the traffic of IoT
gateways, which flows through classic computer networks to the cloud.

4.1 The principle of network communications
Scientists in the 1960s and 1970s were more intrigued by the idea of connecting multiple
computers, in order to allow direct communication between them. Their research led,
at last, to the creation of two reference models. These are the OSI reference model and
TCP/IP reference model. Differences between these two models are described in next
sections and in Table 4.1.

OSI model

The ISO OSI1 model was the first step towards the standardization of networking. It was
presented in 1983 by Day and Zimmermann[15]. It discusses seven layers, with each of
them having a signal purpose. Together, these layers forms a working hierarchy providing
a functional communication.

Protocols specified in this model are now not in active use any more. However, the model
itself is still regarded as theoretically valid as the functions of its layers can be projected to
models and protocols used today.

This model has been accused of being flawed and unpractical by many in the computer
scientific community, therefore the second model, the TCP/IP model, is now used.

TCP/IP

TCP/IP is now a go-to architecture when dealing with data transmission over a network.
This suite of protocols had formed in the 1970s. Its name is derived from the names of

1abbreviation for International Organization for Standardization, Open Systems Interconnection

9

L num. ISO OSI model L num. TCP/IP model Protocols
7 Application

4 Application
DNS, HTTP,
FTP, SMTP,
SNMP

6 Presentation
5 Session
4 Transport 3 Transport TCP, UDP
3 Network 2 Network IPv4, IPv6, ICMP
2 Data Link 1 Network Interface Ethernet, 802.11,

Token Ring1 Physical

Table 4.1: Table showing differences between the ISO OSI and TCP/IP models.

two most important protocols in the entire architecture — Transmission Control Protocol
(TCP) and Internet Protocol (IP). Since then, it contains complete description of network
communication from the lowest level of a wire to high level of network applications. This
architecture operates with a concept of a layer, similarly to the OSI model. Each layer
is responsible for one of the steps, resulting in a functioning way of sending data over
a network. Layers utilise data coming to them from higher layer. They take this upper
layer data and add their own generated data. This process is called encapsulation. Data
coming from the upper layer to the lower one is called PDU (protocol data unit) and is
referred to differently on each layer.

The data link layer is the lowest one in the TCP/IP hierarchy. It operates only in
a scope of a local area network. This layer’s crucial function is delivering frames (name for
PDU on data link layer) between hosts in LAN. Frame mainly contains a MAC addresses
of sender and destination, error detecting code and data of a higher layer (payload). Fields
in frames on the data link layer differ, depending on a media type.

The internet layer provides methods of delivering data to a destination based on globally
unique2 identifiers called IP addresses. PDU of the internet layer is called a packet. It uses
best-effort delivery [30]. This means that the IP layer tries to deliver data to a destination
via the finest way it can find. It is not responsible for delivering each packet to the set
destination. However, in case of failed delivery, the internet layer provides ways of notifying
a sender of a failure. ICMP protocol is used for this task. Addressing information is the
most valuable asset of this layer, which is relevant for this thesis.

The transport layer is the layer above the internet layer. This layer’s main goal is to
establish and keep a communication channel between two hosts alive. It provides logical
connection between processes [30]. The transport layer offers two types of sending data
depending on how the data is handled in case of failure during transport. Transmission
Control Protocol (TCP) loads data from the application layer and sends them as a stream of
packets to a network. With help of sequence numbers, it can keep track of packet order and
non delivered packets. This mechanism enables TCP to operate as a reliable protocol. In
case a PDU is dropped or not delivered, the TCP is able to, and required to, send the data
again. User Datagram Protocol (UDP) is a non-reliable alternative to TCP. It forfeits the
ability to automatically retransmit lost data or deliver packets in a right order in exchange
for increased speed and reduced overhead.

Application layer is the highest in TCP/IP hierarchy. It provides many services, each
usually utilising a specific protocol for communication. Most information about the content,
which IoT gateways exchange with the cloud, originates in this layer. Application layer also

2Today, this is not strictly true, due to usage of technologies such as NAT.

10

provides a security protocols for communication, making an analysis harder, sometimes even
impossible. Due to limited computation power of IoT devices, the cryptographic protocols
often remain unused in IoT.

4.2 Delivering Data to the Point of Capture
The process of capturing data from a network consists mainly of two parts. These are
a. how to get data flow to the point of capture, and b. how to capture the data itself at
the point of capture. The process of diverging the data or its copy from its original path is
called Tapping. Other names for this process are Sniffing the wire or Tapping the network
[38]. Tapping is an analogy of a classic tap used on pipes for opening or closing a valve.
There are two widely used methods of delivering network traffic to the desired destination.
These methods are Port Mirroring and using a Hardware TAP.

Other methods, like Cisco’s Embedded Packet Capture feature on selected routers of
this vendor [7], can be used for capturing data flowing through a network. However, cap-
turing packets using this method is designed only for short-term usage—as an assistance
during debugging, for example. Even if captured pcap files can be exported from a router
using FTP, the vendor does not recommend using Embedded Packet Capture for long-term
monitoring. This method has not been selected for packet capturing in this thesis, due to
aforementioned design choices made by its creators.

Port Mirroring

The idea of port mirroring is to divide traffic on the second layer of the OSI model. This
divided traffic is then a. switched as it would be without port mirroring in place, and
b. send out through the interface configured as the Destination port. A sniffing machine
connected to this specified port then receives all the packets which are ingressed into the
switch through all the ports configured as Source port or Monitored port. This is shown in
Figure 4.1.

Port mirroring can be configured to divert the traffic flowing into the monitored port
located on the same network switch as the port mirroring is running on or other switches
in the local network. This feature is not available on all the switches and requires a special
VLAN to be running, which is used to deliver data from the monitored port to the switch
where the port mirroring is configured. Using a VLAN for port mirroring opens the potential
for simultaneously capturing data from more sources (more physical ports). Then a list of
source ports is called an Administrative source, and a list of effectively monitored ports is
called an Operational source.

Cisco calls the process of port mirroring SPAN, which is an abbreviation of Switched
Port Analyser.

TAP

TAP is an abbreviation of the English words test access point or terminal access point [19].
It is a physical device consisting of one or more input and output ports. These are the
ports that are used to deliver the unchanged network traffic from its source to its intended
destination. Nevertheless, a network tap device includes more ports. Ports in question are
Monitor ports that output all the traffic coming to the TAP’s Network ports. Some TAPs
can capture the data in different directions in two separate channels. This is demonstrated

11

Device A Device B

Network Switch

Copied Traffic

Port 1 Port 2 Port 3

Figure 4.1: Network switch with port mirroring activated. The image shows the scenario
where Port 2 is configured as a mirroring port to the Port 3. Traffic flowing through Port
3 is sent out to its original destination (Port 1) while being simultaneously sent to the
mirroring port.

Device A Device B

Network TAP

Copied Traffic

Figure 4.2: Diagram of a TAP operating between two network devices. Network TAP
copies traffic out of the wire without impeding the original traffic. The Figure illustrates
the TAP, which uses separate outbound ports for each direction of the original traffic.

in Figure 4.2. On the other hand, there are TAPs that use one aggregated port to achieve
the same result. TAPs supporting both of the methods mentioned above exist.

TAPs are often active, powered using an electrical cord connected to a wall socket.
This power delivered to TAP is used to regenerate and amplify a signal. Active TAPs can
incorporate an internal battery used as a means of power to the device in the event of a
power outage. Complementary to an active TAP is a passive TAP, which does not require
any external power.

Installing a TAP into a physical network requires breaking an existing Ethernet line.
Therefore, TAPs cannot be used without interrupting network functionality. Thus, TAPs
are often being installed during network shutdowns and maintenance.

Network hub

Given the nature of the operation of basic hubs, these devices can be used to deliver traffic
to the point of capture. These days, when the dominant L2 device in a network is a network
switch, finding a hub is getting more challenging due to the obsolescence of such devices.
Even if there is a hub available, its use poses some disadvantages. In the same manner, as
for TAPs, hubs cannot be inserted into the network without a disruption in the network’s
functioning. Another significant disadvantage of using a hub is its core principle of flooding
all incoming traffic on all its ports, excluding the in-port. The outcome of this is the

12

Device A Device B

Network Hub

Output Traffic

Port 1 Port 2 Port 3

Figure 4.3: Operation of classic network hub. Communication between Device A and
Device B is flooded out of the hub, through every port (2). The capturing station, connected
to such port, has the ability to capture all the traffic flowing through any port on the hub.

wastefulness of network resources, like bandwidth. This is one of the main reasons hubs
have been pushed out of the L2 device market. The operation of a hub can be seen in
Figure 4.3.

Hubs in which only three ports are used—two for devices and one for copied traf-
fic—function as an aggregated TAP.

4.3 Means of Capturing
Now, when the traffic, meant to be captured and analysed, is diverged or copied to the
capturing device, it is time for the capturing itself. In order to be able to capture traffic
flow, the device’s interface of a NIC has to be configured to operate in so-called promiscuous
mode. This mode enables the network card to listen to all the traffic coming to its interface.
Had it not been switched to promiscuous mode, the NIC would discard any frames not
addressed to it [38].

The NIC converts incoming data from a binary form to a readable form with promiscu-
ous mode enabled. Data in readable format can be saved to file, analysed, or processed by
specialised software. Before doing these operations, the traffic can be filtered using Berkeley
Packet Filters (BPF) [46]. These filters can be used to select only the traffic that a user
wants to analyse, either by specifying which traffic to discard or which traffic is to be kept.
Table 4.2 shows some examples of such filters. These filters can be combined in order to get
more desired results. The syntax for comparison and logical operators follows the standard
of the C language. BPF filters also support a C language binary operators +, -, *, /, %,
including bitwise operators like << or &.

Many network tools, called analysers and sniffers, can be used to capture, analyse and
save the traffic in a form that a human can read. Each of them provides its user a different
level of depth regarding information obtained from captured traffic, a different way of data
presentation, and some of them can provide advanced functions like being able to follow
network streams. The examples of such tools are Tcpdump [45], Wireshark [8], TShark [24],
SolarWinds Network Performance Monitor [42] or Kismet [27]. Some of these tools are
specialised. For example, Kismet’s main domain of operation is wireless networks.

Tcpdump

Tcpdump is a CLI based network packet sniffer and analyser. This piece of software,
originally written in 1988, is distributed under BSD licence [45]. Throughout the years, it

13

Filter Syntax Syntax Meaning Example

dst host host True if the IPv4/v6 destination field of the
packet is host.

dst host mer-
lin.fit.vutbr.cz

src host host True if the IPv4/v6 source field of the packet
is host.

src host mer-
lin.fit.vutbr.cz

ether src ehost True if the Ethernet source address is ehost. ether
30:9c:23:03:1f:84

dst portrange
port1-port2 True if the packet is IPv4 TCP, IPv4 UDP,

IPv6 TCP or IPv6 UDP and has a destination
port value between port1 and port2

dst portrange 67-
68

ip proto protocol True if the packet is an IPv4 packet of proto-
col type protocol. Protocol can be a number
or one of the names icmp, icmp6, igmp, igrp,
pim, ah, esp, vrrp, udp, or tcp.

ip proto udp

ip multicast True if the packet is an IPv4 multicast packet.

Table 4.2: BPF filters, examples taken from [46]

gained popularity, resulting in it now being preinstalled on Apple’s macOS and many Linux
distributions. Port of Tcpdump for Windows also exists.

Tcpdump uses the Libpcap library for capturing packets. Tcpdump is highly config-
urable and enables a user to get various information. Tcpdump can, for example, sniff
only on a selected interface, capture a given amount of packets, list all network interfaces
currently configured on a system, et cetera. All options for Tcpdump can be found on
corresponding manual pages [25]. Tcpdump supports filtering captured traffic using BPF
filters described in Chapter 4.3. A demonstration run of Tcpdump is shown in Figure 4.4.

Wireshark

Wireshark is, similarly to Tcpdump, a network sniffer and packet analyser. With its graph-
ical user interface and the ability to dissect traffic in order to show information to a user
in a friendly and comprehensible way, it became one of the most known and used software
in the network monitoring community. The original version written by Gerald Combs in
1998 [8] is released under a GPL licence.

Advanced features of Wireshark are protocol dissection, live sniffing, offline analysis,
ability to follow network streams (TCP, RTP, and more), ability to filter shown traffic and
decryption for security protocols such as Kerberos, SSL/TLS, SNMPv3 or WPA/WPA2
under certain circumstances.

Wireshark’s dissection is one of the core features of this software. It is able to show
detailed information about traffic details based on the used protocol. As of 22nd December
2021, Wireshark supports 2673 protocols3 with the ability to import user-defined dissec-
tors for showing custom protocols or displaying existing protocols differently. User-defined
dissectors can be written in C or Lua programming languages. An example of a custom
dissector written in Lua can be seen in Figure 4.5 and at [49].

3Official GitHub repository of Wireshark dissectors can be found at [48]

14

Figure 4.4: Screenshot of a packet captured by Tcpdump. This capture had been configured
with the following flags: A—print packet content in ASCII, v—verbose, n—do not translate
IP addresses to hostnames, c 1—capture precisely one packet. Considering that Tcpdump is
using a direct link to capture off the system’s NIC, it has to be run with elevated privileges.

Figure 4.5: Screenshot of Wireshark application with a pcap file opened. The section in the
middle shows a list of captured packets with essential information like source and destination
addresses shown. The section below the list displays dissected data of a selected packet.
The bottom field presents frame data in raw format—encoded as hexadecimal numbers
(left) and ASCII (right).

15

Tshark [8], an abbreviation of Terminal-based Wireshark, is a command-line interface
tool based on Wireshark supporting the same file format, filters and other options as Wire-
shark. The running of the application without any options results in output as if Tcpdump
had been used. In Linux operating systems, Tshark comes bundled in Wireshark packages.
Given the CLI operation of Tshark, tools like PyShark or Termshark [24] have emerged,
enabling more throughout analysis of traffic on a command line.

4.4 Means of Traffic Analysis
Analysing captured data is a significant step in gaining knowledge of a researched topic.
Many tools exist for this exact purpose. These tools can be divided into offline analysers
and online analysers. Most of these tools are not only analysers but analysing traffic is only
one of their functions. The other features are a GUI, used to present data in aggregated and
logically divided sections, network flow monitoring in real-time, providing various graphing
tools, creating general statistics, providing tools for stream following or filtering, et cetera.

Wireshark for Traffic Analysis

Sniffing network traffic is not the only use of Wireshark. Its ability to dissect many pro-
tocol formats and follow a network stream makes it a powerful tool for analysing traffic.
Wireshark provides the following statics:

• General properties of a captured file.

• Used protocol hierarchy with the amount of traffic using given protocol.

• Follow distinguished conversations and streams.

• Show traffic endpoints.

• Plot I/O utilization graph.

• Display aggregated information about widely used protocols such as DNS or HTTP.

• Follow IP telephony conversations.

Zeek

Zeek [47], formerly known as Bro, is network monitoring software that can operate as
a live traffic analyser or analyse existing pcap files. Zeek is able to dissolve a pcap file and
produce logically differentiated logs, each containing statistics for a given category. These
logs also contain transcripts of L4 protocols used. This includes HTTP sessions or DNS
requests and replies. It also provides means of detection of non-standard communication
patterns like DoS or attempts to brute-force SSH. Zeek is able to export this data into
JSON format, which can then be imported into SIEM software for visualization. Zeek
comes with a scripting language that can be utilised to get desired info from traffic, which
is not extracted from captured data by default.

16

Other visualisers and monitors

Data formatted by Zeek can be uploaded into visualization systems like Kibana [16] to get
data presented to a user in a friendly and comprehensive way. Kibana shows graphs of
protocols usage, IP address map, data amount statistics, et cetera. More systems similar
to Kibana exist. These are, for example, Prometheus [33], Datadog [14] or Grafana [20].

17

Chapter 5

Setup, Implementation, Capturing
and Data Processing

A set of gateways, IoT devices, and other networking devices had to be thought of and
established into a working network to carry out the experiments and analyse the traffic.
This Chapter describes the process from selecting devices to gathering outputs of an analysis
of IoT gateway traffic.

5.1 Selection of IoT gateways
When selecting gateways to be used for this thesis, the following points played a role:

• Market availability for general, non-technical customers.

• Well known products, even for general public.

• Closed-source architecture1.

• Compatibility with the same devices in order for the results to be comparable.

These properties of selected gateways were selected in order for the scope of the research
results to cover the largest possible amount of end users. The closed-sourced architecture
was chosen to show that the traffic analysis can bring useful information even for the devices
that have their implementation and internal functionality concealed. Based on these point,
following gateways were selected, their summary is in Table 5.1:

• Aeotec Smart Home Hub

• Amazon Echo Dot, 4th gen

• Google Nest Mini, 2nd gen

• Raspberry Pi with Home Assistant software

1Except Home Assistant enabled Raspberry Pi, for comparing proprietary devices with open source
counterparts.

18

Gateway Name Manufacturer Connection to
router Control App MSRP2(January

2022)
Aeotec Smart

Home Hub
Aeotec/
Samsung

Ethernet Samsung
Smart Things $135

Amazon Echo
Dot, 4th gen

Amazon/
Foxconn

Wi-Fi Amazon Alexa $49.99

Google Nest
Mini, 2nd gen Google Nest Wi-Fi Google Home $49.00

Raspberry Pi 4
Home Assistant

Element14/
Sony

Ethernet Home
Assistant

starting at $35
(Raspberry Pi

4)

Table 5.1: Table showing IoT gateways selected for data analysis. Data from [31, 39, 36, 35].

5.2 Selection of IoT devices
Devices selected to simulate an environment of the local network behind an IoT gateways
have been chosen mainly regarding their compatibility with all the gateways stated above.

Phillips Hue Smart Light Bulb with Hue Bridge

Phillips Hue is an ecosystem of different lighting solutions made by this Dutch company.
Hue line of products first appeared on the consumer market in 2012. From this year to the
present, Phillips has revised Hue line-up, and they now provide complete solutions for the
home automated lighting system.

Hue line offers two modes of operation [40]: a. Bluetooth connection, and b. connection
through a central hub. The first option is limited to a maximum of 10 devices and is
limited compared to the second option. Connecting lights to a central Hue Bridge device
is recommended. When connected to the bridge, all the light can be controlled centrally
through one point of contact, and control can be even delegated to another device, such as
Google Nest or Aeotec Smart Hub.

Although the Hue Bridge itself is an IoT gateway, its operation is limited only to other
Hue products. Therefore, this thesis considers it a device and not the border point between
smart home LAN and the cloud.

Signify Holding, the parent company of Phillips has been awarded as the best IoT
security company [41] and is the first company conducting business in smart lighting to be
awarded security certifications.

5.3 Turris MOX Router
Researched IoT gateways were connected to the Turris MOX modular router to gain Internet
connectivity. This router is set up to function as a switch, default gateway, but mainly as
a point of capture.

2MSRP - Manufacturer’s Suggested Retail Price

19

Figure 5.1: Basic MOX Pocket Wi-Fi package consisting of mainboard module with pro-
cessing module, memory and Wi-Fi NIC. Original image is taken from [13]

Turris is an open source project by CZ.NIC [12], with the primary aspiration being
security. Turris MOX is created with modularity in mind. Basic configuration, serving as
a router can be expanded with various modules to add storage capacity, switched RJ-45
ports, wireless radio, or support for PoE. An example of built configuration of a MOX router
is shown in Figure 5.1. The Turris router runs a Turris OS, an OpenWrt Linux distribution.
Turris OS provides Sentinel security software, dynamic firewall, honeypot-as-a-service or a
simple VPN client. Because it is Linux based, popular CLI based programs like Tcpdump
can be run on it, which is indeed used for capturing data for the purpose of this thesis.

5.4 Environment Deployment and Capturing Methodology
All gateways were connected to the Turris router either by Wi-Fi (Amazon Echo, Google
Nest Mini) or Ethernet (Aeotec Smart Home Hub, Raspberry Pi). An External SSD manu-
factured by Samsung was connected to the Turris router, utilising its USB port. This SSD
was formatted to the ext4 file system and permanently mounted through fstab.

Turris Router was set up to work as the LAN’s default gateway, with 192.168.1.1 as its
IP address. A DHCP reservation was used for all the IoT gateways in order to streamline
the analysis process.

Devices were set up using their respectable Android application. Following applications
were used: SmartThings3 for Aeotec control, Amazon Alexa4 for Amazon Echo, Google
Home5 for Google Nest Mini and Home Assistant6 for Raspberry Pi. Phillips light bulb
was first connected to the Phillips Hue Bridge using the Philips Hue application7. When
connected to the bridge, it was then connected to the smartphone via the respectable
application listed above. During the setup, sending telemetry and other optional data was
always enabled, even in the case of the open-sourced Home Assistant.

During the setup process, there emerged problems with setup of the Amazon Echo and
Google Nest Mini devices. Amazon Echo treats the connections to the Phillips Hue Bridge
in two ways. First, the Hue Bridge can communicate directly with the controlling device,

3SmartThings application in Google Play
4Amazon Alexa application in Google Play
5Google Home application in Google Play
6Home Assistant application in Google Play
7Philips Hue application in Google Play

20

https://play.google.com/store/apps/details?id=com.samsung.android.oneconnect
https://play.google.com/store/apps/details?id=com.amazon.dee.app
https://play.google.com/store/apps/details?id=com.google.android.apps.chromecast.app
https://play.google.com/store/apps/details?id=io.homeassistant.companion.android
https://play.google.com/store/apps/details?id=com.philips.lighting.hue2

(a) Environment diagram with an Ethernet wired
IoT gateway. Capturing is done on the Ethernet
port of B, leading into D.

(b) Environment diagram with a Wi-Fi wireless
IoT gateway. Capturing is done on the WLAN
interface.

Figure 5.2: The Figures show how the devices, which the LAN was composed of, were
connected. A—the cloud; B—Turris router; C—external SSD for captured files storage;
D—researched IoT gateway; E—Phillips Hue Bridge; F—smartphone with control appli-
cation; G—Phillips Hue light bulb. Wireless communication between the devices is colour
coded.

and it eliminates the need for an Echo Gateway entirely. Communication with Amazon
servers is then transmitted from the controlling smartphone. Second, the Google Nest Mini
setup failed with an undisclosed error in the Google Home application. The gateway was
functional, except the voice commands were not working. Non-operating connection to
the Internet was the reason, according to the error message, spoken by the Google Nest.
Device settings in the smartphone application were not working either. These problems
were solved by factory reset of the device and repeating the setup process.

The schema of the built environment is in Figure 5.2.

Capturing Methodology

Data collection was performed for each of the gateways separately. No other device except
the IoT gateway itself, Turris MOX router, Phillips Hue light bulb and Phillips Hue Bridge
was connected to the LAN during the data capturing. This was meant to reduce any
unwanted traffic in the network.

Traffic was captured in two different operation modes for each gateway, producing two
data sets for each gateway. These data sets were a. Passive capture, and b. Active capture.

Passive capture data was collected during a span of one week, with a maximal deviation
of less than ± 1 hour. During this time, no outer influence in the LAN had been introduced.
All traffic captured is therefore passive, hence the Passive capture name. All outbound
traffic captured in this mode is solemnly generated by IoT gateway and other network
devices without any interference by the user.

Active data capture was also performed on each of the gateways. Active data capture
consisted of sets of the same number of actions performed on the Phillips Hue light bulb.

21

Gateway Capturing
mode Connection Raw Size Filtered

Size
Raw

Packets
Filtered
Packets

Aeotec A Eth 58.8 KiB 51.0 KiB 302 268
Aeotec P Eth 139.6 MiB 93.7 MiB 701 448 525 089
Echo A Wi-Fi 305.8 KiB 134.4 KiB 595 319
Echo P Wi-Fi 1.1 GiB 221.6 MiB 1 454 195 525 888
Google A Wi-Fi 49.6 KiB 24.1 KiB 383 172
Google P Wi-Fi 2.7 GiB 117.0 MiB 3 407 511 507 148
RPHA A Eth 19.3 KiB 29.6 KiB 289 194
RPHA P Eth 141.3 MiB 83.5 MiB 1 014 335 719 611

Table 5.2: Table showing the differences between the sizes of gathered pcap files of each
IoT gateway, before and after filtration. Gateway’s names are shortened: Aeotec Smart
Home Hub = Aeotec, Amazon Echo = Echo, Google Nest Mini = Google, Raspberry Pi
with Home Assistant = RPHA. Capturing mode: A = active, P = passive; Connection:
Eth = Ethernet

This means repeatedly switching on and off the lights using a smartphone application meant
to control the given gateway.

Data capturing was done on Turris MOX router using Tcpdump CLI program, more
in 4.3. Tcpdump was saving live data to Samsung SDD connected via USB to Turris router.
The router was set up to connect to the rest of the location network using Ethernet. The
Turris router was serving as a DHCP server for the testing LAN. Captured data, stored in
pcap files, was retrieved using a remote SSH connection to the router after the capturing
process had finished.

5.5 Analysis methodology and process
Captured and sorted pcap files were manually filtered to contain only the information
desired for the analysis. The main criterium for the filtering was the MAC address of a given
IoT gateway. The amount of captured data, which is not helpful for the analysis, depends
on the type of media carrying the data (Wi-Fi or Ethernet). Gateways communication
via Ethernet suffered a lower traffic overhead than devices carrying the information using
Wi-Fi. Table 5.2 shows the difference between sizes of captured, raw pcap files, and filtered
pcap files. The entire dataset, composed of raw pcap files without any filtering done, is
available at https://nextcloud.fit.vutbr.cz/s/TTtEqT8wJLwDAs4.

Pcaps with filtered traffic were subjugated to the Zeek software. Zeek logs were extracted
from each file. These logs contained information about traffic streams, DNS queries and
answers, records of transferred files, TLS connections details, statistics. Zeek logs content
were copied to spreadsheet editor for easier manipulation and filtration of the data. Each
pcap file had its own spreadsheet with corresponding Zeek logs.

Data, copied to the spreadsheet editor, were manually inspected, and essential informa-
tion was extracted from them. This includes mainly resources regarding DNS records and
queries, time intervals between the queries, endpoints and intervals of NTP streams, ports,
target’s hostnames, features marking and identifying the traffic stream of UDP streams,
conversation destinations, intervals, number of packets in a burst for ICMP communica-
tions, intervals, endpoints, stream identifiers, features, patterns corresponding to the actions

22

https://nextcloud.fit.vutbr.cz/s/TTtEqT8wJLwDAs4

taken during the active capturing for TCP/TLS conversations, intervals, destinations, con-
tents of sent documents for HTTP streams. Zeek logs were regularly being cross-checked
with the content of the pcap files, viewed in Wireshark. An interesting traffic behaviour,
observable patterns, intriguing nuances of the traffic, cryptographic information and other
significant properties of communication were searched for (both manually and with use of
simple scripts) in the spreadsheet containing filtered Zeek logs. The results of this analysis
were stored in a standalone spreadsheet. Graphs, histograms or traffic flow graphs were
created where applicable.

23

Chapter 6

Experimental Results

This Chapter shows results of carried out experiments, ranging from the amount of cap-
tured data of each gateway, during passive or active operation, via comparison of different
gateway’s traffic, finally leading to a discussion on possible vulnerabilities. Information ex-
tracted from captured data is written in this Chapter sequentially, based firstly on a. gate-
way used, and then secondly b. capture mode. Summarised results for all gateways follow.

6.1 Aeotec Smart Home Hub
This section covers the experimental results for the Aeotec Smart Home Hub, which is
operated by Samsung’s SmartThings ecosystem.

Passive Capture Results

Aeotec Smart Home Hub ranks second out of four regarding the amount of filtered data
transmitted. However, unfiltered pcap size is the lowest of all gateways, but this number
is not representative of valuable information. Out of 89886558 transported bytes, 68.7 %
were TCP, while 55.1 % were TLS. TLS contributed 28.6 % of all in terms of packets. UDP
makes only 9.8 % of all transmitted bytes and DNS 6.2 % of bytes. Aeotec sent 39429 DNS
requests, but they were asking only for three queries. These were: api.smartthings.com,
fw-update2.smartthings.com and dc-eu01-euwest1.connect.smartthings.com. These queries
were sent from the 192.168.1.101 DHCP static address, given to the Aeotec gateway, and
the fd86:36f3:b032:0:b5ef:f6ef:d663:e589, fd86:36f3:b032:0:2a6d:97ff:fecd:4adc and fd86:36f3:
b032:0:11c6:f88f:bdaa:8339 IPv6 addresses used by the gateway. Only queries sent from the
aforementioned IPv6 addresses were for api.smartthings.com. All queries were sent to the
Turris router, with the IP address of 192.168.1.1, serving as the LAN’s default gateway.
Queries and answers are listed in Table 6.1. Intervals between the requests with the same
query vary from 01:05 [mm:ss] to 15:01.

This gateway held communication streams to the api.smartthings.com endpoint, TCP
port 443. Both were originating from Aeotec’s IPv4 address. The first type of connection
happened 14446 times during the capture period. Endpoint addresses are located in Dublin,
Ireland. Consulting WHOIS database, the service is provided by Amazon AWS. All the
connections to this endpoint used TLS 1.2, with Diffie-Hellman as the key exchange method.
The secp256r1 curve was used. TLS payload data form just 131 bytes outbound and
199 bytes inbound for the one instance of the communication. TLS handshake bytes are
not included. These conversations were repeated each minute during the whole capture

24

Query A AAAA Answers

api.smartthings.com1 14446 14447

18.202.137.67
3.248.90.154
34.249.105.246
34.250.163.199
34.251.239.96
34.253.133.191
52.17.91.165
52.18.35.218
52.19.161.236
52.208.106.25
52.208.23.209
54.76.18.183

api.smartthings.com2 4254 4255 same as above

fw-update2.smart-things.com 1013 1013
34.240.106.143
54.194.56.171
176.34.194.138

dc-eu01-euwest1.connect.smartthings.com 1 0
54.171.188.111
54.217.91.49
99.80.191.26

Table 6.1: Table showing the DNS requests by the Aeotec Smart Home Hub. Column
A lists the number of requests for A records. Column AAAA shows the number of queries
for AAAA records. 1. Queries sent from 192.168.1.101; 2. Queries sent from IPv6 addresses.

week. Based on its characteristics, it can be assumed that the purpose of these streams
is “Check if the cloud service is available” or “Send a small amount of telemetry” type of
conversation. A standard communication flow graph is shown in Figure 6.1.

Streams towards the fw-update2.smartthings.com endpoint ran 1013 times. They utilised
HTTP over TLS. The endpoint is located in Dublin, Ireland, the same as the previous
streams, and is served by Amazon AWS. Intervals between iterations vary from 5:01 to
15:01. Communication used SHA1WithRSAEncryption certificate. The certificate for es-
tablishing TLS stays the same in all iterations. Server Hello used a self-signed certificate,
utilising the TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 cipher suite. Based
on the FQDN of the endpoint, it can be assumed that the purpose of these streams was to
check for software updates or security patches.

The last TCP stream held during the time of capturing had dc-eu01-euwest1
.connect.smartthings.com as its endpoint. This stream, which was already running when
the capturing had begun, ran until 6.5 days into the capturing. A TCP packet with a re-
set flag set halted it. Immediately after this, a new stream was established, which lasted
past the capture period’s end. The destination IP address belongs to Amazon AWS, and
it is located in Dublin, IR. According to the I/O graph in Figure 6.2, this connection is
predominantly idle (thanks to the TCP keep-alive packets), or it is sending small repeating
messages, 40 and 42 TLS payload bytes in size. Spikes in the graph are all originating from
the server-side.

Because Aeotec does not utilise NTP for time synchronisation, the previous streams
could also carry the time synchronisation data.

25

[TCP	Port	numbers	reused]	35368	→	443	[SY…35368 443
443	→	35368	[SYN,	ACK]	Seq=0	Ack=1	Win=2…35368 443
35368	→	443	[ACK]	Seq=1	Ack=1	Win=29216	…35368 443

Client	Hello35368 443
443	→	35368	[ACK]	Seq=1	Ack=238	Win=281…35368 443
Server	Hello,	Certificate,	Server	Key	Exchang…35368 443
35368	→	443	[ACK]	Seq=238	Ack=3315	Win=…35368 443

Client	Key	Exchange35368 443
Change	Cipher	Spec,	Encrypted	Handshake	…35368 443
443	→	35368	[ACK]	Seq=3315	Ack=364	Win=…35368 443
Change	Cipher	Spec,	Encrypted	Handshake	…35368 443

Application	Data35368 443
Application	Data35368 443
Encrypted	Alert35368 443

35368	→	443	[FIN,	ACK]	Seq=526	Ack=3565	…35368 443

Time Comment

612478.783615

612478.820454

612478.821938

612479.152319

612479.189311

612479.194407

612479.195907

612479.217330

612479.218457

612479.255338

612479.255435

612479.271428

612479.308817

612479.312277

612479.334183

192.168.1.101
34.249.105.246

TCP:	[TCP	Port	numbers	reused]	35368	→	443	[SYN]	Seq=0	W…

TCP:	443	→	35368	[SYN,	ACK]	Seq=0	Ack=1	Win=26847	Len=0…

TCP:	35368	→	443	[ACK]	Seq=1	Ack=1	Win=29216	Len=0	TSva…

TLSv1.2:	Client	Hello

TCP:	443	→	35368	[ACK]	Seq=1	Ack=238	Win=28160	Len=0	TS…

TLSv1.2:	Server	Hello,	Certificate,	Server	Key	Exchange,	Serv…

TCP:	35368	→	443	[ACK]	Seq=238	Ack=3315	Win=35840	Len=…

TLSv1.2:	Client	Key	Exchange

TLSv1.2:	Change	Cipher	Spec,	Encrypted	Handshake	Message

TCP:	443	→	35368	[ACK]	Seq=3315	Ack=364	Win=28160	Len=…

TLSv1.2:	Change	Cipher	Spec,	Encrypted	Handshake	Message

TLSv1.2:	Application	Data

TLSv1.2:	Application	Data

TLSv1.2:	Encrypted	Alert

TCP:	35368	→	443	[FIN,	ACK]	Seq=526	Ack=3565	Win=38752	…

Figure 6.1: Traffic flow graph representing the typical TCP stream of the Aeotec gateway
towards the api.smartthings.com endpoint.

Wireshark	I/O	Graphs:	aotec_passive_filtered.pcap

01:00:00
23.12.21

07:00:00
23.12.21

13:00:00
23.12.21

19:00:00
23.12.21

Time	(s)

0

5000

10000

15000

20000

25000

By
te
s/
1	
m
in

Figure 6.2: Figure shows the input/output graph of the stream from the Aeotec gateway
towards the dc-eu01-euwest1.connect.smartthings.com endpoint. X-axis step is 1 minute.

26

Active Capture Results

During the 49 seconds of active capturing, while the Phillips Hue light bulb was turned on
and off 10 times, 47869 bytes in 268 packets were transmitted. 57.4 % of these bytes are
TLS, which corresponds to 45.9 % of packets. 12 UDP DNS packets were sent and received
by the gateway.

All the DNS queries were for api.smartthings.com. One of the answers for the query was
3.248.90.154, which was subsequently used for TLS connection. This TCP/TLS connection
used TLS 1.2. This conversation happened twice. The first stream begun 26 seconds into
the capture; the second one lasted past the end of capturing, therefore it is incomplete in
the pcap file. Conversation contains TCP handshake, TLS establishment and 1 outbound
packet of 126 TLS content bytes, 194 bytes of inbound TLS payload data and 1 encryption
alert message. Stream is correctly finished using the sequence of TCP packets with FIN,
ACK flags and TCP response with the ACK flag. Destination IP is located in Dublin,
Ireland, and it points to Amazon AWS services—Amazon EC2, which is, quote [5]: “Secure
and resizeable compute capacity for virtually any workload.” TLS certificate is issued by
GeoTrust, for api.smartthings.com. Cipher and curve used is the same as in the case of
passive capturing.

The second TCP/TLS stream, with high probability, carries data which are generated
when operating the Phillips light bulb. At the time of capture start, the connection had
already been established. Same as above, destination endpoint belongs to Amazon AWS in
Dublin, Ireland. The packet’s pattern is notable. Here, sizes of frames are main determi-
nants. The found pattern consists of 42 TLS data bytes (113 frame B) outbound, 425 TLS
data bytes (496 frame B) outbound and 42 TLS data bytes inbound (113 frame B), followed
by 247 TLS data bytes (318 frame B) inbound. There are 57 inbound (37 times with the
frame length of 113 B) and 57 outbound (20 times with the frame length of 113 B) packets.
113 B long frames seems like initiation frames. Difference between turning the bulb on and
off cannot be determined by packet length. During one operation, communication consist
of either a. 6 packets for operation (113 B outbound, 490 B outbound, 113 B inbound,
318 B inbound, 113 B outbound, 490 B outbound), while not all frames were captured or
b. 4 packets per operation (out 113, out 490, in 113, in 318) and other packets are not carry-
ing the action data itself, but can function as a flow control, integrity check, et cetera. Due
to use of encryption, the aforementioned relation between frames and action is speculative.

6.2 Amazon Echo
The following section contains information about the results for the Amazon Echo gateway,
which was controlled using the Alexa application for Android. Results presented below are
extracted from data collected, when the Echo device was connected to the Internet. The
pcap file, captured when the gateway was not connected to the Internet, was not considered
for the analysis.

Passive Capture Results

During the span of the week, when the capturing was carried out, the Amazon Echo de-
vice queried for 23 different DNS records. This is more than any other tested gateway
(Google Nest ranked second, with 21 unique queries). All the DNS queries were asking for
A records only. Most DNS requests (2014) queried for d3p8zr0ffa9t17.cloudfront.net do-

27

Query Amount Min. Interval Max. Interval
api.amazon.com 173 00:58:20 00:58:21
api.amazonalexa.com 1942 00:00:01 00:58:21
avs-alexa-14-na.amazon.com 117 00:51:24 02:00:04
todo-ta-g7g.amazon.com 2 00:00:00 00:00:00
softwareupdates.amazon.com 8 00:15:33 25:35:01
acsechocaptiveportal.com 32 00:00:02 11:03:09
arcus-uswest.amazon.com 6 24:00:00 24:00:01
d1s31zyz7dcc2d.cloudfront.net 1 - -
dxz5jxhrrzigf.cloudfront.net 1 - -
d3p8zr0ffa9t17.cloudfront.net 2014 00:01:08 00:05:01
dcape-na.amazon.com 1 - -
det-ta-g7g.amazon.com 2 01:07:44 01:07:44
device-artifacts-
v2.s3.amazonaws.com 15 00:00:06 03:14:33

device-messaging-na.amazon.com 2 68:47:03 68:47:03
device-metrics-us-2.amazon.com 411 00:00:00 01:44:51
dss-na.amazon.com 7 00:00:00 41:01:46
ffs-provisioner-config.amazon-
dss.com 5 41:00:00 41:01:46

fireoscaptiveportal.com 31 05:15:04 06:00:01
ingestion.us-east-
1.prod.arteries.alexa.a2z.com 2 164:08:08 164:08:08

mlis.amazon.com 2 00:03:23 00:03:23
msh.amazon.com 28 00:02:21 12:57:10
ntp-g7g.amazon.com 31 00:02:21 06:00:00
prod.amcs-tachyon.com 2 00:00:00 00:00:00

Table 6.2: Table showing the differences and patters in DNS queries by Amazon Echo
gateway. Intervals bring a new insight, how an Echo device uses DNS, alongside the number
of queries. Intervals can also function as one of the metrics for the device fingerprinting.

main name. Cloudfront is Amazon’s content delivery network service [3]. Forty total unique
answers belonged to the following networks: 13.27.171.0/24, 13.32.0.0/16, 18.66.0.0/16,
52.85.114.0/24, 54.192.147.0/24, 65.9.94.0/24, 99.86.247.0/24. The second-highest amount
of requests queried for api.amazonalexa.com happened 1942 times. The tp.b16066390-
frontier.amazonalexa.com and d1gsg05rq1vjdw.cloudfront.net domain names were returned
in the answer, among other IPv4 addresses. All destinations and amount of queries is in
Table 6.2. IP addresses found in answers for queries in Table 6.2 are hosted by Amazon
AWS.

Every 5 minutes, the Amazon Echo sends bursts of 10 ICMP Echo messages towards the
LAN’s default gateway. Echo gateway uses NTP service for its time synchronisation; times-
tamps of NTP streams correspond with timestamps and intervals in the DNS queries. NTP
conversation occurred 31 times, the same as was the number of DNS queries. NTP servers
are: 52.45.237.36, 34.236.6.206, 52.203.151.208, 34.239.12.200, 18.205.68.150, 3.234.38.31,
34.226.24.249 and 3.214.58.173.

28

Amazon Echo initiates conversations with the Phillips Hue Bridge. It is an HTTP
transfer. Typically, nine times in a row, the HTTP exchange is sent. Then once, another
HTTP conversation is sent. This last HTTP response from Hue Bridge contains information
about itself. These ten messages repeatedly appear 35 times. Spacing between the 35
streams is reasonably consistent.

The Echo takes part in HTTP communication towards 11 endpoints, which IPv4 ad-
dresses were obtained in the DNS answers for the d3p8zr0ffa9t17.cloudfront.net and acse-
chocaptiveportal.com queries. These streams happened 1649 times. They always consist
just of an HTTP connection test.

Last HTTP based conversation reaches the fireoscaptiveportal.com endpoint. Streams
repeated 30 times. Intervals between the streams copy the DNS intervals. All streams are
the same, with the packets with 267 B of HTTP payload and 260 B inbound of HTTP
payload. Interestingly, the response is delivered in two packets, with 204 and 400 return
codes.

The Echo gateway took part in a total of 17 distinct TCP/TLS streams. The first
was directed to the 65.9.90.59 IP address, which was obtained by querying the DNS for
d1s31zyz7dcc2d.cloudfront.net. It lasted 42 seconds. The stream carried 569808 B inbound
while transmitting 105251266 B outbound from the Echo towards the endpoint. By these
parameters, it can be assumed, with confidence, that the gateway pulled a software update
using this stream.

Stream, which repeated mostly—3047 times, communicated with api.amazonalexa.com.
Originating payload size ranges from 1066 to 1693 bytes. Response payload is much
larger—ranging from 5980 to 21141 bytes. Most connections are towards the 65.9.91.171
and 13.32.135.16 addresses (2876 out of 3047). These streams are short, with an average
length of 0.37 seconds. Address changes seem logical, with clusters of conversations with
the same address. This supports the theory of load balancing. All conversations are en-
crypted using TLS 1.3 or TLS 1.2. When using TLS 1.3, client hello frames are padded
in the TLS layer to be 583 bytes long. TLS 1.2 packets do not have padding. Amazon is-
sued all certificates. Either the TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
or TLS_AES_128_GCM_SHA256 ciphers were used.

Connection to api.amazon.com ran 166 times. Intervals between these streams range
from 00:00:00 to 02:55:02. These streams had origination packets with a TLS payload of
1354 bytes. Endpoint IP addresses do not follow sequentially in time, as in the previous
stream. However, this behaviour can be caused by a relatively low amount of occurring
streams. The average duration of the stream is 0.51 seconds.

Streams towards avs-alexa-14-na.amazon.com ran 130 times. There were significant
differences in intervals between conversations (8 s – 2:00:00 h). Payload ranges from 931 B
to 50146 B inbound and from 1990 B to 25231 B outbound. All streams have the following
TLS handshake: Client Hello = 268 B, Server Hello = 1514 B, Certificate, Server key
exchange = 690 B, Client Key Exchange = 180 B and Change Cipher Spec = 105 B (entire
frame lengths). Stream durations ranged from 8 to 7204 seconds.

Conversation between the Amazon Echo and softwareupdates.amazon.com happened
8 times. Intervals between streams range from 00:15:33 to 1 day and 01:35:01, which corre-
sponds with DNS queries. These streams do not presumably download software updates, as
the endpoint’s name may suggest. Based on the amount of data transmitted, these streams
could have been checking for available updates. Certificates were issued by Digicert. The
cipher used is TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256.

29

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000011000120001300014000150001600017000
TLS payload bytes transferred in one stream

0

20

40

60

80

100

120
Nu

m
be

r o
f s

tre
am

s

Histogram of TLS conversation stream bytes,
 originating from Amzon Echo, to device-metrics-us-2.amazon.com

Figure 6.3: The histogram shows the number of streams towards the device-metrics-us-
2.amazon.com, which transferred the same amount of TLS data. Three distinct groups
based on the packet length are clearly seen. Most streams carried around 2000 B, 6000 B
and 14000 B of TLS payload.

Stream towards arcus-uswest.amazon.com was established six times. These streams
stood out thanks to intervals between them, which are one day exactly. Stream happened
every day at 11:31:50 CET.

Communication with device-messaging-na.amazon.com happened twice. Interval was
2 days and 20:47:03. Most data is originating from Amazon Echo (88 %). The endpoint’s
name suggests that it is part of the Amazon Device Messaging solution that lets users send
messages to Amazon devices running their app [6]. However, most of the data sent via these
streams originate at the Echo gateway, negating the theory of a server sending messages to
end devices.

The stream with the second-highest repetitions was directed towards the device-metrics-
us-2.amazon.com endpoint, and it ran 1204 times. TLS payload without overhead ranges
from 1523 B to 16580 B. Response TLS payload with no overhead always was 5317 Bytes.
Intervals between streams ranged from 00:00:00 to 04:41:59. Based on the endpoint FQDN,
these streams sent reports to Amazon servers. After the TLS handshake, most of the
payload originated from Echo—statistics and metrics. The only payload coming back to
Echo was 327 B, which was transmitted in the last TLS packet before an encrypted alert
message and TCP packet with FIN and ACK flags. The amount of data carried is distorted
by server hello messages and certificates, which Zeek counts into payload data. Streams
can be sorted into three groups based on the amount of TLS data sent through them, as is
shown in Figure 6.3.

Endpoints of all streams, including those not paragraphs above, are shown in Figure 6.4.
Comparing learnt information about Echo’s traffic to the research of Amar et al. [2],

both differences and similarities can be found. Even when accounting for the difference in
the length of capturing, the number of DNS requests, and consequently, intervals between
them, do not match. DNS query for the device-metrics-us.amazon.com endpoint in Amar’s
study happens 119.6 times a day on average, while in this research, the number is 58.7 times
a day for the device-metrics-us-2.amazon.com. In this capturing, there was only a single
query for dcape-na.amazon.com, while Amar and his team captured 1210 such requests.

30

HTTP

NTP

prod.amcs-tachyon.com

d3p8zr0ffa9t17.cloudfront.net

acsechocaptiveportal.com

192.168.1.227

(Hue Bridge)

softwareupdates.amazon.com

arcus-uswest.amazon.com

 dxz5jxhrrzigf.cloudfront.net
 dcape-na.amazon.com

device-messaging-na.amazon.com

dss-na.amazon.com

ffs-provisioner-config

.amazon-dss.com

ingestion.us-east-1.prod.

arteries.alexa.a2z.com

mlis.amazon.com

msh.amazon.com

ntp-g7g.amazon.com

Amazon Echo

fireoscaptiveportal.com

ICMP

192.168.1.1

todo-ta-g7g.amazon.com

avs-alexa-14-na.amazon.com

api.amazon.com

api.amazonalexa.com

 d1s31zyz7dcc2d.cloudfront.net

TCP/TLS

< 10 times

10 - 100 times

> 100 times

device-metrics-us-2.amazon.com

Figure 6.4: Map of endpoints to which the Amazon Echo established connection. Connec-
tion type is differentiated by colour. Colour shade marks the number of connections to the
endpoint.

31

Unlike them, the queries for obscure sites, like www.example.org or www.example.net,
never did occur. The number of ICMP connections is comparable. While the Echo device
in this research sent 287.7 ICMP echoes per day, it was 308.1 echoes in Amar’s study. Since
the capturing time for the first and last day is not known in Amar’s study, the numbers
may match more closely in reality.

Active Capture Results

During the 40 seconds of active capturing, one DNS query was sent towards the Turris
router. The query was asking for the A record of msh.amazon.com.

Captured streams had to be divided into two separate categories. There was a significant
number of streams towards the cloud, which had not originated from the Echo gateway, but
from the Android phone, which was used to send commands to the Echo. Only two distinct
communication streams originated from the Echo. The first one established itself against
msh.amazon.com endpoint, following the aforementioned DNS query. Communication con-
sisted from the TCP/TLS handshake, two inbound data packet and one outbound. Then it
was closed with TCP FIN, ACK. It used TLS_ECDHE_RSA_WITH_AES_128_GCM-
_SHA256 and a certificate signed by Amazon. A new connection to the same host followed
immediately. It carried more data than the first connection.

The second stream originating from the Echo communicated with
avs-alexa-14-na.amazon.com. It was part of a much longer stream with start and end,
which was not in the scope of the active pcap file. Endpoint contacted the Echo every 30
seconds with 46 TLS bytes, the Echo replied with the same amount of data. It lasted until
Jan 26, 11:33:58 CET. For this whole duration, two packets, with the length of 46 TLS
bytes, were being exchanged every 30 seconds. Sometimes, more than 46 TLS bytes were
transferred—this is visible in Figure 6.5a. This connection was also found to be originating
from the smartphone with the Alexa application used to operate the Phillips light bulb.

Three distinct streams were communicating between a phone with the Amazon Alexa
application and cloud servers. Three of them had already been established when the ac-
tive capture started. They lasted past the capture time. Only one of them can be also
found in the passive capture pcap file. This stream communicated with the avs-alexa-14-
na.amazon.com endpoint. A stream in the passive capture pcap was detected, however, it
was a different instance, communicating with the same endpoint. It was a long stream,
which mainly sent 41 TLS payload bytes both sides every 30 seconds. I/O graph of this
stream is shown in Figure 6.5b.

6.3 Google Nest Mini
This section presents results of the traffic analysis for the Google Nest Mini gateway. The
initial setup of the device failed with further unspecified error. The device seemed to be
working as intended, with two caveats noted. First, the device setting in the Google Home
application was blank. Second, the connected Hue light bulb could not be operated via
voice commands. The Hue light bulb could, however, be operated by using the Google
Home application. Other voice commands (asking for current time, etc.) were working.
The device setup was successful after the factory reset. The pcap, captured while the
Google Nest was in this partly functioning state, was not part of the analysis.

32

11:22:30
26.01.22

11:25:00
26.01.22

11:27:30
26.01.22

11:30:00
26.01.22

11:32:30
26.01.22

Time (s)

0

2500

5000

7500

10000

12500
By
te
s/
5
se
c

(a) An I/O graph for the TCP/TLS stream from the Amazon Echo towards the avs-alexa-14-
na.amazon.com endpoint. The initial spike consists of a TLS handshake, where a certificate makes
the most of the data. Besides the occasional spikes, the conversation is mostly idle. This stream
continues past the time scope of the active capture and is detected in the passive capture pcap file.
It ends on 26. 01. 2022, 11:33:58 CET.

02:00:00
27.01.22

02:30:00
27.01.22

03:00:00
27.01.22

03:30:00
27.01.22

Time (s)

0

5

10

15

20

Pa
ck

et
s/

1
se

c

33 packets

(b) Stream with the same endpoint found in the passive capture file. The number of sent packets
in the span of a second is shown in this Figure instead of a number of bytes. It shows similar spikes
as the connection from 6.5a, thus confirming the hypothesis that these different connections to the
same endpoint are almost identical concerning the amount of sent data.

Figure 6.5: Comparison of the Amazon Echo’s streams directed to the same endpoint, each
captured in different capture mode.

33

Passive Capture Results

Google Nest sent 33887 DNS queries, divided into twenty DNS distinct queries for A or
AAAA records, one PTR request and five different multicast DNS queries for discovering
services and devices in the LAN. All of these queries are shown in Table 6.3. Intervals with
the value 00:00:00 are caused either by sending two exact queries directly after each other
or by sending queries for A and AAAA records simultaneously. As seen in Figure 6.6, the
purpose of the endpoint cannot be determined solely by its IP address, nor does it work the
other way. One server might host multiple services, each accessible via a different domain
name.

All queries, but few exceptions, were directed to Google’s DNS—8.8.8.8. These excep-
tions occurred when the device could not get an answer from 8.8.8.8. It then sent the
request to the default gateway—the Turris router. The number of queries to 191.168.1.1
was single-digit for each distinct endpoint, even when the total number of queries for the
endpoint was larger than a thousand. There were 419 requests for the PTR record of
110.37.251.142.in-addr.arpa. The answer was always prg03s13-in-f14.1e100.net, Google’s
server in Prague, Czechia (the 1e100 domain being the scientific notation of a googol).

The DNS query for an A record of dl.google.com was sent on the second day of capturing
at 03:10:44 CET. TCP/TLS stream followed. The endpoint is Google’s HTTP download
server [18] serving Chrome, Earth, Android SDK, et cetera.

From the DNS communication, it can be said that Google uses the following networks
for hosting their services:

• 108.177.0.0/16

• 142.250.0.0/16

• 142.251.0.0/16

• 172.217.23.0/24

• 216.58.0.0/16

• 216.239.0.0/16

• 2a00:1450:4014:800::

• 2001:4860:4806::

Google Nest used NTP for the time synchronisation. Endpoints for NTP communica-
tion were time[0-4].google.com. NTP synchronisation occurred 674 times. Endpoints are
not changing sequentially based on time. The minimal interval between NTP streams is
00:01:44, while the maximal interval is 00:19:58. Maximal interval corresponded with DNS
queries for time.google.com. There is one DNS query before every NTP stream.

The gateway periodically checks for connectivity to the default gateway (9653 times)
and DNS server (9748 times). These ICMP echo messages are sent in batches of two requests
for each endpoint, with the interval between batches never being longer than 00:03:07.

Interesting conversations happened on the UDP port 10101—serving as both source and
destination port. Endpoints were multicast IP addresses 224.0.0.250 and 239.255.255.251.
This stream ran 13638 times. Sometimes, two or three packets with the interval of 1 minute
were aggregated to one stream. The final number of connections is, therefore, bigger than
13638. Every packet carried 36 B of UDP payload. The payload was the same for all pack-
ets—0a2033393131424534424638353045454532463931354233373735303942333831391001 in
hexadecimal. The minimal interval between connections was 00:00:59, while the maximal
interval was 00:06:00. Time-to-live of these packets was four. If this was a TCP connection,
this connection could suggest the infection by BrainSpy and Silencer trojans that operated
on the TCP port 10101 [43]—the same port as the Google Nest uses.

The Nest gateway communicated with three endpoints via plain HTTP. The first con-
nection occurred seven times towards the http://clients1.google.com/generate_204 URI.
The conversation is always the same. The second stream arose just once and lasted 242

34

http://clients1.google.com/generate_204

Query Amount Min. Interval Max. Interval
110.37.251.142.in-addr.arpa 419 00:00:00 03:59:53
android.clients.google.com 3 00:00:00 48:00:00
clients1.google.com 7 21:50:54 25:24:19
clients3.google.com 508 00:00:44 00:39:34
clients4.google.com 2027 00:00:01 00:10:00
clientservices.googleapis.com 3 04:29:24 10:08:23
connectivitycheck.gstatic.com 255 00:00:00 01:01:13
device-provisioning.googleapis.com 3 48:00:00 48:00:00
dl.google.com 1 - -
fcm.googleapis.com 325 00:00:45 00:39:59
geller-pa.googleapis.com 452 00:00:00 05:59:58
google.com 46 00:16:32 04:00:01
home-devices.googleapis.com 1 - -
lycraservice-pa.googleapis.com 34 00:00:00 00:42:47
mtalk.google.com 36 00:00:05 23:56:03
play.googleapis.com 2148 00:00:00 01:05:00
time.google.com 1350 00:00:00 00:19:58
tools.google.com 434 00:00:00 00:35:54
www.google.com 19604 00:00:00 00:02:13
www.googleapis.com 46 00:16:35 03:59:59
www.gstatic.com 9 00:00:00 07:53:23
_8e6c866d._sub._googlecast._tcp.
local 476 00:00:00 21:30:44

_googlecast._tcp.local 1686 00:00:00 24:46:44
google-nest-mini-
6f8186e66483e4ec33a41a91ead50751.
_googlecast._tcp.local

6 00:00:00 03:04:18

6f8186e6-6483-e4ec-33a4-
1a91ead50751.local 90 00:00:00 00:46:44

_services._dns-sd._udp.local 88 00:00:00 00:05:01

Table 6.3: The Table shows all the DNS queries that Google Nest asked for during the one
week of capturing. The query on the first line is for the PTR record. DNS requests in the
middle sections are for the A or AAAA records. The last section contains multicast DNS
queries used to discover services and devices on the local network.

35

110.37.251.142.in-addr.arpa prg03s13-in-f14.1e100.net

android.clients.google.com

android.l.google.com
216.58.201.78

172.217.23.206

142.251.36.78

142.251.36.142

142.251.37.110

clients1.google.com clients.l.google.com

clients3.google.com

clients4.google.com

clientservices.googleapis.com
142.251.36.67
172.217.23.195

connectivitycheck.gstatic.com

142.251.36.131

142.251.37.99
216.58.201.67

device-provisioning.googleapis.com

142.251.36.138

142.251.36.74

dl.google.com

fcm.googleapis.com 216.239.36.55

geller-pa.googleapis.com

2a00:1450:4014:800::200a

2a00:1450:4014:80a::200a

2a00:1450:4014:80c::200a

2a00:1450:4014:80e::200a

2a00:1450:4014:80f::200a

216.58.201.74

142.251.37.106

172.217.23.202

google.com

home-devices.googleapis.com

lycraservice-pa.googleapis.com

mtalk.google.com

108.177.119.188
108.177.126.188
108.177.127.188
142.250.102.188

142.250.27.188

mobile-gtalk.l.google.com

play.googleapis.com

time.google.com

2001:4860:4806:4::

2001:4860:4806:8::

2001:4860:4806::
2001:4860:4806:c::

216.239.35.0
216.239.35.12

216.239.35.4

216.239.35.8

tools.google.com
142.250.181.238
142.250.186.142
142.250.186.46

2a00:1450:4014:800::200e
Tools.l.google.com

www.google.com

142.251.36.132
142.251.36.68

172.217.23.196

216.58.201.68
216.58.212.132

2a00:1450:4014:800::2004
2a00:1450:4014:80a::2004
2a00:1450:4014:80c::2004

www.googleapis.com

www.gstatic.com
2a00:1450:4014:80e::2003

Figure 6.6: The graph demonstrates the overlaps of DNS queries (on the left) and answers
for these queries (on the right). This demonstrates that the destination of the traffic
cannot be determined solely by the destination IP address because several endpoints may
be covered by one IP address—the server is running multiple services, each hosted under
a different domain name.

36

Destination IP Destination endpoint Client hello packets

142.251.36.138 play.googleapis.com 866
www.googleapis.com 11

142.251.36.74 play.googleapis.com 710
www.googleapis.com 14

142.251.37.106 play.googleapis.com 757
www.googleapis.com 14

172.217.23.202 play.googleapis.com 297
www.googleapis.com 22

216.58.201.74 play.googleapis.com 334
www.googleapis.com 7

Table 6.4: The Table demonstrates the problem of associating an IP address with an end-
point using the QUIC protocol. The Table contains data identified as belonging to one type
of stream/conversation. The right-most column is populated by numbers of QUIC client
hello packets, identifying the beginning of a single QUIC conversation.

seconds. It used HTTP POST request to http://clientservices.googleapis.com/uma/v2; me-
dia type was application/vnd.chrome.uma (4324 bytes). The last HTTP stream repeated
188 times, and it reached connectivitycheck.gstatic.com endpoint. Requests were usually
generated after 20 seconds. The URI always contained the ‘generate_204’ string, similar
to the first HTTP communication mentioned.

Google Nest was the only tested gateway that used the QUIC protocol. Six different
communication groups, utilising the QUIC protocol, were observed. QUIC (Quick UDP
Internet Connections) protocol was developed by Google, and it is meant to reduce overhead
and latency of TCP, while keeping its benefits. It is trying to implement TCP, TLS and
HTTP on UDP [22].

The first QUIC stream was directed toward the tools.google.com endpoint. Out of the
407 occurrences, 406 had the 216.58.201.78 IP address as their destination. The typical con-
versation consisted of client hello → rejection → client hello → connection. It was protected
using TLS. The authentication algorithm used was AES-GCM, and the Curve25519 was
used for key exchange. Client hello and server handshake packets were padded to 1392 B
(frame length) or 1358 B (UDP payload). The next stream, which repeated 92 times, had
www.google.com as its endpoint. Again, the client hello and server handshake packets were
padded to 1392 B (frame length) or 1358 B (UDP payload). The same cipher suite was
used. Most frames sent from Google Nest were 75 B or 1392 B long (frame length)—33 B or
1350 B of payload—471/555 frames (84.86 %). Intervals ranged from 00:01:29 to 11:10:03.

The rest of the QUIC streams had the same characteristics as the aforementioned did
(padding, payload lengths, et cetera.). Sorting them based on the endpoint rendered difficult
for the DNS answers contained IP addresses, which belonged to more than one endpoint.
This is best demonstrated by data contained in Table 6.4. Four remaining distinguishable
QUIC streams demonstrate the same behaviour.

Google Nest Mini communicated via 11 different TCP/TLS streams. In all of them,
the client and server negotiated to use the TLS_AES_128_GCM_SHA256 cipher with
the x25519 curve. They always used TLS 1.3. While the average stream duration, when
using the QUIC protocol, was less than 1 second, communications via TLS were much

37

http://clientservices.googleapis.com/uma/v2

longer—2113.5 seconds on average. All TLS client hello packets were padded to have 512 B
or 585 B of TLS payload.

The longest streams took 19901 seconds on average. They were directed to endpoints
obtained by DNS queries for mtalk.google.com. Most of the streams were comprised of
TCP keep-alive packets.

Twenty-eight streams were directed to www.gstatic.com endpoint. Most data originates
from the endpoint, which supports the fact that www.gstatic.com is part of Google’s CDN
[23].

Communications between the Google Nest and the 216.58.201.74 IP address were show-
ing similar properties as the QUIC based stream in Table 6.4. Out of 29 connections, two
were for play.googleapis.com, a single one for www.googleapis.com, while the rest—27 con-
nections—reached geller-pa.googleapis.com. The amount of TCP non-overhead data was
similar: from 3718 to 3767 bytes outbound. Inbound data created clusters from around
6100 B to 7400 B, and from 9159 B to 9220 B. Streams to different endpoints showed
noteworthy differences in stream duration—from less than a second, via 243 seconds, to
a duration of 1849 seconds.

Active Capture Results

During the active capturing, which lasted 40 seconds, 4 DNS queries were detected. Two
of them asked for the A record of www.google.com, while the other two queried for AAAA
records of the same endpoint.

Two ICMP streams were captured. They share the same traits as the ICMP bursts
described in the section about the results of the passive capturing 6.3.

There were three TCP/TLS conversations, one using UDP/QUIC and one using HTTP.
All of them were also found in the pcap file of the passive capturing. The HTTP conversa-
tion is equal to the passive conversation, which repeatedly sent out the same hexadecimal
strings and ran on the UDP port 10101. In the pcap file, there is no hint suggesting
a possible conversation with the cloud regarding the operation of the Hue light bulbs.

6.4 Raspberry Pi with Home Assistant
Analysis results for the Home Assistant software gateway are contained in this section.
Home Assistant has been installed as a standalone operating system on a Raspberry Pi
computer. It differs from the other tested gateways in its form—software against hardware
gateway, and the type of software philosophy—Home Assistant is an open-sourced solution.
As was the case of the other gateways, anonymous telemetry data collection was enabled.

Passive Capture Results

The Home Assistant sent A or AAAA DNS queries for six endpoints. This is the second-
lowest number, after Aeotec, in tested gateways. However, three of these were sent 30 times
in total, which brings it the total of A or AAAA queries to a lower number than Aeotec
gateway had. These queries can be seen, among others, in Table 6.5.

Querying for an IP record of cognito-idp.us-east-1.amazonaws.com was made to gain
a way to authenticate itself towards Amazon’s server. Quote Amazon AWS, [4]: “Ama-
zon Cognito lets you easily add user sign-up and authentication to your mobile and web
apps. Amazon Cognito also enables you to authenticate users through an external iden-

38

www.home-assistant.io
104.26.5.238

172.67.68.90

2606:4700:20::681a:4ee

2606:4700:20::681a:5ee

2606:4700:20::ac43:445a

analytics-api.home-assistant.io

104.26.4.238

cloud.nabucasa.com 3.213.194.138
52.86.95.78

cognito-idp.us-east-1.amazonaws.com

18.208.108.122
18.210.238.162
23.23.60.231
34.197.60.5

34.198.224.10
34.204.249.234
34.237.200.231
44.196.129.185

50.16.4.11
52.21.41.238
52.7.71.42

54.147.65.193
54.163.152.233
54.173.103.63
54.174.35.126
54.205.69.122
54.208.133.67
54.226.190.168

2600:1f18:257:8000:17f1:2c1e:690e:e81d
2600:1f18:257:8000:3c2b:c107:c711:98f2
2600:1f18:257:8000:539d:aff8:aa2e:6083
2600:1f18:257:8000:5f6a:edbc:1edf:bdba
2600:1f18:257:8000:a412:fbcf:26cb:6c90
2600:1f18:257:8000:d982:c4f3:b2bf:da9a
2600:1f18:257:8001:295c:5163:40df:d6a6
2600:1f18:257:8001:49be:71d:3e40:4131
2600:1f18:257:8001:7a2a:76f1:51d9:e64e
2600:1f18:257:8001:987b:4a2f:ef93:e79a
2600:1f18:257:8001:9f4:c088:9f6c:3c66
2600:1f18:257:8001:e78:8270:c618:284e
2600:1f18:257:8002:291c:63f5:830a:246e
2600:1f18:257:8002:2c94:92fa:b2ff:6225

2600:1f18:257:8002:5de5:8a1e:b220:b2c0
2600:1f18:257:8002:ca4:cd47:1aca:b783
2600:1f18:257:8002:ca5f:96f4:ca37:ddbe
2600:1f18:257:8002:da9e:f02e:1ffb:f3e4

github.com 140.82.121.3
140.82.121.4

version.home-assistant.io

Figure 6.7: Diagram showing the running of multiple services on one endpoint—all three
domain names under the *.home-assistant.io wildcard domain share the same IP address.

tity provider and provides temporary security credentials to access your app’s backend
resources in AWS or any service behind Amazon API Gateway.” This is presumably used to
get to cloud.nabucasa.com, another queried name, which provides cloud solutions for Home
Assistant and is served by Amazon AWS.

DNS queries for www.home-assistant.io and analytics-api.home-assistant.io were an-
swered with the same range of IP addresses. This is similar behaviour to the one observed
in Google Nest’s results, and it is further demonstrated in Figure 6.7. These requests always
directly followed each other. Since these queries were sent so close to each other, they used
the same UDP source port. Together with a query for version.home-assistant.io, both of
these queries were answered with the same list of IP addresses. Answers for these queries
differed from other ones by having the DNSSEC DO bit1 cleared explicitly to zero.

An intriguing observation not experienced elsewhere was scanning the local area network
using the PTR DNS record. The Home Assistant sent batches of 254 PTR queries for the
entire network with a /24 prefix every hour. Besides this, the Home Assistant scanned for
services running on the network via multicast DNS. This is the only time when the traffic
from the Home Assistant was sent by an interface with an IPv6 address.

1DO bit indicates if the DNS resolver is able to accept DNSSEC security resource requests [9].

39

Query A AAAA Min.
Interval

Max.
Interval

www.home-assistant.io 7 7 00:00:00 24:00:00
analytics-api.home-assistant.io 7 7 00:00:00 24:00:00
cloud.nabucasa.com 2 0 00:00:00 00:00:00
cognito-idp.us-east-1.amazonaws.com 180 180 00:00:00 01:00:02
github.com 214 213 00:00:00 03:00:02
version.home-assistant.io 9048 6461 00:00:00 00:10:00

Query From
IPv4

From
IPv6

Min.
Interval

Max.
Interval

<0-255>.1.168.192.in-addr.arpa. 168 - 00:59:59 01:00:00
0abe49165e1940ce9b9f2b398f8e6814.local

54197 24768 - -

_googlecast._tcp.local
_home-assistant._tcp.local
_hue._tcp.local
_services._dns-sd._udp.local
_ssh._tcp.local
philips hue – 81cf9e._hue._tcp.local

Table 6.5: Table showing all the DNS queries demanded by Home Assistant during
the passive capturing. The upper section shows all the queries for A and AAAA DNS
records—numbers in those columns represent the amount of queries. The second section
contains captured queries for MDNS. Each hour, the Home Assistant completed a scan of
the entire LAN—with queries starting from 1.1.168.192.in-addr.arpa, through every avail-
able address from 192.168.1.0/24 network, to the last address (192.168.1.254). Numbers in
the Table for this row represent the amount of sent batches—to get the total amount, it is
necessary to multiply this number by 254, which is 42672.

40

Home Assistant used Cloudflare NTP servers to get current time information. The end-
point, to which it connected 295 (interval between streams was always 00:34:08), was
time.cloudflare.com.

There were 2889 HTTP communications towards Cloudflare hosted endpoints without
registered domain names. IP addresses were obtained in the DNS answers for version.home-
assistant.io. The HTTP request was always for http://version.home-assistant.io/online.txt.

Ten thousand and seventy-six SSDP streams were captured. Half of them were directed
towards the LAN’s broadcast IP address, while the other was for the 239.255.255.250 mul-
ticast address. These happened every two hours.

TLS stream towards version.home-assistant.io ran 1040 times. 1037 out of 1040 streams
sent 822 TLS bytes outbound. All its client hello packets had 517 TLS bytes, and all server
hello packets only (without changing the cipher spec and data) had 127 TLS bytes. After
the TLS handshake, streams were composed of three other packets. These were: Home
Assistant outbound – 201 B of TLS data; Home Assistant inbound – 982 B—1889 B of TLS
data (majority of packets had 1476-1498 B of TLS payload); Home Assistant outbound –
24 B of TLS data. The cipher used was TLS_AES_256_GCM_SHA384, together with
the x25519 curve. Intervals between streams were not longer than 00:10:41.

The Home Assistant connected to github.com 112 times, always with two TLS streams
starting simultaneously. The interval between these streams always hovered around the
3-hour mark. It used the TLS_AES_128_GCM_SHA256 cipher, unlike the other TLS
streams originating from the Home Assistant, which all used the TLS_AES_256_GCM-
_SHA384 cipher suite

A stream, which spanned across the entire week, was connected to 18.193.141.36. This
IP address was not found in any DNS answers. It is serviced by Amazon AWS. Predomi-
nantly, it consisted of bursts of two packets—32 bytes of TCP payload outbound with TCP
PSH flag set and 32 bytes of TCP payload inbound. Sporadically, these were interrupted
by a SSLv2.0 packet.

Fourteen TLS communications were directed towards the endpoint with the 172.67.68.90
IP address. Depending on the destination domain name, the stream lasted on average ei-
ther 15.4 s (www.home-assistant.io) or 30.4 s (analytics-api.home-assistant.io). The do-
main name also influenced the number of total bytes sent and received-808 B (www.home-
assistant.io) or 2113 B (analytics-api.home-assistant.io) outbound and 4906 B (www.home-
assistant.io) or 3836 B (analytics-api.home-assistant.io) inbound.

Communications to cognito-idp.us-east-1.amazonaws.com arose after each successful
DNS query for the domain name. These streams had the following TLS payload: either
235 B outbound, 1165 B inbound, or 2218 B outbound, 2384 B inbound.

Conversations with the cloud.nabucasa.com ran during the whole week, divided into
two distinct TCP/TLS streams. The first stream started before the capturing had begun,
and it ran until February 18th, 20:20:03 CET. The second, ensuing, conversation began
on the same day, at 20:20:37 CET and lasted past the end of packet sniffing. The two
streams manifested vastly different behaviour, as demonstrated in Figure 6.8, although
they communicated with the same endpoint.

Active Capture Results

During the span of 41 seconds of active capturing, no DNS query for A or AAAA record was
found. The only DNS queries captured were the multicast DNS questions for discovering
services running in the LAN.

41

http://version.home-assistant.io/online.txt
www.home-assistant.io
www.home-assistant.io
www.home-assistant.io
www.home-assistant.io
www.home-assistant.io

01:00:00
17.02.22

01:00:00
19.02.22

01:00:00
21.02.22

01:00:00
23.02.22

Time (s)

30

40

50

60

70

Pa
ck
et
s/
10

m
in

Figure 6.8: I/O graph of the two streams from Home Assistant towards the
cloud.nabucasa.com endpoint shows two distinct natures of two streams, which ran shortly
after each other It demonstrates, that communication with a single destination does not
automatically result in the same conversation properties.

Three streams, which were also detected in the passive capturing (more in section 6.4),
were found. These are communicating with the following endpoints:

• cloud.nabusaca.com

• ec2-18-193-141-36.eu-central-1.compute.amazonaws.com

• 172.65.32.248

The Home Assistant did not communicate with the cloud when operating the light bulb.
However, a conversation with a controlling smartphone was observed. The start and end
of this TCP/TLS stream were not captured. Twenty packets with TCP data, either 79 B
or 80 B in length, were sent from the phone. The PSH flag was set. These could be the
packets transferring requests for light manipulation. There was no observable difference
between turning the lights on or off (from the side of a smartphone as a packet source).
Fifty-seven packets with TCP ACK and TCP PSH flags were sent back to the smartphone.
Responses were either 2, 3 or 4 packets long. The lengths of these packets were not unified.
The lengths were contained in an interval of 13 B and 105 B of TCP payload. The first
response packet usually arrived 50-60 ms after the request, with the next packet being sent
from the endpoint after the next 20 ms. In the case of the fourth packet being sent, the
interval after which it was sent depended on the type of action taken. For the “turn the
light on” operation, the fourth packet was sent approximately 1 second after the third.
In case of turning the light off, the fourth packet followed immediately after the third one.

42

Gateway Packet
Count

Captured
Bytes

Avg. Data
Rate [B/s]

Avg. Packet
Rate [p/s]

Avg. Packet
Size [B]

Aeotec
Hub 525089 89886558 146 0.9 171

Amazon
Echo 525888 223910138 370 0.9 426

Google
Nest
Mini

507148 114586759 189 0.8 226

Home
Assistant 719611 76087337 125 1.2 106

Table 6.6: The Table shows the global statistics of captured files for each tested gateway.

6.5 Global results
In total, the capturing took place for a total of 28 days. During this time, more than
4080 MiB in 6579433 datagrams of raw data was captured, which was later filtered to
516 MiB and 2278689 packets of data used for the analysis. Most filtered data was sent and
received by Amazon Echo-221.6 MiB, with Google Nest Mini coming second with 117.0 MiB
of data. The Aeotec gateway transmitted 93.7 MiB of filtered data. Raspberry Pi came last,
with 83.5 MiB of data sent or received. These statistics and other properties of captured
files are manifested in Table 6.6.

Figures 6.9 and 6.10 show the total amount of data transmitted by transport layer
protocol (6.9) and application layer protocol (6.10), both for IPv6 and IPv6. Data, of which
these Figures are composed of, were obtained from the IP.len field of a record for a single
datagram contained in a pcap file; or IPv6.plen field for IPv6, respectively. This decision
was taken in order to make results comparable to the results in [2]. The script used for data
extraction is located within the published dataset. It clearly demonstrates the differences in
the amount of sent or received data and how each gateway uses different ratios of protocols
for its communication. The usage of Google’s QUIC protocol, based on UDP, is noticeably
visible. All traffic data, including data sent via protocols, which are not clearly visible in
graphs in Figures 6.9 and 6.10 due to making only a small portion of the overall traffic, are
shown in Table 6.7 for IPv4 traffic and Table 6.8 for IPv6, respectively.

6.6 Learned Information and Possible Attacks Discussion
This traffic analysis showed how much information can be obtained from the traffic, even
when it is encrypted using modern ciphers. With the further use of information
discovered in this thesis, it could be probably possible to identify the devices
running inside the network (device fingerprinting), even behind the scope of the
local network. Using modern pattern recognition software and other similar methods, the
following categories or properties of the communication analysed in this thesis could be used
as the main differentiators between each gateway: DNS queries, hostnames and addresses
with which the gateways communicated, patterns in time intervals between streams to-
wards the same endpoint, patterns found in the length of packets within streams, et cetera.
The carried-out analysis already identified these traffic features. The fingerprinting of the

43

https://nextcloud.fit.vutbr.cz/s/TTtEqT8wJLwDAs4

Ao
tec

 Sm
art

 Hom
e H

ub

Amazo
n E

cho
 Dot

Goo
gle

 Nest
 Mini

Hom
e A

ssi
sta

nt
0

50

100

150

200

Tr
an

sm
itt

ed
 B

yt
es

 [M
B]

IPv4
TCP
UDP
ICMP

Ao
tec

 Sm
art

 Hom
e H

ub

Amazo
n E

cho
 Dot

Goo
gle

 Nest
 Mini

Hom
e A

ssi
sta

nt
0

2000

4000

6000

8000

Tr
an

sm
itt

ed
 B

yt
es

 [K
B]

IPv6
TCP
UDP
ICMP

Total bytes transmitted per device

Figure 6.9: The Figure presents the total amount of transferred data to and from the
gateways. It portrays the results divided into transport layer protocols and ICMP, both for
IPv4 (left) and IPv6 traffic (right).

Ao
tec

 Sm
art

 Hom
e H

ub

Amazo
n E

cho
 Dot

Goo
gle

 Nest
 Mini

Hom
e A

ssi
sta

nt
0

20

40

60

80

100

120

Tr
an

sm
itt

ed
 B

yt
es

 [M
B]

IPv4
DHCP
DNS
HTTP
MDNS
NTP
QUIC
TLS

Ao
tec

 Sm
art

 Hom
e H

ub

Amazo
n E

cho
 Dot

Goo
gle

 Nest
 Mini

Hom
e A

ssi
sta

nt
0

2000

4000

6000

8000

Tr
an

sm
itt

ed
 B

yt
es

 [K
B]

IPv6
DHCP
DNS
HTTP
MDNS
NTP
QUIC
TLS

Total bytes transmitted per service, per device

Figure 6.10: The Figure manifests the total amount of transferred data. It divides the data
based on the services provided by various application layer protocols, both for IPv4 (left)
and IPv6 traffic (right). The lower amount of total data transmitted is caused by script
(total_data_sent.sh – available within the dataset), which used Tshark and BPF filters to
obtain the amount of bytes for each service. The filter ’IP and TLS’, for example, did filter
out all the TCP overhead, which was sent when TLS was used, therefore the total amount
of bytes is lower than in Figure 6.9.

44

https://nextcloud.fit.vutbr.cz/s/TTtEqT8wJLwDAs4

Gateway DHCP DNS Plain
HTTP NTP QUIC TLS

version
TLS
data

Aeotec
Hub

25536 7259768 0 0 0 1.2, 1.3 57165608

Amazon
Echo

21842 1187511 748754 4712 0 1.2, 1.3 128958289

Google
Nest

573344 4155497 9086641 102448 57947054 1.2, 1.3 11552892

Home
Assistant

19800 11419042 0 44840 0 1.2, 1.3 12508143

Table 6.7: The Table manifests the number of bytes sent and received by each IoT gateway
when communicated using the IPv4 protocol.

Gateway DHCP DNS Plain
HTTP NTP QUIC TLS

version
TLS
data

Aeotec
Hub

0 1671997 0 0 0 - 0

Amazon
Echo

0 223027 0 0 0 - 0

Google
Nest

0 0 0 0 0 - 0

Home
Assistant

7470 0 0 0 0 - 0

Table 6.8: The Table demonstrates the number of bytes sent and received by each IoT
gateway when communicated using the IPv6 protocol.

network connected devices is valuable primarily since the MAC address of a device—the
primary identifier—is lost at the network’s border.

Open DNS communication shows that the use of this protocol has its security short-
comings, especially in giving away valuable information about domains searched for and
probably later used by a user. Captured DNS records can serve as the basis for the DNS
cache poisoning attack (also known as DNS spoofing) and other man-in-the-middle
attacks. The emerging use of DNS over HTTPS, DNS over TLS or DNSCrypt could mit-
igate this problem by obscuring the DNS data carried over the network. This does not
solve the problem in its entirety because of the recursive nature of DNS servers. While the
traffic towards the first DNS server might be encrypted, the given server might not use the
encrypted communication when obtaining answers from other DNS servers. However, it is
improbable that the potential attacker would be sniffing the traffic in a section of a network
where the plain DNS is being utilised.

Most of the data was sent via TCP/TLS or QUIC protocol. Therefore, it
was encrypted, which is certainly a good indication that manufacturers of tested
gateways participate in the current urge to protect private data. Every device
used both TLS 1.2 and 1.3. The Curve25519 elliptic curve was the single most used
curve for establishing a ciphered connection, while Diffie-Hellman’s algorithm was used to

45

Gateway Cipher
Aeotec Hub TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

Amazon Echo
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_AES_128_GCM_SHA256
TLS_RSA_WITH_AES_128_CBC_SHA

Google Nest TLS_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

Home Assistant
TLS_AES_128_GCM_SHA256
TLS_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

Table 6.9: The Table demonstrated different cipher suites used by each of the tested IoT
gateway.

exchange keys. The ciphers used for TLS encryption by each gateway are shown in Table
6.9.

The total amount of data sent towards the cloud is particularly concerning,
especially when the device should be idle. In the case of the Home Assistant software
gateway, this could be remedied by disagreeing with sending anonymous telemetry data
to the cloud. However, this solution is severely limited, or even not possible at all, with
other gateways, because a user often cannot opt out from sending such data when using the
closed-sourced gateways. The discovery of a high, even alarming, amount of data being sent
to the Cloud, even when the gateway should not be exercising any signs of communication,
is in line with the expectations of the author before the analysis process—it was one of the
important motivators why the selected gateways were tested. The analysis proved the
author’s hypothesis, that commercial, closed-sourced, gateways developed by
large corporates (Amazon Echo and Google Nest) would send more diagnostic,
and other data towards the Cloud. The use of encrypted communication obscures
the concrete evidence of what data are being sent towards the Cloud. The fact, that these
commercial gateways connect to more endpoint is also related to the aforementioned issue,
and it is caused by the existence of large infrastructure of the manufacturing companies.

Results Comparison to the Related Studies

The methodology of capturing and analysis process of this work was based on the one of
Amar et al. [2]. This was done to achieve the most comparable results. From the data
of Amazon Echo, it can be deduced that traffic in this thesis and Amar’s paper
differ, yet they share certain similarities in other areas. The cause for this could
be either using a different version of the Amazon Echo device, different settings of the
device, or simply the time difference between the two studies—during which Amazon may
have changed internal processes. The time interval between the publishing of Amar’s paper
and this thesis is the most probable explanation, why the traffic is so different, especially
given the fast-paced environment of research, development, and business in the area of IoT
gateways in past years. The conversations of Amazon Echo in this research were
mainly composed of TLS traffic (see Figure 6.10), while Amar showed that their Echo
also communicated via ICMP and other protocols. The Echo in this research did not send
as many DNS requests, and especially it did not send any requests for DNS resource records
such as www.example.net, compared to Amar’s work. Also, NTP connections happened

46

less often in this work than in the paper of Amar. Between publishing Amar’s work
and this thesis, the general use of TLS rose. This is an expected, but positive
discovery; however, the low number of tested devices could skew the result, and it may
not represent the situation in the entire IoT segment. This work differs from Amar’s mainly
in the type of devices tested—this study is concerned with IoT gateways only. Also, the
results of this thesis emphasise more detailed characteristics of streams than Amar. The
analysis in this thesis extended the span of scenarios of the Amar’s paper, when
the data gathered in the active capturing mode were analysed.

The dataset collected in this work is similar to the one featured in the paper of Ivan
Cvitić et al. [11]. It could be further used to validate their research if the same process was
carried out on the dataset. The work was done the same way or similarly until the point
following the extraction of stream data. Different tools were used for the part of streams
data extraction. The main drawback limiting the reproducibility of Cvitić’s classification
with the dataset collected for this work is the small pool of tested gateways.

Junges et al. [26] used traffic flow data to create a tool that can identify user taken IoT
actions inside a network with 98.4% accuracy. The tool relies on several assumptions and
solutions to challenges. Their assumption that gateways send data after command
execution is not always correct, as the results of this thesis manifest. The
Amazon Echo and Google Nest Mini do not indicate that traffic is generated
when operating a light bulb. Therefore, the tool created by Junges et al. would
be unusable for these gateways.

47

Chapter 7

Conclusion

In this thesis, an analysis of the network traffic of several IoT gateways intended for home
use was conducted. This analysis demonstrated that valuable information about the devices
running inside a local network can be obtained by observing traffic leaving and entering
the network. This includes the theoretical possibility of fingerprinting of the devices inside
a network based on the traffic information gathered in the analysis. Most information can
be obtained from DNS queries and answers. Due to the extensive use of TLS encryption
for HTTPS traffic, traffic information can be extracted from parameters such as packets
lengths, patterns found in traffic, destination addresses and their DNS records, et cetera.
However, the use of TLS is an excellent sign in the grand scheme of things, meaning that
manufacturers are not underestimating the importance of data security and confidentiality.
This thesis showed, how fast the parameters of communication (of the same device) are
changing these days. It also found imperfections in the existing literature concerning the
topic of IoT gateways. The thesis confirmed the author’s assumption that commercial,
close-sourced gateways produce, on average, more traffic than open-sourced counter-parts.

The dataset, consisting of captured traffic, is openly shared and available at
https://nextcloud.fit.vutbr.cz/s/TTtEqT8wJLwDAs4. Its use for future research is an-
other contribution of this thesis. Future research, consisting of machine learning, neural
networks or other methods of finding patterns, can be trained and used on this dataset
to find or confirm the emerging data patterns presented as the results of this thesis, thus
creating a traffic fingerprint of the gateways.

48

https://nextcloud.fit.vutbr.cz/s/TTtEqT8wJLwDAs4

Bibliography

[1] AAEON. AIOT-IGWS01 [online]. 2022 [cit. 2022-01-15]. Available at:
https://www.aaeon.com/ru/p/iot-gateway-systems-aiot-igws01/.

[2] Amar, Y., Haddadi, H., Mortier, R., Brown, A., Colley, J. A. et al. An
Analysis of Home IoT Network Traffic and Behaviour. ArXiv. march 2018,
abs/1803.05368.

[3] Amazon Web Services, Inc.. Amazon CloudFront [online]. 2022 [cit. 2021-03-05].
Available at: https://aws.amazon.com/cloudfront/.

[4] Amazon Web Services, Inc.. Amazon Cognito [online]. 2022 [cit. 2021-03-11].
Available at: https://aws.amazon.com/cognito/.

[5] Amazon Web Services, Inc.. Amazon EC2 [online]. 2022 [cit. 2021-03-05].
Available at: https://aws.amazon.com/ec2/.

[6] Amazon.com, Inc.. Overview of Amazon Device Messaging [online]. 2022 [cit.
2021-03-06]. Available at: https://developer.amazon.com/docs/adm/overview.html.

[7] Cisco Engineers. Embedded Packet Capture for Cisco IOS and IOS-XE
Configuration Example [online]. Cisco Systems, Inc., august 2016 [cit. 2021-10-02].
Available at: https://www.cisco.com/c/en/us/support/docs/ios-nx-os-software/
ios-embedded-packet-capture/116045-productconfig-epc-00.html.

[8] Combs, G. et al. Wireshark [online]. 2022 [cit. 2021-12-21]. Available at:
https://www.wireshark.org.

[9] Conrad, D. Indicating Resolver Support of DNSSEC [Internet Requests for
Comments]. RFC 3225. RFC Editor, December 2001.

[10] Cvitić, I., Peraković, D., Periša, M. and Botica, M. Smart Home IoT Traffic
Characteristics as a Basis for DDoS Traffic Detection. In: Lucia, K., Dragan, P.
and Marko, P., ed. 3rd EAI International Conference on Management of. EAI,
December 2018. DOI: 10.4108/eai.6-11-2018.2279336. ISBN 978-1-63190-167-6.

[11] Cvitić, I., Perakovič, D., Periša, M. and Botica, M. Definition of the IoT
Device Classes Based on Network Traffic Flow Features. In: Springer Nature
Switzerland AG. 4th EAI International Conference on Management of
Manufacturing Systems. 1st ed. January 2020, p. 1–17. DOI:
10.1007/978-3-030-34272-2_1. ISBN 978-3-030-34271-5.

[12] CZ.NIC, z. s. p. o.. CZ.NIC [online]. 2022 [cit. 2021-12-23]. Available at:
https://www.nic.cz.

49

https://www.aaeon.com/ru/p/iot-gateway-systems-aiot-igws01/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/cognito/
https://aws.amazon.com/ec2/
https://developer.amazon.com/docs/adm/overview.html
https://www.cisco.com/c/en/us/support/docs/ios-nx-os-software/ios-embedded-packet-capture/116045-productconfig-epc-00.html
https://www.cisco.com/c/en/us/support/docs/ios-nx-os-software/ios-embedded-packet-capture/116045-productconfig-epc-00.html
https://www.wireshark.org
https://www.nic.cz

[13] CZ.NIC, z. s. p. o.. Turris MOX [online]. 2022 [cit. 2021-12-23]. Available at:
https://www.turris.cz/cs/mox/.

[14] Datadog, Inc.. Datadog [online]. 2021 [cit. 2021-12-23]. Available at:
https://www.datadoghq.com.

[15] Day, J. and Zimmermann, H. The OSI reference model. Proceedings of the IEEE.
january 1984, vol. 71, no. 12, p. 1334 – 1340. DOI: 10.1109/PROC.1983.12775.

[16] Elasticsearch B.V.. Kibana [online]. 2022 [cit. 2021-12-23]. Available at:
https://www.elastic.co/kibana/.

[17] Felfernig, A., Polat Erdeniz, S., Uran, C., Reiterer, S., Atas, M. et al. An
overview of recommender systems in the internet of things. Journal of Intelligent
Information Systems. 1st ed. april 2019, vol. 52, no. 2. DOI:
10.1007/s10844-018-0530-7.

[18] Fitzpatrick, B. dl.google.com: Powered by Go [online]. Google LLC, july 2013 [cit.
202-03-07]. Available at: https://talks.golang.org/2013/oscon-dl.slide#1.

[19] Gigamon. Network TAPs [online]. Gigamon, 2021 [cit. 2021-12-19]. Available at:
https://www.gigamon.com/products/access-traffic/network-taps.html.

[20] Grafana Labs. Grafana [online]. 2022 [cit. 2021-12-23]. Available at:
https://grafana.com.

[21] Gregersen, C. A Complete Guide to IoT Protocols & Standards In 2021 [online].
2020 [cit. 2022-01-15]. Available at:
https://www.nabto.com/guide-iot-protocols-standards/.

[22] Hamilton, R., Iyengar, J., Swett, I. and Wilk, A. QUIC: A UDP-Based Secure
and Reliable Transport for HTTP/2. Internet-Draft
draft-hamilton-early-deployment-quic-00. Internet Engineering Task Force, july 2016.
Work in Progress. Available at:
https://datatracker.ietf.org/doc/html/draft-hamilton-early-deployment-quic-00.

[23] HemantS@TWC. What is gstatic.com used for? All you need to know! [online].
The Windows Club, december 2021 [cit. 2022-03-09]. Available at: https:
//www.thewindowsclub.com/what-is-gstatic-com-used-for-all-you-need-to-know.

[24] Jacobs, R. TSHARK.DEV [online]. 2019 [cit. 2021-12-21]. Available at:
https://tshark.dev.

[25] Jacobson, V., Leres, C. and McCanne, S. MAN PAGE OF TCPDUMP [online].
The Tcpdump Group, november 2021 [cit. 2021-12-21]. Available at:
https://www.tcpdump.org/manpages/tcpdump.1.html.

[26] Junges, P.-M., Francois, J. and Festor, O. Passive Inference of User Actions
through IoT Gateway Encrypted Traffic Analysis. In: IFIP/IEEE. IM 2019 - The
16th IFIP/IEEE Symposium on Integrated Network and Service Management.
Washington DC, United States: [b.n.], April 2019. ISBN 978-3-903176-15-7.
Available at: https://hal.inria.fr/hal-02331783.

50

https://www.turris.cz/cs/mox/
https://www.datadoghq.com
https://www.elastic.co/kibana/
https://talks.golang.org/2013/oscon-dl.slide#1
https://www.gigamon.com/products/access-traffic/network-taps.html
https://grafana.com
https://www.nabto.com/guide-iot-protocols-standards/
https://datatracker.ietf.org/doc/html/draft-hamilton-early-deployment-quic-00
https://www.thewindowsclub.com/what-is-gstatic-com-used-for-all-you-need-to-know
https://www.thewindowsclub.com/what-is-gstatic-com-used-for-all-you-need-to-know
https://tshark.dev
https://www.tcpdump.org/manpages/tcpdump.1.html
https://hal.inria.fr/hal-02331783

[27] Kismet. Kismet [online]. Kismet, december 2021 [cit. 2021-12-21]. Available at:
https://www.kismetwireless.net.

[28] Limited, A. Industrial Automation Solutions [online]. 2022 [cit. 2022-01-15]. Available
at: https://www.arm.com/solutions/industrial.

[29] Ma, H.-D. Internet of Things: Objectives and Scientific Challenges. Journal of
Computer Science and Technology. 1st ed. Nov 2011, vol. 26, no. 6, p. 919–924. DOI:
10.1007/s11390-011-1189-5. ISSN 1860-4749. Available at:
https://doi.org/10.1007/s11390-011-1189-5.

[30] Matoušek, P. Síťové služby a jejich architektura. 1st ed. Publishing house of Brno
University of Technology VUTIUM, 2014. 396 p. ISBN 978-80-214-3766-1. Available
at: https://www.fit.vut.cz/research/publication/10567.

[31] Nadel, B. Aeotec Smart Home Hub review: The hub that does it all [online]. 2021
[cit. 2022-01-15]. Available at:
https://www.techhive.com/article/3639528/aeotec-smart-home-hub-review.html.

[32] Posey, B. and Lavery, T. IoT gateway [online]. TechTarget, april 2021 [cit.
2021-12-21]. Available at:
https://internetofthingsagenda.techtarget.com/definition/IoT-gateway.

[33] Prometheus Authors. Prometheus [online]. 2014-2022 [cit. 2021-12-23]. Available
at: https://prometheus.io.

[34] RAD. How to Choose the right Industrial IoT Gateway [online]. 2021 [cit. 2022-01-14].
Available at: https://www.rad.com/how-choose-right-industrial-iot-gateway.

[35] Raspberry Pi Ltd.. Raspberry Pi [online]. 2022 [cit. 2022-03-20]. Available at:
https://www.raspberrypi.com.

[36] Rawes, E. Google Nest Mini (2nd Gen) review: Even faster, even smarter [online].
2021 [cit. 2022-03-20]. Available at:
https://www.digitaltrends.com/smart-home-reviews/nest-mini-review-2/.

[37] Saleem, J., Hammoudeh, M., Raza, U., Adebisi, B. and Ande, R. IoT
standardisation: challenges, perspectives and solution. In: Association for Computing
Machinery. ICFNDS ’18: Proceedings of the 2nd International Conference on Future
Networks and Distributed Systems. June 2018, p. 1–9. DOI:
10.1145/3231053.3231103. ISBN 978-1-4503-6428-7.

[38] Sanders, C. Practical Packet Analysis: Using Wireshark to Solve Real-World
Network Problems. 3rd ed. USA: No Starch Press, 2017. ISBN 1593278020.

[39] Segan, S. and Greenwald, W. Amazon Echo Dot (4th Gen) Review [online]. 2021
[cit. 2022-01-15]. Available at:
https://www.pcmag.com/reviews/amazon-echo-dot-4th-generation.

[40] Signify Holding. How Philips Hue works [online]. 2018-2022 [cit. 2021-12-23].
Available at: https://www.philips-hue.com/en-gb/explore-hue/how-it-works.

51

https://www.kismetwireless.net
https://www.arm.com/solutions/industrial
https://doi.org/10.1007/s11390-011-1189-5
https://www.fit.vut.cz/research/publication/10567
https://www.techhive.com/article/3639528/aeotec-smart-home-hub-review.html
https://internetofthingsagenda.techtarget.com/definition/IoT-gateway
https://prometheus.io
https://www.rad.com/how-choose-right-industrial-iot-gateway
https://www.raspberrypi.com
https://www.digitaltrends.com/smart-home-reviews/nest-mini-review-2/
https://www.pcmag.com/reviews/amazon-echo-dot-4th-generation
https://www.philips-hue.com/en-gb/explore-hue/how-it-works

[41] Signify Holding. Product Security [online]. 2018-2022 [cit. 2021-12-23]. Available at:
https://www.signify.com/global/product-security.

[42] SolarWinds Worldwide, LLC.. Network Performance Monitor [online].
SolarWinds Worldwide, LLC., 2022 [cit. 2022-04-12]. Available at:
https://www.solarwinds.com/network-performance-monitor.

[43] Speed Guide, I. Port 10101 Details [online]. Speed Guide, Inc., march 2022 [cit.
202-03-07]. Available at: https://www.speedguide.net/port.php?port=10101.

[44] Thales Group. Bridge the Gap with IoT Gateways [online]. 2022 [cit. 2022-01-14].
Available at: https://www.thalesgroup.com/en/markets/digital-identity-and-
security/iot/inspired/iot-gateway.

[45] The Tcpdump Group. Home | TCPDUMP & LIBCAP [online]. The Tcpdump
Group, december 2021 [cit. 2021-12-21]. Available at:
https://www.tcpdump.org/index.html.

[46] The Tcpdump Group. MAN PAGE OF PCAP-FILTER [online]. The Tcpdump
Group, february 2021 [cit. 2021-12-21]. Available at:
https://www.tcpdump.org/manpages/pcap-filter.7.html.

[47] The Zeek Project. Zeek Documentation [online]. 2022 [cit. 2021-12-23]. Available
at: https://docs.zeek.org/en/master/index.html.

[48] Wireshark. Wireshark/epan/dissectors [online]. Wireshark, december 2021 [cit.
2021-12-22]. Available at:
https://github.com/wireshark/wireshark/tree/master/epan/dissectors.

[49] Zbořil, J. Projekt do předmětu ISA [online]. 2021 [cit. 2021-12-22]. Available at:
https://www.stud.fit.vut.cz/~xzbori20/isa.lua.

52

https://www.signify.com/global/product-security
https://www.solarwinds.com/network-performance-monitor
https://www.speedguide.net/port.php?port=10101
https://www.thalesgroup.com/en/markets/digital-identity-and-security/iot/inspired/iot-gateway
https://www.thalesgroup.com/en/markets/digital-identity-and-security/iot/inspired/iot-gateway
https://www.tcpdump.org/index.html
https://www.tcpdump.org/manpages/pcap-filter.7.html
https://docs.zeek.org/en/master/index.html
https://github.com/wireshark/wireshark/tree/master/epan/dissectors
https://www.stud.fit.vut.cz/~xzbori20/isa.lua

	Introduction
	Introduction to IoT
	The Purpose of an IoT Gateway
	IoT devices

	Related Work
	Overview of Network Traffic, its Capturing and Analysis
	The principle of network communications
	Delivering Data to the Point of Capture
	Means of Capturing
	Means of Traffic Analysis

	Setup, Implementation, Capturing and Data Processing
	Selection of IoT gateways
	Selection of IoT devices
	Turris MOX Router
	Environment Deployment and Capturing Methodology
	Analysis methodology and process

	Experimental Results
	Aeotec Smart Home Hub
	Amazon Echo
	Google Nest Mini
	Raspberry Pi with Home Assistant
	Global results
	Learned Information and Possible Attacks Discussion

	Conclusion
	Bibliography

