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VÝPOČTOVÁ SIMULACE MECHANICKÉHO CHOVÁNÍ ENDOTELIÁLNÍCH BUNĚK 
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Abstrakt  

Ateroskleróza je v rozvinutém světě hlavní příčinou úmrtí a finančně zatěžuje zdravotnické systémy 

po celém světě. Převládající hemodynamické působení spolu s lokální koncentrací mechanického 

napětí hrají důležitou roli v lokální povaze aterosklerózy a jejím rozvoji ve specifických oblastech 

lidských cév. 

Endotel v krevních cévách je tvořen tenkou vrstvou buněk, ležící na rozhraní mezi krevním řečištěm 

a cévní stěnou. Dysfunkce endoteliálních buněk se podílí na hlavních patologiích. Například 

ateroskleróza se rozvíjí, když jsou narušeny bariérové a protizánětlivé funkce endotelu, což 

umožňuje akumulaci cholesterolu a dalších materiálů v arteriální stěně. U rakoviny je klíčovým 

krokem v růstu nádoru jeho vaskularizace a proces migrace endoteliálních buněk. Mechanické 

zatížení endoteliálních buněk hraje klíčovou roli v jejich funkci a dysfunkci. 

Počítačové modelování může zlepšit porozumění buněčné mechanice a tím přispět k poznání vztahů 

mezi strukturou a funkcí různých typů buněk v různých stavech. K dosažení tohoto cíle jsou v této 

práci navrženy konečnoprvkové modely endoteliálních buněk, tj. model buněk plovoucích v 

roztoku a model buněk přilnutých k podložce, které objasňují reakci buňky na globální mechanické 

zatížení, jako je tah a tlak, jakož i model buňky s jeho přirozeným tvarem uvnitř endoteliální vrstvy. 

Zachovávají hlavní principy tensegritních struktur, jako je předpětí a spolupůsobení jednotlivých 

součástí, ale prvky se mohou organizovat vzájemně nezávisle. Při implementaci nedávno navržené 

bendo-tensegritní koncepce uvažují tyto modely namáhání mikrotubulů nejen v tahu/tlaku, ale i 

ohybu a také zohledňují vlnitost intermediálních filament. Modely umožňují, že jednotlivé 

komponenty cytoskeletu mohou změnit svůj tvar a uspořádání bez zhroucení celé buněčné 

struktury, dokonce i když jsou odstraněny, a umožňují nám tak vyhodnotit mechanický přínos 

jednotlivých cytoskeletálních složek k buněčné mechanice. 

Navržené modely jsou validovány porovnáním jejich křivek síla-posunutí s experimentálními 

výsledky. Model plovoucí buňky realisticky popisuje silově-deformační odezvu buňky při tahu a 

tlaku a obě reakce ilustrují nelineární zvýšení tuhosti s mechanickým zatížením. 

Je simulována také tlaková zkouška ploché endoteliální buňky a porovnána s testem přilnuté buňky 

a jeho simulací. Poté se simuluje smykový test ploché buňky, aby se vyhodnotilo její chování při 

smykovém zatížení vyskytujícím se v cévní stěně v důsledku proudění krve. 

Poté byla zkoumána mechanická odezva ploché buňky ve vrstvě endotelu za fyziologických 

podmínek v arteriální stěně. Později byla zkoumána buněčná odezva při odtrhování od položky 

během cyklických úseků pomocí 3D simulací metodou konečných prvků. 

Navrhované modely poskytují cenné poznatky o vzájemných souvislostech mechanických 

vlastností buněk, o mechanické roli jednotlivých cytoskeletálních složek i jejich synergii a o 

deformaci jádra za různých podmínek mechanického zatížení. Proto by práce měla přispět k lepšímu 

pochopení cytoskeletální mechaniky, zodpovědné za chování buněk, což může zase pomoci při 

zkoumání různých patologických stavů souvisejících s buněčnou mechanikou, jako je rakovina a 

vaskulární onemocnění. 

Klíčováslova: Cytoskelet, Bendo-tensegrita, Endoteliální buňky, Metoda konečných prvků, 

Buněčná biomechanika, Mechanotransdukce, Tahová a tlaková zkouška, Zkouška adheze. 
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Abstract  

 

Atherogenesis is the leading cause of death in the developed world, and is putting considerable monetary 

pressure on health systems the world over. The prevailing haemodynamic environment together with 

the local concentration of mechanical load play an important role in the focal nature of atherosclerosis 

to very specific regions of the human vasculature.  

In blood vessels, the endothelium, a thin monolayer of cells, lies at the interface between the bloodstream 

and the vascular wall. Dysfunction of endothelial cells is involved in major pathologies. For instance, 

atherosclerosis develops when the barrier and anti-inflammatory functions of the endothelium are 

impaired, allowing accumulation of cholesterol and other materials in the arterial wall. In cancer, a key 

step in the growth of a tumour is its vascularization, a process driven by endothelial cell migration. The 

mechanical environment of endothelial cells plays a key role in their function and dysfunction.  

Computational modelling can enhance the understanding of cell mechanics, which may contribute to 

establishing structure-function relationships of different cell types in different states. To achieve this, 

finite element (FE) models of endothelium cell are proposed in this thesis, i.e. a suspended cell model 

and adherent model elucidating the cell’s response to global mechanical loads, such as tension and 

compression, as well as a model of the cell with its natural shape inside the endothelial layer. They keep 

the central principles of tensegrity such as prestress and interplay between components, but the elements 

are free to rearrange independently of each other. Implementing the recently proposed bendo-tensegrity 

concept, these models consider flexural (buckling) as well as tensional/compressional behaviour of 

microtubules (MTs) and also incorporate the waviness of intermediate filaments (IFs). The models 

assume that the individual cytoskeletal components can change their form and organization without 

collapsing the entire cell structure when they are removed and thus, they enable us to evaluate the 

mechanical contribution of individual cytoskeletal components to the cell mechanics.  

The proposed models are validated with experimental results by comparison of their force-displacement 

curves. The suspended cell model mimics realistically the force-deformation responses during cell 

stretching and compression, and both responses illustrate a non-linear increase in stiffness with 

mechanical loads.  

The compression test of flat endothelial cell is simulated and compared with adherent cell test and its 

simulation. Then, the shear test of flat cell is simulated to assess its shear behaviour occurring in vascular 

wall due to blood flow. Then investigated the mechanical response of the flat cell within the endothelium 

layer under physiological conditions in arterial wall. Later, investigated the cell response in debonding 

during cyclic stretches using 3-D finite element simulations.  

The proposed models provide valuable insights into the interdependence of cellular mechanical 

properties, the mechanical role of cytoskeletal components in endothelial cells individually and 

synergistically, and the nucleus deformation under different mechanical loading conditions. Therefore, 

the thesis should contribute to the better understanding of the cytoskeletal mechanics, responsible for 

endothelial cell behaviour, which in turn may aid in investigation of various pathological conditions 

related to cell mechanics like cancer and vascular diseases.  

Keywords: Cytoskeleton, Bendo-tensegrity, Endothelial cells, Finite element modelling, Cell 

biomechanics, Mechanotransduction, Tensile test, Compression test, Adhesion. 
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1. INTRODUCTION 

1.1. General background  

Living cells are themselves the universe and can be considered one of the most complex forms of 

matter.  The initial step in understanding how living cells respond to applied stresses was to study their 

mechanical behaviour and interactions with the extracellular environment. Cells in living organisms 

are constantly subjected to a variety of mechanical stimuli, which cause them to change their shape, 

function, and behaviour.  New experimental methodologies combined with robust computational 

approaches capable of modelling the mechanical response of cells at different temporal and spatial 

scales are opening new avenues for understanding cell mechanics and mechanobiology. Research on 

cell mechanics is very important for two main reasons. First, cells are constantly exposed to physical 

stress and strain caused by external physical forces that govern the health and function of the human 

body [1], and second, Biomechanical studies  can give quantitative information on the changes in cell 

mechanical properties as diseases progress. 

In the developed world, atherosclerosis is the main cause of morbidity and mortality. It is characterised 

by the progressive narrowing and hardening of medium and large arteries, which can eventually lead 

to ischemia of the heart, brain, or extremities, leading to infarction [2]. The biology of the artery wall, 

disease genesis, and cell mechanisms that have been linked to the onset of atherosclerosis are discussed 

in this chapter. Understanding the cellular responses due to the haemodynamic environment is 

important for understanding the initiation of atherogenesis.  

1.1.1. Endothelium and its role in atherosclerosis 

A key player in the pathobiology of atherosclerosis is the endothelium. The endothelium is a monolayer 

of cells that line the inner walls of arteries, hence providing an interface between the flowing flow and 

the artery wall. Originally this layer was thought to be a passive barrier between the flowing blood and 

the artery wall, but subsequently the converse has been identified. This was first demonstrated by [3], 

who performed an in vitro study on isolated rabbit arteries. They found that arteries with an intact 

endothelium undergo vasodilation when administered with acetylcholine but following removal of this 

layer the vessel constricted under the same conditions. The endothelium responds to both the prevailing 

haemodynamic and biochemical environment eliciting a number of cellular responses. Additionally, 

this cell layer has been strongly implicated in the pathobiology of atherosclerosis through its regulatory 

functionality. 

1.1.2. Endothelial cells 

The basic architecture of endothelial cells is constructed from membranes, organelles and cytosol. The 

outer protective coating of the cell is called the plasma membrane; this is a semi permeable lipid bilayer 

surface coating that controls the passage of matter, especially in the form of ions and molecules, 

between the extracellular and intracellular environment. The surface of the membrane contains a 

variety of integral membrane proteins (or ion channels). These include non-gated ion channels, which 

control permeability of the plasma membrane, ligand gated ion-channels, which activate in response 

to ligand binding and flow sensitive ion channels. These respond to the prevailing haemodynamic 

environment. The region within the cell is termed the cytoplasm, which is the bulk of the cell volume 

consisting of cytosol and organelles. The cytosol is the fluid portion of the cytoplasm consisting mainly 
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of proteins. The actual structure of the cell is held together by the cytoskeleton, which is a 3D internal 

scaffolding network bound within the cytosol and provides mechanical stiffness and strength to the 

cell. This network is formed from actin filaments, intermediate filaments and microtubules. Actin 

filaments are of most interest here as they are involved in force transmission and their reorganisation 

allows for morphological changes in structure and orientation under altered environmental conditions. 

1.2. Motivation of the study 

Cells convert various types of energy and signals, maintain, and modify their internal structure, and 

react to external stimuli. They have structural features related to intracellular components that allow 

them to tolerate both physiological and mechanical shocks within the body. Mechanobiology is the 

study of the relationship between mechanical forces and biological processes. Several in vivo and in 

vitro investigations have demonstrated the importance of mechanical stress on cellular processes as 

cell proliferation, contractility, and apoptosis [4]. Mechanotransduction is the process by which cells 

convert mechanical signals into biochemical reactions. It is separated into two parts: mechanical 

response and biochemical response. For a better knowledge of cell physiology, researchers are studying 

both intracellular load transfer mechanisms and mechanotransduction. Cell forces, intracellular 

structures, and cell behaviour are all interconnected phenomena, and quantifying them with 

computational models will help us better understand how they interact. 

1.3. Objectives of the doctoral thesis  

The main objective of the thesis is to investigate and to model the mechanisms that determine the 

intracellular force propagation and the mechanical behaviour of endothelium cell and its structural 

components. More specifically formulated as follows:  

• To investigate the cell response to distinct global mechanical stimuli by simulating 

mechanical behaviour of isolated endothelial cell such as:  

o tension and compression of a suspended endothelial cell for validation 

o compression for adherent and flat endothelial cells  

o shear of the flat endothelial cell  

• To investigate the mechanical contribution of cytoskeletal components to cell mechanics, 

individually and synergistically by simulating disruption of cytoskeleton and its components. 

• To investigate the mechanical response of the flat cell within the endothelium layer under 

physiological conditions in arterial wall. 

• To investigate the cell response in debonding during cyclic stretches using 3-D finite element 

simulations. For this purpose, the created 3-D finite element model will be expanded by 

cohesive elements capable to simulate gradual debonding from the substrates under cyclic 

load. 
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2. STATE OF THE ART 

2.1. Cytoskeletal components  

Living cells are extremely complex entities with several structural components such as the 

cytoskeleton, cell membrane (CM), nucleus, and cytoplasm. The structural rigidity and rheology of the 

cytoskeleton, as well as its mechanical interaction with the extracellular environment, have a 

substantial impact on cell activity. The cytoskeletal network is comprised of three types of components 

that are distributed throughout the cytoplasm: actin filaments (AFs), microtubules (MTs), and 

intermediate filaments (IFs). These components are interconnected to one other, to the nucleus, and to 

the CM, despite their differences in characteristics [5]. Their structural organization determines the 

cytoskeleton's response to both external and internal mechanical stimuli. Actin-myosin contractility 

causes pre-tension and pre-stress in the cell, which is countered mostly by MTs and partially by the 

extracellular matrix (ECM) to which the cell is tethered [6] . As a result, the cytoskeleton determines 

the mechanical properties of cell deformation required for various cellular processes to be regulated. 

2.2. Cell mechanics modelling approaches  

Since computational modelling allows for complete control over the shape and organization of 

individual cytoskeletal components, it may be used to investigate the mechanisms behind cell 

responses to a variety of mechanical stimuli. ( [7]; [8]; [9]; [10]; [11]; [12]; [13]; [14]; [15]; [16]; [17]; 

[18]; [19]; [20]; [21]). Existing computational modelling approaches for cell mechanics can be divided 

into two groups: continuum approaches and microstructural approaches. 

The cytoskeleton is a fundamental component in cell mechanics, according to microstructural studies. 

The cellular tensegrity model, which depicted the cytoskeleton as a linked network of cables in tension 

representing AFs and struts in compression representing MTs, is one of the most widely used models 

in this class [6]. This model has successfully predicted viscosity modules of the cytoskeleton ( [18], 

[19], [20]) as well as experimentally observed features of cell mechanical behaviour such as strain 

hardening [22]. However, this model does not consider other cellular components such as nucleus, 

cytoplasm, and CM.  The hybrid modelling approach using FE analysis has been proposed for more 

reliable formulation of cell mechanical behaviour [21]. Using the same method, ( [12], [13]) proposed 

a more complicated cell model with 210-members tensegrity structure that successfully simulates both 

tensile and AFM indentation testing. 
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Figure 2. 1: Sections of continuous elements (a) and structural arrangement of cytoskeletal components 

(b) with respect to the nucleus for suspended cell model. From [23] (c) Tensegrity FE model of suspended 

cell by ( [12]; [13]) including nucleoskeleton (purple), cytoplasm (blue) and discrete elements 

representing cytoskeleton structure. 

The suspended cell model depicted in Fig. 2.1(c) was based on the realistic shape of cell and includes 

all cytoskeletal components. Some of the recent models in this category are multi-structural model [10] 

self-stabilizing tensegrity structure based model [11] spring network cell model [15] granular cell 

model [16], etc. None of these models take into account the active cell responses, where the 

cytoskeletal fibres undergo polymerization and depolymerisation during loading. The cytoskeletal 

tensegrity models presented in the literature do not account for the flexural behaviour of MTs. Thus, 

MTs appear too stiff. In order to compensate this problem, the most sophisticated hybrid model was 

created recently by using the bendo-tensegrity concept for modelling smooth muscle cells as shown in 

Fig. 2.2 (a) and Fig. 2.2 (b) from [23]. 

2.3. Summary  

The presented models use Hooke’s law for modelling the cytoskeletal components (linear elastic 

material properties) because the cytoskeletal components are represented with discrete (1D) elements 

which are not supported (in the applied ANSYS software) to use hyper elastic material properties. On 

the other hand, the continuum part (hyper elastic materials) is modelled by using Neo-Hooke hyper 

elastic model because this is the simplest hyper elastic model that requires only one material constant 

(Shear modulus) derived from any tests whereas other models require more parameters to define their 

mechanical response which are not available in the literature. 

 

 

 

 

(c) 
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3. FINITE ELEMENT BENDO-TENSEGRITY MODEL OF 

ENDOTHELIAL CELL 

3.1. Structure and Geometries of hexagonal endothelial cell model variants 

The concept of “bendo-tensegrity” was proposed by [24] recommending an alteration to contemporary 

cytoskeletal tensegrity models that considers the flexural response of MTs. In the current study 

implementing this concept with hybrid modelling approach, a FE bendo-tensegrity model of suspended 

endothelial cell is proposed, with topology being similar to the model of vascular smooth muscle cell 

by [23]. The hypothesis of this work is that the proposed bendo-tensegrity model of flat cell that can 

be describe the cellular structural behaviour and determine cell’s global response to distinct mechanical 

stimuli. It is not only important to study the cell response to global deformation of extracellular 

environment but also if it responds differently depending on the stimulus.  

Two different geometries of endothelial cell models within an arterial wall were introduced in [25], 

based on a flat (constant cell thickness of 0.5 μm [26]) and domed (non-constant thickness, tapered 

from the center to the edges) regular hexagons.  However, while the ratio of longitudinal and 

circumferential dimension of a regular hexagonal cell [26] (see Fig. 3.1(b)) is 0.87, the “in situ” 

endothelial cells are irregular, elongated in the direction of blood flow [27]. Therefore, we modified 

the model geometry to mimic better the natural shape of endothelial cells in arteries and used a ratio 

of 0.96 in our simulations for the so called elongated shapes [28] [29].  

In the four created geometry variants, the structure of the model is the same. The endothelial cell model 

encompasses the nucleus and cytoplasm surrounded by the CM (Fig. 3.1.) and cytoskeletal components 

like AFs, MTs, and IFs (Fig. 3.1(a)). For the proposed model implementing the hybrid modelling 

approach, the continuum parts (nucleus, cytoplasm) were modelled using continuous (volume) 

elements circumscribed by a thin layer of shell elements (representing CM) and the cytoskeletal 

components were modelled using discrete (beam or truss) elements. Both cytoplasm and nucleus were 

modelled with eight-node hexahedral isoperimetric elements. A thin flexible layer circumscribing the 

cytoplasm referred to as the CM was modelled with four-node quadrilateral shell elements on the outer 

surface of the cytoplasm, with thickness of 0.01 μm [30] and no bending stiffness. 

Endothelial cells are 0.5 μm thick, 15 μm wide and 50 μm long and have a centrally located oval or 

round nucleus slightly raised compared to the rest of the cell. Endothelial cells are usually flat and 

elongated in the direction of blood flow [31].  

The computational model of flat endothelial cell is presented in the following Fig. 3.1. 
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Figure 3.  1: Finite element hybrid model of endothelial cell representing (a) the continuum mesh and 

the cytoskeletal components of the elongated flat model with AFs (red), IFs (green), and MTs (blue) 

(b) front view of the domed cell model with supports and varying thickness. 

All the details of FE models of flat endothelial cells are published in conference paper, see the 

conference paper Appendix D. The general overview of computational models of endothelial cells are 

presented in other conference proceedings, see the conference paper Appendix E. 

3.1.1. Material properties of the model  

For the proposed model implementing the hybrid modelling approach, the continuum parts (nucleus, 

cytoplasm) were modelled using continuous (volume) elements circumscribed by a thin layer of shell 

elements (representing CM) and the cytoskeletal components were modelled using discrete (beam or 

truss) elements. For the elasticity of cell components modelled using continuous elements, a Neo-

Hookean hyper elastic incompressible/compressible description was used. The elastic properties of 

discrete (cytoskeleton) and continuum parts of cell model are summarized in Table 3.1 and Table 3.2. 

Table 3. 1: Elastic properties of discrete components of cell model. 

 

 

Cell component Elastic 

modulus, 

E (Pa) 

Poisson’s  

ratio, ʋ 

Diameter 

(nm) 

Finite 

element 

specification 

Nature 

Microtubules (MTs) [32] 

 
1.2 × 109 

 

0.3 25/17 BEAM188 Curved Beams 

Actin filaments (AFs) 

[33] 
2.2 × 109 

 

0.3 7 LINK180 Tension only 

Intermediate filaments 

(IFs) [33] 
2.0 ×109 

 

0.3 10 LINK180 Tension only 

Actin bundles (ABs) 

[34] 

0.34 × 

𝟏𝟎𝟔 
0.3 250 

LINK180 
Tension only 

(b) 

(a) 
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Table 3. 2: Hyper elastic properties of continuous components of cell model 

3.2. Spherical model of suspended endothelial cell 

The experiments [35] show a spherical shape of suspended cells used in most mechanical tests.  In 

order to validate the mechanical response of endothelial cell, we rearranged the shape of flat endothelial 

cell model into the spherical cell model as shown in Fig. 3.2 ; for this purpose, we assumed the same 

volume of the cell. 

 

Figure 3.  2: Spherical model of suspended endothelial cell 

The dimensions are recalculated by equating volume of regular hexagonal prism to the volume of a 

sphere. From this, the diameter of cytoplasm is 7.4 μm and diameter of nucleus is 3.0 μm. 

3.3. Modification of the FE model for adherent endothelial cell 

Implementing the bendo-tensegrity concept [24] with fusion of continuum and discrete approaches, a 

FE bendo-tensegrity model of adherent cell [23] modified from the suspended cell model incorporating 

Microtubules (MTs), Actin Bundles (ABs), Intermediate filaments (IFs), nucleus, cytoplasm, and Actin 

cortex (AC) is proposed in the current study. The unique features of this structural model keep 

fundamental principles governing cell behaviour, including cellular prestress and interaction between 

the cytoskeletal components with their more realistic morphological representation for cell in adherent 

state. Similarly, to AFs in the spherical model, ABs are internally prestressed; to achieve this in the 

proposed model, the prestress caused by the 24% prestrain ( [34] , [10]) was assigned to them 

generating the initial force essential for cell shape stability. For simplification, all the ABs in the model 

were prestressed equally.  

Component Name Young’s 

Modulus E 

(Pa) 

Shear 

Modulus 

G (Pa) 

Bulk Modulus 

K (Pa) 

Finite element 

specifications 

Cytoplasm [35] 0.5 × 103 0.17 × 103 

 

2.77× 103 SOLID 185 

Nucleus [35] 5 × 103 

 

1.7 × 103 

 

27.77× 103 SOLID 185 

Cell membrane (CM) [30] 1 × 106 

 

0.33× 106 

 

Infinity SHELL 181 

Actin cortex (AC) [36] 2 × 𝟏𝟎𝟑 0.67 × 𝟏𝟎𝟑 Infinity SHELL 181 
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4. FINITE ELEMENT SIMULATIONS OF ENDOTHELIAL CELL 

4.1. Simulations of Suspended cell model 

To validate the proposed bendo-tensegrity model of a suspended cell, compression and tensile tests of 

endothelial cells were simulated and compared with experimental results from literature. 

4.1.1. Simulations of suspended cell in compression and its experimental validation. 

The compression test of a suspended cell done with microplates was simulated to compare with the 

cell response to compression. The simulation was performed in several successive steps, mimicking 

the experiment [35]. The spherical shape of the cell with prestressed AFs serves as the initial state and 

the microplates are supposed rigid. To avoid further nonlinearities related to contact, the cell was fixed 

in the central node of the cell in all directions and compressed vertically on both sides (top and bottom 

side) of the cell by applying vertical displacements to the nodes on both sides in order to flatten the 

area being in contact with the microplates and to achieve 50% deformation of the cell (see Fig. 4.1 (a)). 

Further details of the compression test with suspended cell can be found in Appendix C where, 

however, a smooth muscle cell was simulated instead of endothelial cell. 

  

Figure 4. 1:(a) Suspended cell model during consecutive steps in simulation of Compression test at 50% 

compression (blue) and  unloaded state (wire frame), (b) Comparison of simulated force-deformation (%) 

curve with the experimental curves taken from a study by [35] investigating the biomechanical properties 

of a single endothelial cell using a micromanipulation technique. 

The force-deformation (%) curve calculated from compression test simulation is in good agreement 

with the non-linear responses of the experimental curves obtained from the compression test of cultured 

endothelial cells [35], as depicted in Fig. 4.1 (b) and thus validates the proposed bendo-tensegrity 

model of a suspended cell. The slope of the simulated force-deformation curve increased with increase 

in cell compression, similar to that observed in the experiments. 

4.1.2. Simulations of suspended cell in tension and its experimental validation  

The tensile test of a suspended cell with rigid micropipettes was simulated for comparison of the cell 

response to stretching. 

(a) (b) 
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Figure 4. 2: The suspended cell model in simulation of tensile test:  (a) 50% stretching the cell , (b) 

Comparison of simulated force-deformation (%) curve with the experimental curves taken from a study 

by [37], measuring the tensile properties of cultured Bovine aortic endothelial cells. 

The simulation was performed in several steps, mimicking the experiment [37]. In the first step, contact 

between the spherical cell (with prestressed AFs) and both micropipettes were established by 

compressing the cell by approximately 20%. In the second load step, the cell was elongated to achieve 

zero reaction forces in the micropipettes; this shape serves then as the initial (unloaded) state of the 

cell. In the final step, displacement was applied to the nodes of the top and bottom surfaces in order to 

achieve 50% tensile strain of the model (see Fig. 4.2 (a)). The reaction force was assessed as the sum 

of forces at the nodes of the either top or the bottom surface of the cell. The distance between 

micropipettes in the state with zero reaction force was taken as the unloaded length of cell and 

therefore, it differs from the cell diameter. The force-elongation curve calculated from tensile test 

simulation is in good agreement with the non-linear responses of the experimental curves obtained 

from the tensile test of cultured Bovine aortic endothelial cells [37], as depicted in Fig. 4.2 (b). 

The cell diameter in the experiments differs from our model, thus for comparison the experimental 

results are normalized to the same diameter; in reaction force it was as 𝐹𝑁 = 𝐹 [
𝐷

𝐷𝑒𝑥𝑝
]

2

and the 

normalized deformation is given as ∆𝑙𝑁 = ∆𝑙 [
𝐷

𝐷𝑒𝑥𝑝
]. 

where D is diameter of the suspended cell model and Dexp is the cell diameter in the experimental 

results. 

The stiffness of the hybrid model of suspended cell in tension was evaluated as the ratio of conventional 

stress (σ) to conventional strain (ε) being proportional to the slope of the resulting force-elongation 

curve. The conventional stress is given as: 

𝜎 =
𝑓

𝑎
 

Where, f = 0.0765 μN was the reaction force of cell at the stretched edge and a = 42.9866 μm2 was the 

(maximal undeformed) cross-sectional area of cell. 

(a) (b) 
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With reference to Fig. 4.2 (b), the stiffness of 3.17 kPa calculated for the FE model (D=7.4 μm), is in 

good accordance with the stiffness of 2.6 ± 0.7 kPa calculated for the experimental cell sample. 

The role of cytoskeletal components of suspended cell model (compression and tension test 

simulations) are discussed in Appendix A. 

4.2. Simulations of adherent cell model 

4.2.1. Simulations of cell in compression and its experimental validation 

The simulation was performed mimicking the experiment [35]. The initial shape of the cell model was 

truncated sphere being close to the real shape of the adherent cell. The cell was then compressed 

vertically on its top side by applying vertical displacements to the nodes in order to flatten the area 

coming gradually into contact with the microplates and to achieve the total 50% deformation of the 

cell. The reaction force was evaluated as the sum of forces at nodes of top side of the cell. 

To validate the adherent cell, the simulation of compression test was performed by mimicking the 

experiments by [35]. Results of the simulation are presented in Fig. 4.3 (a) (undeformed and deformed 

mesh on the cell surface), and Fig. 4.4  (first and third principal strains in the nucleus).  

  

Figure 4. 3: (a) Adherent cell model in simulation of Compression test: unloaded shape of truncated 

sphere in wire frame and final shape with 50% compression of the cell in solid blue color, (b) Comparison 

of simulated force-deformation curves obtained with the adherent cell and flat cell models with the 

experimental curves taken from the study by [35]. 

 

(a) (b) 
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Figure 4. 4: Distribution of (a ) first principal strain (b) third principle strain in the nucleus of adherent 

endothelial cell. 

The force-deformation curve calculated from compression test simulation is in good agreement with 

the non-linear responses of the experimental curves obtained from the compression test of cultured 

endothelial cells [35], as depicted in Fig. 4.3 (b). And thus, validates the proposed bendo-tensegrity 

model of adherent cell. The slope of the simulated force-deformation curve increased with increase in 

cell compression, similar to that observed in the experiments. 

The role of cytoskeletal filaments and dicussions related to the results are explained in Appendix A. 

4.3. Simulation of flat cell model  

4.3.1. Simulations of regular flat and domed cell in compression 

The compression test of a regular flat endothelial cell model was simulated to investigate the cell 

response to compression. The simulation was performed in several successive steps, mimicking the 

experiment [35]. The cell model was then compressed vertically (in thickness direction) on top and 

bottom side of the cell to achieve 50% deformation of the cell. The reaction force was evaluated as 

sum of reaction forces on either top or bottom surface nodes. The distribution of first and third principal 

stress in nucleus for regular flat cell model is shown in Fig. 4.5. 

 

 

Figure 4. 5: Distribution of (a) first principal strain (b) third principle strain in the nucleus of flat 

endothelial cell in isometric view. 

𝜺𝟏 𝜺𝟑 (a) (b) 

𝜺𝟏 𝜺𝟑 (a) (b) 
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The stiffness of the flat model is several times higher than the adherent model (Spread cell) presented 

in experimental results from [35]. The reason is evidently in the different shape of the flat model which 

corresponds to a very short hexagonal prism with its upper hexagonal face being in full contact with 

the microplate. In contrast, the experiment was done with a single cell cultivated in vitro on a substrate 

which results in a different shape with the top contact area being much smaller. 

The role of cytoskeletal filaments and dicussions related to the results are explained in Appendix A. 

4.3.2. Simulations of regular flat and domed cell in shear  

The shear test of a flat endothelial cell model was simulated to investigate the cell response to shearing 

load. The flat shape endothelial cell model presented in Fig.6.5. In this simulation, all the nodes of 

bottom hexagonal face were fixed in all directions. The cell was then loaded on the top side by 

prescribed constant displacements in x-direction (in all the surface nodes in top side) in order to achieve 

shear deformation of the cell. The resultant reaction force was evaluated as the sum of forces at nodes 

of the top side of the cell. The distribution of first principal stress in nucleus is presented for flat and 

domed in the Fig. 4.6. 

 

Figure 4. 6: Distribution of first principal strain in the nucleus of regular endothelial cell at 15% shear 

deformation in isometric view (a) regular flat  (b) regular domed 

The nucleus undergoes much lower strains (some 0.04, see Fig. 4.6 (a).) as it is 10 times stiffer than 

the cytoplasm and the shear deformation is concentrated in the cytoplasm above and below the nucleus. 

Evidently, the transmission of strain to nucleus is much lower in shear than under the other loading 

conditions. 

The total reaction force (F) is calculated by taking a sum of reactions on nodes of top hexagonal plane; 

its resulting value is 759 pN.  Area of regular hexagon is 405.95 μm2 @ side length of 12.5 μm 

The resultant shear stress is 𝜏 =
𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 𝐹𝑜𝑟𝑐𝑒

𝐴𝑟𝑒𝑎 𝑜𝑓 ℎ𝑒𝑥𝑎𝑔𝑜𝑛
 which is equal to 1.87 Pa 

This shear stress is within the physiological range of wall shear stresses in arteries. The detailed 

information about the simulations of Flat cell model in shear are addressed in a journal paper, see the 

publication Appendix A. 

4.4. Simulations of flat cell in different variants under physiological conditions 

The “in situ” physiological load of an arterial endothelial cell comprehends blood pressure and the 

corresponding circumferential strain, axial pre-stretch instrinsic for arteries and shear load from the 

blood flow [38]. While all the other physiological conditions can be found in literature, the 

circumferential strain depends, in addition to the blood pressure, on dimensions and material properties 

𝜺𝟏 
(b) 

𝜺𝟏 

(a) 
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of the arterial wall and its layers. As intima is very thin and mechanically irrelevant in healthy arteries 

[39], we used only two layers representing media and adventitia of different arteries to calculate 

circumferential deformations of the endothelium. 

The dimensions of media and adventitia (inner 𝑅1, interface 𝑅2 and outer 𝑅3 radiuses, see Fig. 4.7 (a) 

of the chosen arteries are specified in Tab. 4.2. 

The material parameters of media and adventitia (according to [39]) are specified in Table 4.1. 

Tissue Material Constants [kPa] 

𝐶10 𝐶20 𝐶30 

Media 122.3 0 337.7 

Adventitia 88.7 0 45301.4 

Table 4. 1: Hyper-elastic material properties of arterial layers [39] 

 

Figure 4. 7: (a) Finite element mesh (in axial view) of the arterial wall model with media (orange) and 

adventitia (pink) layers. (b) Arrangement of hexagonal endothelial cells on the inner surface of the artery 

used for transmission of deformation between the artery and cell model. 

Boundary conditions for these simulations are given by blood pressures of 10, 16, 20 kPa 

corresponding to diastolic, systolic, and hypertensive values, respectively. Axial pre-strains of 0, 0.05, 

0.1, 0.2, 0.3 typical for aorta are applied; they are known to decrease with age [40]. In this model, no 

shear load is applied because its mechanical impact on the rather stiff arterial layers is negligible. 

Resulting circumferential strains on the arterial inner surface (endothelium) for different arteries and 

combination of loads typical for older individuals (0 % axial pre-strain, 20 kPa blood pressure) are 

presented in Table 4.2. For application within the cell model, typical dimensions of common or internal 

carotid arteries were chosen with their values of 2.83 mm, 3.53 mm and 4 mm, respectively [41]. The 

solved combinations of boundary conditions and the resulting circumferential strains on the inner 

surface covering all the range of physiological biaxial loads of the endothelial cell are summarized in 

Tab. 4.3. 

 

 

X: Circumferential 

Z
: 

A
x
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l 

𝑅3 𝑅2 
𝑅1 

(a) 
(b) 
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Artery (location) Middle of 

thoracic aorta  

Distal AA 

 

Renal 

artery 

Iliac 

artery 

Carotid 

artery 

Inner radius[mm] 11.20 8.25 2.3 4.8 2.83 

Wall thickness [mm] 2.05 2.3 1.05 2.00 1.17 

Strains [%] 11.9 11.3 7.5 10.28 9.2 

Table 4. 2 : Dimensions of different arteries and circumferential strains on their inner surface 

(endothelium) under zero axial pre-strain and blood pressure of 20 kPa – a combination typical for older 

individuals  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. 3 : Axial and circumferential strains of endothelium used to formulate boundary conditions of the 

individual cell model in the circumferential direction 

All the four geometries of the model (flat and domed, regular and elongated hexagons) were analysed 

under different biaxial deformation, i.e., with fifteen different combinations of axial and 

circumferential strains, and in three consecutive load steps: under biaxial extension (Bi), with addition 

of blood pressure (BiP), and with blood pressure and shear load (BiPS) acting on the luminal surface. 

Thus, we obtained 180 solutions in total. It is worth to mention, that the biaxial extension applies the 

circumferential strain calculated using the carotid artery model with the chosen blood pressure, thus 

addition of the blood pressure itself on the inner surface represents a minor modification only.  

Illustrative examples of deformed shapes of the regular flat model in variant Bi under minimum and 

maximum distortion are shown in Fig. 4.8.  

 

Axial pre-strain (%) / 

Pressure (kPa) 

Circumferential strain (%) at a given 

pressure and axial pre-strain 

0/10 4.6 

0/16 7.5 

0/20 9.2 

5/10 2 

5/16 5 

5/20 6.6 

10/10 -0.1 

10/16 1.1 

10/20 2.49 

20/10 -8 

20/16 -7.4 

20/20 -6.8 

30/10 -13 

30/16 -12.6 

30/20 -12.5 
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Figure 4. 8:Examples of the deformed shapes of regular flat endothelial cell model variant Bi under 

extreme biaxial strains according to Tab. 4.3: (a) 0/20 and (b) 30/10 

As the nucleus deformation is considered to be decisive for mechanotransduction [23] [42] [43] [44], 

examples of distribution of first principal strain in nucleus are presented in the article Appendix B and 

their maximum values for all the solved cell models are summarized in the article Appendix B. 

The whole force-displacement curves for models loaded with the highest and lowest axial prestrain 

(cases 30/20 and 0/20) are shown in Fig. 4.9; as we apply here the circumferential strain calculated 

based on blood pressure in the artery, the curves represent dependences of the forces on blood pressure 

from 0 up to 20 kPa under constant axial pre-strain. Thus, they enable us to evaluate the force pulsations 

in the endothelial layer.  

               

Figure 4. 9:Simulated dependences of biaxial tension forces (variant Bi) on the increasing blood pressure 

(between 0 and 20 kPa) recalculated into circumferential strain of the cell. (a), 30/20 case, (b) 0/20 case. 

As there are no experimental results for biaxial loading conditions in available literature for validation, 

we compared our results for approximately equibiaxial loading conditions with our compression test 

simulations for flat and adherent endothelial cells published in [25] and with experimental results for 

cell compression [35]. It is known that for incompressible materials (product of all the three stretches 

equals 1) the deformations under equibiaxial tension and uniaxial compression are the same. The out-

of-plane engineering strain of the 5/20 model (5% axial and 6.6% circumferential strains give nearly 

equibiaxial deformation) is approximately 11 %. In this way the simulated curves were recalculated 

(a) (b) 

 

(a) (b) 
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and plotted in Fig. 4.10 as functions of strain in radial (out-of-plane) direction. The stiffness in 

equibiaxial tension is similar to that in uniaxial compression but the curves are more non-linear due to 

higher cell distortion (curved edges occur, see Fig. 4.8. (b)).  

 

Figure 4. 10:Comparison of simulated force-deformation curves for regular flat equibiaxial strain (5/20) 

models (with and without cytoskeleton) with simulated and typical experimental results in compression 

[25] [35].  

The role of cytoskeletal filaments and discussions related to the results are explained in Appendix B. 

4.5. Simulation of cell debonding during cyclic loads  

A continuum mechanics technique is used in this chapter to simulate cell-substrate adhesion and its 

debonding under cyclic loads. A cell adhesion is ensured through interaction of adhesion molecules; 

explicitly, molecules on the cell surface known as integrins or receptors connect with molecules on the 

ECM surface known as ligands to form a bond. For an adhered cell, the receptor-ligand bonds can be 

very numerous. 

The cohesive zone modelling framework is employed, which was originally created in the field of 

elastic-plastic fracture mechanics. Cohesive zone modelling, first proposed in [45], [46] entails a 

continuum representation of an interface layer in which interfacial failure is represented by a specific 

phenomenological constitutive relation. 

Studies [47], [48], [49], [50] have employed cohesive zone models to describe fracture in metallic, 

ceramic, and composite materials when the failure modes entail the nucleation, growth, and 

coalescence of flaws. Interface traction vs. displacement relationships are typically established so that 

as the interfacial separation grows, the traction across the interface reaches a maximum value and then 

diminishes, leading eventually to total decohesion.  

The cell geometry, shown in Fig. 4.3 (a), is based on the experimental data of [35] for endothelial cells. 

Based on experimental boundary conditions [51], [52], [53], the cells are bonded to a silicone substrate 

that is cyclically stretched from 0% to 5% nominal axial strain via a sinusoidally changing 

displacement boundary condition at a frequency of 1 Hz. With Poisson's ratio of 0.4 and Young's 

modulus of 0.25 MPa, the silicone substrate is considered to act as a linear elastic material by [54]. To 

model the cell-substrate contact, cohesive zone formulations are used. 
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The concept of a continuous interface between two surfaces is being used in cohesive zone models (in 

this case the cell and substrate). An interface potential function ∅ is a measure of the energy necessary 

to apply a displacement leap 𝛿 to the surfaces on either side of the interface and it prescribes the 

interface constitutive behavior as follows:  

∅(∆𝑛, ∆𝑡) = ∅𝑛 + ∅𝑛 exp (−
∆𝑛

𝛿𝑛

) {[1 − 𝑟 +
∆𝑛

𝛿𝑛
]

1 − 𝑞

𝑟 − 1
− [𝑞 + (

𝑟 − 𝑞

𝑟 − 1
)

∆𝑛

𝛿𝑛
] exp (−

∆𝑡
2

𝛿𝑡
2)}  

     𝑟 =
∆𝑛

∗

𝛿𝑛
 ,    𝑞 =

∅𝑡

 ∅𝑛
 

where ∅𝑛 is the work of normal separation and ∅𝑡 is the work of tangential separation; ∆𝑛 and ∆𝑡 are 

the normal and tangential displacement jumps respectively, across the interface; 𝛿𝑛 and 𝛿𝑡 are normal 

and tangential characteristic lengths for the interface. ∆𝑛
∗  is the value of ∆𝑛 following complete shear 

separation under the condition of normal traction being zero. 

From the potential ∅the interface traction–separation relationships between interfacial tractions and 

displacement jumps can be derived as follows: 

𝑇 =
𝜕∅(∆)

𝜕∆
 

The individual components of the traction are obtained from the following equations. 

𝑇𝑛 = −
𝜕∅(∆)

𝜕∆𝑛
; 𝑇𝑡 = −

𝜕∅(∆)

𝜕∆𝑡
 

The Cohesive zone formulations are implemented in Ansys software and the characteristic interface 

lengths of 𝛿𝑛 = 25 nm and 𝛿𝑡 = 35 nm are used based on ligand–receptor bond lengths reported in 

literature by [55]. Based on experimental measurements of bonding strength and density, a mode I 

interface strength of 𝜎𝑚𝑎𝑥 = 4 kPa was determined by [56]. At the cell-substrate interface, mode II 

strength is greater than mode I strength, resulting in 𝜏𝑚𝑎𝑥= 20 kPa  

The cohesive zone formulation by [49] is utilized to model the behaviour of the interface between the 

endothelial cell and a silicone substrate in this study. The use of cohesive zone modelling in this way, 

where the major separation mode is the breakage of receptor–ligand interactions, is quite interesting. 

4.5.1. Results of debonding 

Two examples of debonding of the cell from the substrate under various cyclic loading conditions are 

demonstrated in the Fig. 4.11. 

 

                        

Figure 4. 11: Mixed mode separation is computed at bottom of the (a) 1st cycle (b) 30th cycles reaching 5 

% strain. 

(b) 

(a) 

X 

Y 
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The normal tractions, normal displacements and tangential tractions computed at the cell-substrate 

interface at the 1st and 30th loading cycles are shown in Fig. 4.12, Fig. 4.13 and Fig. 4.14. 

 

     

Figure 4. 12: The computed normal tractions (a) at the top of the 1st cycle (b) at the top of the 30th cycle 

(c) at the bottom of 1st cycle (d) at the bottom of 30th cycle. (Top View), Due to downwards orientation of 

the y axis, the normal trantions with maximum magnitude are negative and shown in blue colour. 

     

Figure 4. 13: The computed normal displacements (a) at the top of the 1st cycle (b) at the top of the 30th 

cycle (c) at the bottom of 1st cycle (d) at the bottom of 30th cycle. (Top View), (e) Full history of normal 

separation during 30 cycles for both sides of deformation. (e) Full history of normal separation during 30 

cycles for both sides of deformation. 

Due to downwards orientation of the y axis, the normal displacements with maximum magnitude are 

negative and shown in blue colour. 

(a) 

MPa 

(b) 

MPa 

(c) MPa 
(d) 
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(a) µm 
(b) 

µm 

(c) µm 
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In the top of the cycle (the loaded state) we can see the nearly symmetric distributions as shown in Fig. 

4. 12 (a) and Fig. 4.13 (a). The asymmetric distributions for in Fig. 4. 12 (c) and Fig. 4.13 (c) in the 

bottom of the first cycle (the unloaded state) change into symmetric ones after 5 cycles. This 

asymmetry is not significant in tangential tractions (Fig. 4.14 (a)).  While the top values of both normal 

and tangential tractions do not change significantly between the 1st and 30th cycle (Fig. 4.12 (a), Fig. 

4. 12 (b) and Fig. 4.14 (a), Fig. 4.14 (b)), their bottom values after the 1st cycle, which can be 

considered as residual tractions, are lower by orders. However, these residual values increase 

significantly with repeated loading. 

In contrast, the normal displacements (separation) increase significantly in the subsequent cycles as 

shown in Fig. 4.13 (a) and Fig. 4.13 (b) while, in the unloaded state they don’t exceed a few 

nanometers. The asymmetry of the responses may be explained by the non-symmetric cytoskeleton 

shape explicitly related to the position of centrosome in the model.  

                                        

Figure 4. 14: The computed tangential tractions (a) at the top of the 1st cycle (b) at the top of the 30th 

cycle (c) at the bottom of 1st cycle (d) at the bottom of 30th cycle. (Top View) 

Fig. 4.13 (e) illustrates a complete history of normal separation demonstrating the cyclic character of 

the debonding process.  The contact edge opening (i.e., normal displacement or separation) when the 

substrate is fully extended is increasing with the number of cycles, as can be seen in Fig. 4.13 (e), due 

to the increasing upwards push on the contact edge at the start of each cycle causing the increasing 

tensile strain concentration. It must be emphasised that normal separation and normal traction values 

presented in Fig. 4.13 (e) and Fig. 4.14 (e). (With a dashed lines) are obtained after the substrate has 

returned to its unloaded shape at the end of each cycle.  
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5. CONCLUSIONS 
The present thesis was aimed towards a realistic computational modelling of cytoskeleton and 

endothelial cell as a whole. The FE bendo-tensegrity model of smooth muscle cell created in the 

previous doctoral thesis [23] was modified to mimic specific shapes, properties and cytoskeletal 

arrangement of endothelium cells. The main investigations of this thesis can be given as follows:  

• The proposed models provide simulation of the cell mechanical responses during tension and 

compression for suspended (spherical model), compression for flat and adherent model, shear 

for flat and domed cell models and aid to illustrate the mechanical role of individual 

cytoskeletal components including stress/strain distribution within them, and offer quantitative 

information on the nucleus deformation hypothetically decisive for mechanotransduction.  

• The mechanical response of the flat cell within the endothelium layer under physiological 

conditions in arterial wall is assessed. The impact of individual components of loads on the 

nucleus deformation (more specifically on the first principal strain) was investigated because 

we believe it might influence mechanotransduction. Also, the role of the cytoskeleton and its 

constituents in the mechanical response of the endothelial cell was assessed. The results show 

(i) the impact of pulsating blood pressure on cyclic deformations of the nucleus, which increase 

substantially with decreasing axial pre-stretch of the cell, (ii) the importance of relatively low 

shear stresses in the cell response and nucleus deformation. Not only the pulsatile blood 

pressure but also the wall shear stress may induce significant deformation. 

• The cell response in debonding during cyclic stretches using 3-D finite element simulations 

revealed that 5% axial strain applied on the substate is sufficient to induce debonding of the 

cell from the substrate. The debonding starts in the first cycle and that the crack created in the 

mixed mode (opening + shear) propagates more and more during the following cycles. 

• As a result, the proposed models may aid in a better understanding of cellular mechanical 

processes such as mechanotransduction and cytoskeleton remodelling. 

All the conclusions of this thesis have been summarized and submitted to the conference at ESB 2022. 

See the conference paper Appendix F. 

5.1. Additional ideas for future works  

Out of scope of the formulated objectives of the doctoral thesis, the followings are recommended to be 

investigated:  

• The majority of in vitro investigations measure cell deformation over time or on a frequent 

basis. Cells deform in response to external mechanical stimuli, displaying both solid-like 

elastic and fluid-like viscous behaviour. As a result, cells and their components are better 

defined as viscoelastic materials, and the mechanical responses that may be evaluated vary 

depending on the time scale. [57].  

• Using a cytoskeletal remodelling description presented in [58], active cell responses might be 

included into the proposed models, following the method of [9].  

• Endothelial cells are composed in a monolayer. Finally, the model is intended to investigate 

the perception of loads by a population of cells. 
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