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Abstract

The thesis introduces the notion of a one-sided random context grammar as a
context-free-based regulated grammar, in which a set of permitting symbols and
a set of forbidding symbols are attached to every rule, and its set of rules is divided
into the set of left random context rules and the set of right random context rules. A
left random context rule can rewrite a nonterminal if each of its permitting symbols
occurs to the left of the rewritten symbol in the current sentential form while each
of its forbidding symbols does not occur there. A right random context rule is ap-
plied analogically except that the symbols are examined to the right of the rewritten
symbol.

The thesis is divided into three parts. The first part gives a motivation behind
introducing one-sided random context grammars and places all the covered material
into the scientific context. Then, it gives an overview of formal language theory and
some of its lesser-known areas that are needed to fully grasp some of the upcoming
topics.

The second part forms the heart of the thesis. It formally defines one-sided ran-
dom context grammars and studies them from many points of view. Generative
power, relations to other types of grammars, reduction, normal forms, leftmost
derivations, generalized and parsing-related versions all belong between the studied
topics.

The final part of the thesis closes its discussion by adding remarks regarding its
coverage. More specifically, these remarks concern application perspectives, bibli-
ography, and open problem areas.
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Chapter 1
Introduction

Formal Languages and Regulated Grammars

Formal languages, such as programming languages, are applied in a great number
of scientific disciplines, ranging from biology through linguistics up to informatics
(see [21]). As obvious, to use them properly, they have to be precisely specified in
the first place. Most often, they are defined by mathematical models with finitely
many rules by which they rewrite sequences of symbols, called strings.

Over its history, formal language theory has introduced a great variety of these
language-defining models. Despite their diversity, they can be classified into two
basic categories—generative and recognition language models. Generative models,
better known as grammars, define strings of their language so their rewriting process
generates them from a special start symbol. On the other hand, recognition models,
better known as automata, define strings of their language by a rewriting process
that starts from these strings and ends in a special set of strings, usually called final
configurations.

Concerning grammars, the classical theory of formal languages has often clas-
sified all grammars into two fundamental categories—context-free grammars and
non-context-free grammars. As their name suggests, context-free grammars are
based upon context-free rules, by which these grammars rewrite symbols regardless
of the context surrounding them. As opposed to them, non-context-free grammars
rewrite symbols according to context-dependent rules, whose application usually
depends on rather strict conditions placed upon the context surrounding the rewrit-
ten symbols, and this way of context-dependent rewriting often makes them clumsy
and inapplicable in practice. From this point of view, we obviously always prefer us-
ing context-free grammars, but they have their drawbacks, too. Perhaps most impor-
tantly, context-free grammars are significantly less powerful than non-context-free
grammars. Considering all these pros and cons, it comes as no surprise that modern
formal language theory has intensively and systematically struggled to come with
new types of grammars that are underlined by context-free rules, but which are more
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1 Introduction 2

powerful than ordinary context-free grammars. Regulated versions of context-free
grammars, briefly referred to as regulated grammars in the thesis, represent per-
haps the most successful and significant achievement in this direction. They are
based upon context-free grammars extended by additional regulating mechanisms
by which they control the way the language generation is performed.

Over the last four decades, formal language theory has introduced an investigated
many regulated grammars (see [3, 13, 20], Chapter 13 of [7], and Chapter 3 of the
second volume of [21] for an overview of the most important results). Arguably,
one of the most studied type of regulated grammars are random context grammars,
which are central to the thesis.

Random Context Grammars

In essence, random context grammars (see Section 1.1 in [3]) regulate the language
generation process so they require the presence of some prescribed symbols and, si-
multaneously, the absence of some others in the rewritten sentential forms. More
precisely, random context grammars are based upon context-free rules, each of
which may be extended by finitely many permitting and forbidding nonterminal
symbols. A rule like this can rewrite the current sentential form provided that all its
permitting symbols occur in the sentential form while all its forbidding symbols do
not occur there.

Random context grammars are significantly stronger than ordinary context-free
grammars. In fact, they characterize the family of recursively enumerable lan-
guages (see Theorem 1.2.5 in [3]), and this computational completeness obviously
represents their indisputable advantage. Also, propagating random context gram-
mars, which do not have any erasing rules—that is, rules with the empty string on
their right-hand sides—are stronger than context-free grammars. However, they are
strictly less powerful than context-sensitive grammars. Indeed, they generate a lan-
guage family that is strictly included in the family of context sensitive languages
(see Theorem 1.2.4 in [3]).

From a pragmatical standpoint, however, random context grammars have a draw-
back consisting in the necessity of scanning the current sentential form in its en-
tirety during every single derivation step. From this viewpoint, it is highly desirable
to modify these grammars so they scan only a part of the sentential form, yet they
keep their computational completeness. One-sided random context grammars—the
topic of the present thesis—represent a modification like this.
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One-Sided Random Context Grammars

Specifically, in every one-sided random context grammar, the set of rules is divided
into the set of left random context rules and the set of right random context rules.
When applying a left random context rule, the grammar checks the existence and
absence of its permitting and forbidding symbols, respectively, only in the prefix
to the left of the rewritten nonterminal in the current sentential form. Analogously,
when applying a right random context rule, it checks the existence and absence of
its permitting and forbidding symbols, respectively, only in the suffix to the right of
the rewritten nonterminal. Otherwise, it works just like any ordinary random context
grammar.

As the main result of the thesis, we demonstrate that propagating versions of
one-sided random context grammars, which possess no erasing rules, characterize
the family of context-sensitive languages, and with erasing rules, they characterize
the family of recursively enumerable languages.

Furthermore, we discuss the generative power of several special cases of one-
sided random context grammars. Specifically, we prove that one-sided permitting
grammars, which have only permitting rules, are more powerful than context-free
grammars; on the other hand, they are no more powerful than so-called scattered
context grammars (see [10]). One-sided forbidding grammars, which have only for-
bidding rules, are equivalent to so-called selective substitution grammars (see [6]).
Finally, left forbidding grammars, which have only left-sided forbidding rules, are
only as powerful as context-free grammars.

Apart from the generative power of one-sided random context grammars and
their special cases, we investigate the following aspects of these grammars. First,
we establish four normal forms of one-sided random context grammars, in which
all rules satisfy some prescribed properties or format. Then, we study a reduction
of one-sided random context grammars with respect to the number of nonterminals
and rules. After that, we place three leftmost derivation restrictions on one-sided
random context grammars and investigate their generative power. We also study
generalized versions of one-sided random context grammars, in which strings of
symbols rather than single symbols can be required or forbidden. Finally, we study
one-sided random context grammars from a more practical viewpoint by investigat-
ing their parsing-related variants.

To summarize, the thesis is primarily and principally meant as a theoretical treat-
ment of one-sided random context grammars, which represent a modification of
random context grammars. Apart from this theoretical treatment, however, we also
cover some application perspectives to give the reader ideas about their applicability
in practice.
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Motivation

Taking into account the definition of one-sided random context grammars and all
the results sketched above, we see that these grammars may fulfill an important role
in the language theory and its applications for the following four reasons.

(I) From a practical viewpoint, one-sided random context grammars examine the ex-
istence of permitting symbols and the absence of forbidding symbols only within
a portion of the current sentential form while ordinary random context grammars
examine the entire current sentential form. As a result, the one-sided versions of
these grammars work in a more economical and, therefore, efficient way than the
ordinary versions. Moreover, one-sided random context grammars provide a finer
control over the regulation process. Indeed, the designer of the grammar may se-
lect whether the presence or absence of symbols is examined to the left or to the
right. In the case of ordinary random context grammars, this selection cannot be
done since they scan the sentential forms in their entirety.

(II) The one-sided versions of propagating random context grammars are stronger
than ordinary propagating random context grammars. Indeed, the language fam-
ily defined by propagating random context grammars is properly included in the
family of context-sensitive languages (see Theorem 1.2.4 in [3]). One-sided ran-
dom context grammars are as powerful as ordinary random context grammars.
These results come as a surprise because one-sided random context grammars
examine only parts of sentential forms as pointed out in (I) above.

(III) Left forbidding grammars were introduced in [4], which also demonstrated that
these grammars only define the family of context-free languages (see Theorem 1
in [4]). It is more than natural to generalize left forbidding grammars to one-
sided forbidding grammars, which are stronger than left forbidding grammars
(see Theorem 4.2.2). As a matter of fact, even propagating left permitting gram-
mars, introduced in [2], are stronger than left forbidding grammars because they
define a proper superfamily of the family of context-free languages (see Theo-
rem 4.3.2). In the present thesis, we also generalize left permitting grammars to
one-sided permitting grammars and study their properties.

(IV) In the future, one might find results achieved in the thesis useful when attempting
to solve some well-known open problems. Specifically, recall that every propa-
gating scattered context grammar can be turned to an equivalent context-sensitive
grammar (see Theorem 3.21 in [10]), but it is a longstanding open problem
whether these two kinds of grammars are actually equivalent—the PSC = CS
problem (see [10]). If in the future one proves that propagating one-sided permit-
ting grammars and propagating one-sided random context grammars are equiv-
alent, then so are propagating scattered context grammars and context-sensitive
grammars (see Theorem 4.3.1), so the PSC = CS problem would be solved.
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Organization

The text is divided into ten chapters. After this introductory Chapter 1, Chapter 2
briefly reviews formal language theory. It covers all the notions that are necessary
to follow the rest of the thesis.

Chapters 3 through 9 represent the heart of the thesis. They introduce one-sided
random context grammars and study them from many points of view. In a greater
detail, Chapter 3 defines one-sided random context grammars and illustrates them
by examples. Chapter 4 studies the generative power of these grammars. Chapter 5
establishes four normal forms of one-sided random context grammars. Chapter 6
investigates their descriptional complexity. Chapter 7 introduces three types of left-
most derivation restrictions placed upon one-sided random context grammars, and
studies their effect to the generative power of these grammars. Chapter 8 intro-
duces and investigates generalized versions of one-sided random context grammars.
Chapter 9 introduces and investigates parsing-related variants of one-sided random
context grammars, which may be applied in practice.

Chapter 10 closes the thesis by making several final remarks concerning the cov-
ered material with a special focus on its future developments. It concerns application
perspectives of one-sided random context grammars, bibliographic comments and
references, and open problem areas.



Chapter 2
Rudiments of Formal Language Theory

The present chapter briefly reviews formal language theory. It consists of three sec-
tions. Section 2.1 gives the used mathematical notation. Section 2.2 covers strings
and languages. Section 2.3 concerns grammars and language families.

2.1 Mathematical Notation

For a set Q, card(Q) denotes the cardinality of Q, and 2Q denotes the power set of Q.
For two sets P and Q, P ⊆ Q denotes that P is a subset of Q; P ⊂ Q denotes that
A⊆ B and A 6= B. Set difference is denoted by −. The empty set is denoted by /0.

2.2 Strings and Languages

For an alphabet (finite nonempty set) V , V ∗ represents the free monoid generated
by V under the operation of concatenation. The unit of V ∗ is denoted by ε . For x ∈
V ∗, |x| denotes the length of x and alph(x) denotes the set of symbols occurring in x.

2.3 Grammars and Language Families

RE, CS, and CF denote the families of recursively enumerable languages, context-
sensitive languages, and context-free languages, respectively. RC, Per, For, S, and
SC denotes the families of languages generated by random context grammars, per-
mitting grammars, forbidding grammars, selective substitution grammars, and scat-
tered context grammars. To indicate that only propagating grammars—that is, gram-
mars having no erasing rules—are considered, we use the upper index −ε . For
example, RC−ε denote the family of languages generated by propagating random
context grammars.

6



Chapter 3
Definitions and Examples

This three-section chapter defines one-sided random context grammars and their
variants, and illustrates them by examples. More specifically, Section 3.1 gives for-
mal definitions of these grammars, Section 3.2 illustrates them by two examples,
and Section 3.3 presents a denotation of language families generated by these gram-
mars.

3.1 Definitions

Without further ado, let us define one-sided random context grammars formally.

Definition 3.1.1. A one-sided random context grammar is a quintuple

G =
(
N,T,PL,PR,S

)
where N and T are two disjoint alphabets, S ∈ N, and

PL,PR ⊆ N×
(
N∪T

)∗×2N×2N

are two finite relations. Set V = N ∪T . The components V , N, T , PL, PR, and S are
called the total alphabet, the alphabet of nonterminals, the alphabet of terminals,
the set of left random context rules, the set of right random context rules, and the
start symbol, respectively. Each (A,x,U,W ) ∈ PL∪PR is written as

(A→ x,U,W )

For (A→ x, U , W ) ∈ PL, U and W are called the left permitting context and the left
forbidding context, respectively. For (A→ x, U , W ) ∈ PR, U and W are called the
right permitting context and the right forbidding context, respectively. ut

When applying a left random context rule, the grammar checks the existence and
absence of its permitting and forbidding symbols, respectively, only in the prefix

7



3.1 Definitions 8

to the left of the rewritten nonterminal in the current sentential form. Analogously,
when applying a right random context rule, it checks the existence and absence of
its permitting and forbidding symbols, respectively, only in the suffix to the right of
the rewritten nonterminal. The following definition states this formally.

Definition 3.1.2. Let G= (N, T , PL, PR, S) be a one-sided random context grammar.
The direct derivation relation over V ∗ is denoted by⇒G and defined as follows. Let
u,v ∈V ∗ and (A→ x, U , W ) ∈ PL∪PR. Then,

uAv⇒G uxv

if and only if

(A→ x,U,W ) ∈ PL,U ⊆ alph(u), and W ∩ alph(u) = /0

or
(A→ x,U,W ) ∈ PR,U ⊆ alph(v), and W ∩ alph(v) = /0

Let ⇒n
G and ⇒∗G denote the nth power of ⇒G, for some n ≥ 0, and the reflexive-

transitive closure of⇒G, respectively. ut
The language generated by a one-sided random context grammar is defined as

usual—that is, it consists of strings over the terminal alphabet that can be generated
from the start symbol.

Definition 3.1.3. Let G= (N, T , PL, PR, S) be a one-sided random context grammar.
The language of G is denoted by L(G) and defined as

L
(
G
)
=
{

w ∈ T ∗ | S⇒∗G w
}

ut

Next, we define several special variants of one-sided random context grammars.

Definition 3.1.4. Let G= (N, T , PL, PR, S) be a one-sided random context grammar.
If (A→ x, U , W ) ∈ PL∪PR implies that |x| ≥ 1, then G is a propagating one-sided
random context grammar. If (A→ x, U , W ) ∈ PL∪PR implies that W = /0, then G
is a one-sided permitting grammar. If (A→ x, U , W ) ∈ PL∪PR implies that U = /0,
then G is a one-sided forbidding grammar. By analogy with propagating one-sided
random context grammars, we define a propagating one-sided permitting grammar
and a propagating one-sided forbidding grammar, respectively. ut
Definition 3.1.5. Let G= (N, T , PL, PR, S) be a one-sided random context grammar.
If PR = /0, then G is a left random context grammar. If PR = /0 and (A→ x, U ,
W ) ∈ PL implies that W = /0, then G is a left permitting grammar (see [2]). If PR = /0
and (A→ x, U , W ) ∈ PL implies that U = /0, then G is a left forbidding grammar
(see [4]). Their propagating versions are defined analogously as the propagating
version of one-sided random context grammars. ut
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3.2 Examples

Next, we illustrate the above definitions by two examples.

Example 3.2.1. Consider the one-sided random context grammar

G =
(
{S,A,B, Ā, B̄},{a,b,c},PL,PR,S

)
where PL contains the following four rules

(S→ AB, /0, /0)
(B→ bB̄c,{Ā}, /0)

(B̄→ B,{A}, /0)
(B→ ε, /0,{A, Ā})

and PR contains the following three rules

(A→ aĀ,{B}, /0) (Ā→ A,{B̄}, /0) (A→ ε,{B}, /0)

It is rather easy to see that every derivation that generates a nonempty string
of L(G) is of the form

S⇒G AB
⇒G aĀB
⇒G aĀbB̄c
⇒G aAbB̄c
⇒G aAbBc
⇒∗G anAbnBcn

⇒G anbnBcn

⇒G anbncn

where n≥ 1. The empty string is generated by

S⇒G AB⇒G B⇒G ε

Based on the previous observations, we see that G generates the non-context-free
language {

anbncn | n≥ 0
}

ut

Example 3.2.2. Consider K = {anbmcm | 1 ≤ m ≤ n}. This non-context-free lan-
guage is generated by the one-sided permitting grammar

G =
(
{S,A,B,X ,Y},{a,b,c},PL, /0,S

)
with PL containing the following seven rules
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(S→ AX , /0, /0) (A→ a, /0, /0)
(A→ aB, /0, /0)
(B→ A, /0, /0)

(X → bc, /0, /0)
(X → bY c, {B}, /0)
(Y → X , {A}, /0)

Notice that G is, in fact, a propagating left permitting grammar. Observe that
(X → bY c, {B}, /0) is applicable if B, produced by (A→ aB, /0, /0), occurs to the
left of X in the current sentential form. Similarly, (Y → X , {A}, /0) is applicable if
A, produced by (B→ A, /0, /0), occurs to the left of Y in the current sentential form.
Consequently, it is rather easy to see that every derivation that generates w ∈ L(G)
is of the form

S ⇒G AX
⇒∗G auAX
⇒G au+1BX
⇒G au+1BbY c
⇒G au+1AbY c
⇒∗G au+1+vAbY c
⇒G au+1+vAbXc

...
⇒∗G an−1Abm−1Xcm−1

⇒2
G anbmcm = w

where u,v≥ 0, 1≤ m≤ n. Hence, L(G) = K. ut

3.3 Denotation of Language Families

Throughout the rest of the thesis, the language families under discussion are de-
noted in the following way. ORC, OPer, and OFor denote the language families
generated by one-sided random context grammars, one-sided permitting grammars,
and one-sided forbidding grammars, respectively. LRC, LPer, and LFor denote
the language families generated by left random context grammars, left permitting
grammars, and left forbidding grammars, respectively.

The notation with the upper index −ε stands for the corresponding propagating
family. For example, ORC−ε denotes the family of languages generated by propa-
gating one-sided random context grammars.



Chapter 4
Generative Power

In this chapter, consisting of Sections 4.1 through 4.3, we establish relations be-
tween the language families defined in the previous chapter and some well-known
language families from Chapter 2.

4.1 One-Sided Random Context Grammars

First, we consider one-sided random context grammars.

Theorem 4.1.1. ORC−ε = CS and ORC = RE ut

4.2 One-Sided Forbidding Grammars

Next, we consider one-sided forbidding grammars.

Theorem 4.2.1. OFor−ε = S−ε and OFor = S ut
Theorem 4.2.2. LFor−ε = LFor⊂ For−ε ⊆OFor−ε ⊆OFor ut
Theorem 4.2.3. A language K is context-free if and only if there is a one-sided
forbidding grammar, G = (N, T , PL, PR, S), satisfying K = L(G) and PL = PR. ut

4.3 One-Sided Permitting Grammars

Finally, we consider one-sided permitting grammars and their generative power.

Theorem 4.3.1. CF⊂OPer−ε ⊆ SC−ε ⊆ CS = ORC−ε ut
Theorem 4.3.2. CF⊂ LPer−ε ⊆ SC−ε ⊆ CS = ORC−ε ut
Theorem 4.3.3. RC−ε ⊂ORC−ε ⊂ RC = ORC ut

11



Chapter 5
Normal Forms

Formal language theory has always struggled to turn grammars into normal forms,
in which grammatical rules satisfy some prescribed properties or format because
they are easier to handle from a theoretical as well as practical standpoint. Concern-
ing context-free grammars, there exist two famous normal forms—the Chomsky
and Greibach normal forms (see [9]). In the former, every grammatical rule has
on its right-hand side either a terminal or two nonterminals. In the latter, every
grammatical rule has on its right-hand side a terminal followed by zero or more
nonterminals. Similarly, there exist normal forms for general grammars, such as the
Kuroda, Penttonen, and Geffert normal forms.

The present chapter establishes four normal forms for one-sided random context
grammars. The first of them has the set of left random context rules coinciding with
the set of right random context rules. The second normal form, in effect, consists in
demonstrating how to turn any one-sided random context grammar to an equivalent
one-sided random context grammar with the sets of left and right random context
rules being disjoint. The third normal form resembles the Chomsky normal form for
context-free grammars, mentioned above. In the fourth normal form, each rule has
its permitting or forbidding context empty.

This chapter is divided into Sections 5.1 through 5.4. Each section establishes
one of the above-mentioned normal forms of one-sided random context grammars.

5.1 First Normal Form

In the first normal form, the set of left random context rules coincides with the set
of right random context rules.

Theorem 5.1.1. Let G = (N, T , PL, PR, S) be a one-sided random context grammar.
Then, there is a one-sided random context grammar, H = (N′, T , P′L, P′R, S), such
that L(H) = L(G) and P′L = P′R. ut

12
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Theorem 5.1.1 also holds if we restrict ourselves only to propagating one-sided
random context grammars.

Theorem 5.1.2. Let G = (N, T , PL, PR, S) be a propagating one-sided random con-
text grammar. Then, there is a propagating one-sided random context grammar,
H = (N′, T , P′L, P′R, S), such that L(H) = L(G) and P′L = P′R. ut

5.2 Second Normal Form

The second normal form represents a dual normal form to that in Theorems 5.1.1
and 5.1.2. Indeed, every one-sided random context grammar can be turned into an
equivalent one-sided random context grammar with the sets of left and right random
context rules being disjoint.

Theorem 5.2.1. Let G = (N, T , PL, PR, S) be a one-sided random context grammar.
Then, there is a one-sided random context grammar, H = (N′, T , P′L, P′R, S), such
that L(H) = L(G) and P′L ∩P′R = /0. Furthermore, if G is propagating, then so is
H. ut

5.3 Third Normal Form

The third normal form represents an analogy of the well-known Chomsky normal
form for context-free grammars. However, since one-sided random context gram-
mars with erasing rules are more powerful than their propagating versions, we allow
the presence of erasing rules in the transformed grammar.

Theorem 5.3.1. Let G = (N, T , PL, PR, S) be a one-sided random context grammar.
Then, there is a one-sided random context grammar, H = (N′, T , P′L, P′R, S), such
that L(H) = L(G) and (A→ x,U,W ) ∈ P′L ∪P′R implies that x ∈ N′N′ ∪ T ∪{ε}.
Furthermore, if G is propagating, then so is H. ut

5.4 Fourth Normal Form

In the fourth normal form, every rule has its permitting or forbidding context empty.

Theorem 5.4.1. Let G = (N, T , PL, PR, S) be a one-sided random context grammar.
Then, there is a one-sided random context grammar, H = (N′, T , P′L, P′R, S), such
that L(H) = L(G) and (A→ x,U,W ) ∈ P′L∪P′R implies that U = /0 or W = /0. Fur-
thermore, if G is propagating, then so is H. ut



Chapter 6
Reduction

Recall that one-sided random context grammars characterize the family of recur-
sively enumerable languages (see Theorem 4.1.1). Of course, it is more than natural
to ask whether the family of recursively enumerable languages is characterized by
one-sided random context grammars with a limited number of nonterminals or rules.
The present chapter, consisting of three sections, gives an affirmative answer to this
question.

More specifically, in Section 6.1, we show that every recursively enumerable lan-
guage can be generated by a one-sided random context grammar with no more than
ten nonterminals. In addition, we show that an analogous result holds for thirteen
nonterminals in terms of these grammars with the set of left random context rules
coinciding with the set of right random context rules.

Then, in Section 6.2, we approach the discussion concerning the reduction of
these grammars with respect to the number of nonterminals in a finer way. In-
deed, we introduce the notion of a right random context nonterminal, defined as
a nonterminal that appears on the left-hand side of a right random context rule,
and demonstrate how to convert any one-sided random context grammar G to an
equivalent one-sided random context grammar H with two right random context
nonterminals. We also explain how to achieve an analogous conversion in terms
of propagating versions of these grammars (recall that they characterize the family
of context-sensitive languages, see Theorem 4.1.1). Similarly, we introduce the no-
tion of a left random context nonterminal and show how to convert any one-sided
random context grammar G to an equivalent one-sided random context grammar H
with two left random context nonterminals. We explain how to achieve an analogous
conversion in terms of propagating versions of these grammars, too.

Apart from reducing the number of nonterminals, we reduce the number of rules.
More specifically, in Section 6.3, we show that any recursively enumerable lan-
guage can be generated by a one-sided random context grammar having no more
than two right random context rules. As a motivation behind limiting the number of
right random context rules in these grammars, consider left random context gram-

14
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mars, which are one-sided random context grammars with no right random context
rules (see Section 3). Recall that it is an open question whether these grammars
are equally powerful to one-sided random context grammars. To give an affirma-
tive answer to this question, it is sufficient to show that in one-sided random con-
text grammars, no right random context rules are needed. From this viewpoint, the
above-mentioned result may fulfill a useful role during the solution of this problem
in the future.

6.1 Total Number of Nonterminals

First, we investigate a reduction of the total number of nonterminals.

Theorem 6.1.1. Let K be a recursively enumerable language. Then, there is a one-
sided random context grammar, H = (N, T , PL, PR, S), such that L(H) = K and
card(N) = 10. ut

Theorem 6.1.2. Let K be a recursively enumerable language. Then, there is a one-
sided random context grammar, H = (N, T , PL, PR, S), such that L(H) =K, PL = PR,
and card(N) = 13. ut

6.2 Number of Left and Right Random Context Nonterminals

In this section, we approach the discussion concerning the reduction of one-sided
random context grammars with respect to the number of nonterminals in a finer
way. Indeed, we introduce the notion of a right random context nonterminal, de-
fined as a nonterminal that appears on the left-hand side of a right random context
rule, and demonstrate how to convert any one-sided random context grammar G to
an equivalent one-sided random context grammar H with two right random context
nonterminals. We also explain how to achieve an analogous conversion in terms of
propagating versions of these grammars (recall that they characterize the family of
context-sensitive languages, see Theorem 4.1.1). Similarly, we introduce the notion
of a left random context nonterminal and show how to convert any one-sided ran-
dom context grammar G to an equivalent one-sided random context grammar H
with two left random context nonterminals.

First, we define these two new measures formally.

Definition 6.2.1. Let G= (N, T , PL, PR, S) be a one-sided random context grammar.
If (A→ x, U , W ) ∈ PR, then A is a right random context nonterminal. The number
of right random context nonterminals of G is denoted by nrrcn(G) and defined as
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nrrcn(G) = card
(
{A | (A→ x,U,W ) ∈ PR}

)
ut

Left random context nonterminals and their number in a one-sided random con-
text grammar are defined analogously.

Definition 6.2.2. Let G= (N, T , PL, PR, S) be a one-sided random context grammar.
If (A→ x, U , W ) ∈ PL, then A is a left random context nonterminal. The number of
left random context nonterminals of G is denoted by nlrcn(G) and defined as

nlrcn(G) = card
(
{A | (A→ x,U,W ) ∈ PL}

)
ut

Theorem 6.2.3. Let K be a recursively enumerable language. Then, there is a
one-sided random context grammar, H = (N, T , PL, PR, S), such that L(H) = K,
nrrcn(H) = 4, and nlrcn(H) = 6. ut

Theorem 6.2.4. For every recursively enumerable language K, there exists a one-
sided random context grammar H such that L(H) = K and nrrcn(H) = 2. ut

Theorem 6.2.5. For every recursively enumerable language K, there exists a one-
sided random context grammar H such that L(H) = K and nlrcn(H) = 2. ut

Theorem 6.2.6. For every context-sensitive language K, there exists a propagating
one-sided random context grammar H such that L(H) = K and nrrcn(H) = 2. ut

Theorem 6.2.7. For every context-sensitive language K, there exists a propagating
one-sided random context grammar H such that L(H) = K and nlrcn(H) = 2. ut

6.3 Number of Right Random Context Rules

In this section, we show that any recursively enumerable language can be generated
by a one-sided random context grammar having no more than two right random
context rules.

Theorem 6.3.1. For every recursively enumerable language K, there exists a one-
sided random context grammar, H = (N, T , PL, PR, S), such that L(H) = K and
card(PR) = 2. ut

Theorem 6.3.2. For every recursively enumerable language K, there exists a one-
sided random context grammar, H = (N, T , PL, PR, S), such that L(H) = K,
card(N) = 13, nrrcn(H) = 2, and card(PR) = 2. ut



Chapter 7
Leftmost Derivations

The investigation of grammars that perform leftmost derivations is central to formal
language theory as a whole. Indeed, from a practical viewpoint, leftmost derivations
fulfill a crucial role in parsing, which represents a key application area of formal
grammars (see [1]). From a theoretical viewpoint, an effect of leftmost derivation
restrictions to the power of grammars restricted in this way represents an intensively
investigated area of this theory as clearly indicated by many studies on the subject.

Considering the significance of leftmost derivations, it comes as no surprise that
the present chapter pays a special attention to them. Indeed, it introduces three types
of leftmost derivation restrictions placed upon one-sided random context grammars.
In the type-1 derivation restriction, discussed in Section 7.1, during every deriva-
tion step, the leftmost occurrence of a nonterminal has to be rewritten. In the type-2
derivation restriction, covered in Section 7.2, during every derivation step, the left-
most occurrence of a nonterminal which can be rewritten has to be rewritten. In the
type-3 derivation restriction, studied in Section 7.2, during every derivation step, a
rule is chosen, and the leftmost occurrence of its left-hand side is rewritten.

In this chapter, we place the three above-mentioned leftmost derivation restric-
tions on one-sided random context grammars, and study their effect to the generative
power of one-sided random context grammars.

7.1 Type-1 Leftmost Derivations

In the first derivation restriction type, during every derivation step, the leftmost
occurrence of a nonterminal has to be rewritten. This type of leftmost derivations
corresponds to the well-known leftmost derivations in context-free grammars.

Definition 7.1.1. Let G = (N, T , PL, PR, S) be a one-sided random context gram-
mar. The type-1 direct leftmost derivation relation over V ∗, symbolically denoted
by ⇒1lm G, is defined as follows. Let u ∈ T ∗, A ∈ N and x,v ∈V ∗. Then,

17
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uAv ⇒1lm G uxv

if and only if
uAv⇒G uxv

Let ⇒1 n
lm G and ⇒1 ∗

lm G denote the nth power of ⇒1lm G, for some n ≥ 0, and the
reflexive-transitive closure of ⇒1lm G, respectively. The -1

lm language of G is denoted
by L(G, ⇒1lm ) and defined as

L
(
G, ⇒1lm

)
=
{

w ∈ T ∗ | S ⇒1 ∗
lm G w

}
ut

Notice that if the leftmost occurrence of a nonterminal cannot be rewritten by any
rule, then the derivation is blocked.

The language families generated by one-sided random context grammars with
type-1 leftmost derivations and propagating one-sided random context grammars
with type-1 leftmost derivations are denoted by ORC( ⇒1lm ) and ORC−ε( ⇒1lm ),
respectively.

Theorem 7.1.2. ORC−ε( ⇒1lm ) = ORC( ⇒1lm ) = CF ut

7.2 Type-2 Leftmost Derivations

In the second derivation restriction type, during every derivation step, the leftmost
occurrence of a nonterminal that can be rewritten has to be rewritten.

Definition 7.2.1. Let G = (N, T , PL, PR, S) be a one-sided random context gram-
mar. The type-2 direct leftmost derivation relation over V ∗, symbolically denoted
by ⇒2lm G, is defined as follows. Let u,x,v ∈V ∗ and A ∈ N. Then,

uAv ⇒2lm G uxv

if and only if uAv⇒G uxv and there is no B ∈N and y ∈V ∗ such that u = u1Bu2 and
u1Bu2Av⇒G u1yu2Av.

Let ⇒2 n
lm G and ⇒2 ∗

lm G denote the nth power of ⇒2lm G, for some n ≥ 0, and the
reflexive-transitive closure of ⇒2lm G, respectively. The -2

lm language of G is denoted
by L(G, ⇒2lm ) and defined as

L
(
G, ⇒2lm

)
=
{

w ∈ T ∗ | S ⇒2 ∗
lm G w

}
ut

The language families generated by one-sided random context grammars with
type-2 leftmost derivations and propagating one-sided random context grammars
with type-2 leftmost derivations are denoted by ORC( ⇒2lm ) and ORC−ε( ⇒2lm ),
respectively.

Theorem 7.2.2. ORC−ε( ⇒2lm ) = CS and ORC( ⇒2lm ) = RE ut
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7.3 Type-3 Leftmost Derivations

In the third derivation restriction type, during every derivation step, a rule is chosen,
and the leftmost occurrence of its left-hand side is rewritten.

Definition 7.3.1. Let G = (N, T , PL, PR, S) be a one-sided random context gram-
mar. The type-3 direct leftmost derivation relation over V ∗, symbolically denoted
by ⇒3lm G, is defined as follows. Let u,x,v ∈V ∗ and A ∈ N. Then,

uAv ⇒3lm G uxv

if and only if uAv⇒G uxv and alph(u)∩{A}= /0.
Let ⇒3 n

lm G and ⇒3 ∗
lm G denote the nth power of ⇒3lm G, for some n ≥ 0, and the

reflexive-transitive closure of ⇒3lm G, respectively. The -3
lm language of G is denoted

by L(G, ⇒3lm ) and defined as

L
(
G, ⇒3lm

)
=
{

w ∈ T ∗ | S ⇒3 ∗
lm G w

}
ut

Notice the following difference between the second and the third type. In the for-
mer, the leftmost occurrence of a rewritable nonterminal is chosen first, and then, a
choice of a rule with this nonterminal on its let-hand side is made. In the latter, a rule
is chosen first, and then, the leftmost occurrence of its left-hand side is rewritten.

The language families generated by one-sided random context grammars with
type-3 leftmost derivations and propagating one-sided random context grammars
with type-3 leftmost derivations are denoted by ORC( ⇒3lm ) and ORC−ε( ⇒3lm ),
respectively.

Theorem 7.3.2. ORC−ε( ⇒3lm ) = CS and ORC( ⇒3lm ) = RE ut



Chapter 8
Generalized One-Sided Forbidding Grammars

In [8], so-called generalized forbidding grammars that are based upon context-free
rules, each of which may be associated with finitely many forbidding strings, were
introduced and investigated. A rule like this can rewrite a nonterminal provided that
none of its forbidding strings occur in the current sentential form; apart from this,
these grammars work just like context-free grammars. As opposed to context-free
grammars, however, they are computationally complete—that is, they generate the
family of recursively enumerable languages (see Theorem 1 in [8]), and this prop-
erty obviously represents their crucially important advantage over ordinary context-
free and forbidding grammars.

Taking a closer look at the rewriting process in generalized forbidding grammars,
we see that they always verify the absence of forbidding strings within their entire
sentential forms. To simplify and accelerate their rewriting process, it is obviously
more than desirable to modify these grammars so they make this verification only
within some prescribed portions of the rewritten sentential forms while remaining
computationally complete. Generalized one-sided forbidding grammars, which are
defined and studied in the present chapter, represent a modification satisfying these
properties.

More precisely, in a generalized one-sided forbidding grammar, the set of rules
is divided into the set of left forbidding rules and the set of right forbidding rules.
When applying a left forbidding rule, the grammar checks the absence of its forbid-
ding strings only in the prefix to the left of the rewritten nonterminal in the current
sentential form. Similarly, when applying a right forbidding rule, it performs an
analogous check to the right. Apart from this, it works like any generalized forbid-
ding grammar.

This chapter is divided into two sections. First, Section 8.1 defines generalized
one-sided forbidding grammars and illustrate them by an example. Then, Sec-
tion 8.2 establishes their generative power.

20
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8.1 Definitions and Examples

Without further ado, let us define generalized one-sided forbidding grammars and
illustrate them by an example. For an alphabet N and a string x∈N∗, sub(x) denotes
the set of all substrings of x, and fin(N) denotes the set of all finite languages over N.

Definition 8.1.1. A generalized one-sided forbidding grammar is a quintuple

G =
(
N,T,PL,PR,S

)
where N and T are two disjoint alphabets, S ∈ N, and

PL,PR ⊆ N×
(
N∪T

)∗×fin(N)

are two finite relations. Set V = N ∪T . The components V , N, T , PL, PR, and S are
called the total alphabet, the alphabet of nonterminals, the alphabet of terminals,
the set of left forbidding rules, the set of right forbidding rules, and the start sym-
bol, respectively. Each (A,x,F) ∈ PL ∪PR is written as (A→ x,F) throughout this
chapter. For (A→ x, F) ∈ PL, F is called the left forbidding context. Analogously,
for (A→ x, F) ∈ PR, F is called the right forbidding context. The direct derivation
relation over V ∗, symbolically denoted by⇒G, is defined as follows. Let u,v ∈V ∗

and (A→ x, F) ∈ PL∪PR. Then,

uAv⇒G uxv

if and only if
(A→ x,F) ∈ PL and F ∩ sub(u) = /0

or
(A→ x,F) ∈ PR and F ∩ sub(v) = /0

Let ⇒n
G and ⇒∗G denote the nth power of ⇒G, for some n ≥ 0, and the reflexive-

transitive closure of⇒G, respectively. The language of G is denoted by L(G) and
defined as

L(G) =
{

w ∈ T ∗ | S⇒∗G w
}

ut

Next, we introduce the notion of a degree of G. Informally, it is the length of the
longest string in the forbidding contexts of the rules of G. Let N be an alphabet.
For L ∈ fin(N), max-len(L) denotes the length of the longest string in L. We set
max-len( /0) = 0.

Definition 8.1.2. Let G = (N, T , PL, PR, S) be a generalized one-sided forbidding
grammar. G is of degree (m,n), where m,n ≥ 0, if (A→ x,F) ∈ PL implies that
max-len(F)≤ m and (A→ x,F) ∈ PR implies that max-len(F)≤ n. ut
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Next, we illustrate the previous definitions by an example.

Example 8.1.3. Consider the generalized one-sided forbidding grammar

G =
(
{S,A,B,A′,B′, Ā, B̄},{a,b,c},PL,PR,S

)
where PL contains the following five rules

(S→ AB, /0) (B→ bB′c,{A, Ā})
(B→ B̄,{A,A′})

(B′→ B,{A′})
(B̄→ ε,{Ā})

and PR contains the following four rules

(A→ aA′,{B′})
(A→ Ā,{B′})

(A′→ A,{B})
(Ā→ ε,{B})

Since the length of the longest string in the forbidding contexts of rules from PL
and PR is 1, G is of degree (1,1). It can be seen that G generates the non-context-free
language {

anbncn | n≥ 0
}

ut

The language family generated by generalized one-sided forbidding grammars of
degree (m,n) is denoted by GOF(m,n). Furthermore, set

GOF =
⋃

m,n≥0

GOF(m,n)

8.2 Generative Power

In this section, we establish the generative power of generalized one-sided forbid-
ding grammars.

Theorem 8.2.1. GOF(n,0) = GOF(0,n) = CF for every n≥ 0. ut

Theorem 8.2.2. CF⊂GOF(1,1) = OFor ut

Theorem 8.2.3. GOF(1,2) = GOF(2,1) = RE ut

Theorem 8.2.4. A language K is context-free if and only if there is a generalized
one-sided forbidding grammar, G = (N, T , PL, PR, S), satisfying K = L(G) and
PL = PR. ut



Chapter 9
LL One-Sided Random Context Grammars

In the previous chapters, have introduced and studied one-sided random context
grammars from a purely theoretical viewpoint. From a more practical viewpoint,
however, it is also desirable to make use of them in such grammar-based application-
oriented fields as syntax analysis (see [1]). An effort like this obviously gives rise to
introducing and investigating their parsing-related variants, such as LL versions—
the subject of the present chapter.

LL one-sided random context grammars, introduced in this chapter, represent or-
dinary one-sided random context grammars restricted by analogy with LL require-
ments placed upon LL context-free grammars. That is, for every positive integer k,
(1) LL(k) one-sided random context grammars always rewrite the leftmost nonter-
minal in the current sentential form during every derivation step, and (2) if there
are two or more applicable rules with the same nonterminal on their left-hand sides,
then the sets of all terminal strings of length k that can begin a string obtained by a
derivation started by using these rules are disjoint. The class of LL grammars is the
union of all LL(k) grammars, for every k ≥ 1.

Recall that one-sided random context grammars characterize the family of re-
cursively enumerable languages (see Theorem 4.1.1). Of course, it is natural to ask
whether LL one-sided random context grammars generate the family of LL context-
free languages or whether they are more powerful. As its main result, this chapter
shows that the families of LL one-sided random context languages and LL context-
free languages coincide.

In fact, we take a closer look at the generation of languages by both versions
of LL grammars. That is, we demonstrate an advantage of LL one-sided random
context grammars over LL context-free grammars. More precisely, for every k ≥ 1,
we present a specific LL(k) one-sided random context grammar G and show that
every equivalent LL(k) context-free grammar has necessarily more nonterminals
or rules than G. Thus, to rephrase this result more broadly and pragmatically, we
actually show that LL(k) one-sided random context grammars can possibly allow us

23
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to specify LL(k) languages more succinctly and economically than LL(k) context-
free grammars do.

This chapter is divided into three sections. First, Section 9.1 defines LL one-sided
random context grammars. Then, Section 9.2 gives a motivational example. After
that, Section 9.3 shows the main result sketched above, and formulates three open
problems.

9.1 Definitions

In this section, we define LL one-sided random context grammars. Since we pay a
principal attention to context-free and one-sided random context grammars work-
ing in the leftmost way, in what follows, by a context-free and one-sided random
context grammar, respectively, we always mean a context-free and one-sided ran-
dom context grammar working in the leftmost way, respectively. In terms of one-
sided random context grammars, by this leftmost way, we mean the type-1 leftmost
derivations (see Section 7.1).

Definition 9.1.1. Let G = (N, T , PL, PR, S) be a one-sided random context grammar
and $ /∈ N∪T be a symbol. For every r = (A→ x,U,W ) ∈ PL∪PR and k≥ 1, define

Predictk(r)⊆ T ∗{$}∗

as follows: γ ∈ Predictk(r) if and only if |γ|= k and

S$k ⇒1 ∗
lm G uAv$k ⇒1lm G uxv$k ⇒1 ∗

lm G uγw

where u ∈ T ∗, v,x ∈V ∗, w ∈V ∗{$}∗, and r is leftmost-applicable to uAv. ut

Making use of the above definition, we next define LL one-sided random context
grammars.

Definition 9.1.2. Let G = (N, T , PL, PR, S) be a one-sided random context gram-
mar. G is an LL(k) one-sided random context grammar, where k ≥ 1, if it satisfies
the following condition: for any p = (A→ x,U,W ),r = (A→ x′,U ′,W ′) ∈ PL∪PR
such that p 6= r, if Predictk(p)∩Predictk(r) 6= /0, then there is no w ∈ V ∗ such that
S ⇒1 ∗

lm G w with both p and r being leftmost-applicable to w.
If there exists k ≥ 1 such that G is an LL(k) one-sided random context grammar,

then G is an LL one-sided random context grammar. ut
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9.2 A Motivational Example

In this short section, we give an example of an LL(k) one-sided random context
grammar, for every k ≥ 1. In this example, we argue that LL(k) one-sided random
context grammars can describe some languages more succinctly than LL(k) context-
free grammars.

Example 9.2.1. Let k be a positive integer and G = (N, T , /0, PR, S) be a one-sided
random context grammar, where N = {S}, T = {a,b,c,d}, and

PR =
{
(S→ dk−1c, /0, /0),(S→ dk−1aSS, /0,{S}),(S→ dk−1bS,{S}, /0)

}
Notice that G is an LL(k) one-sided random context grammar. Observe that the sec-
ond rule can be applied only to a sentential form containing exactly one occurrence
of S, while the third rule can be applied only to a sentential form containing at
least two occurrences of S. The generated language L(G) can be described by the
following expression (

dk−1a(dk−1b)∗dk−1c
)∗dk−1c

In the thesis, we argue that L(G) cannot be generated by any LL(k) context-free
grammar having a single nonterminal and at most three rules. This shows us that
for some languages, LL(k) one-sided random context grammars need fewer rules or
nonterminals than LL(k) context-free grammars do to describe them. ut

9.3 Generative Power

In this section, we show that LL one-sided random context grammars character-
ize the family of LL context-free languages. For every k ≥ 1, let LL -CF(k) and
LL -ORC(k) denote the families of languages generated by LL(k) context-free
grammars and LL(k) one-sided random context grammars, respectively.

Theorem 9.3.1. LL -ORC(k) = LL -CF(k) for k ≥ 1. ut

Define the language families LL -CF and LL -ORC as

LL -CF =
⋃
k≥1

LL -CF(k)

LL -ORC =
⋃
k≥1

LL -ORC(k)

Theorem 9.3.2. LL -ORC = LL -CF ut



Chapter 10
Concluding Remarks

This concluding chapter makes several final remarks concerning the material cov-
ered in the thesis with a special focus on its future developments. First, it suggests
application perspectives of one-sided random context grammars (Section 10.1).
Then, it chronologically summarizes the concepts and results achieved in most sig-
nificant studies on the subject of the present thesis (Section 10.2). Finally, this chap-
ter lists the most important open problems resulting from the study of the thesis
(Section 10.3).

10.1 Application Perspectives

As already stated in Chapter 1, the thesis is primarily and principally meant as a the-
oretical treatment of one-sided random context grammars. Nevertheless, to demon-
strate their possible practical importance, we make some general remarks regarding
their applications in the present section.

Taking the definition and properties of one-sided random context grammars into
account, we see that they are suitable to underly information processing based on
the existence or absence of some information parts. Therefore, in what follows, we
pay major attention to this application area.

Molecular Genetics

We believe that one-sided random context grammars can formally and elegantly
simulate processing information in molecular genetics, including information con-
cerning macromolecules, such as DNA, RNA, and polypeptides. For instance, con-
sider an organism consisting of DNA molecules made by enzymes. It is a common
phenomenon that a molecule m made by a specific enzyme can be modified unless
molecules made by some other enzymes occur either to the left or to the right of m

26
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in the organism. Consider a string w that formalizes this organism so every molecule
is represented by a symbol. As obvious, to simulate a change of the symbol a that
represents m requires random context occurrences of some symbols that either pre-
cede or follow a in w. As obvious, one-sided random context grammars can provide
a string-changing formalism that can capture this random context requirement in
a very succinct and elegant way. To put it more generally, one-sided random con-
text grammars can simulate the behavior of molecular organisms in a rigorous and
uniform way.

Computer Science

Considering that one-sided random context grammars have a greater power than
context-free grammars, we may immediately think of applying them in terms of
syntax analysis of complicated non-context-free structures during language trans-
lation. However, as one-sided random context grammars are computationally com-
plete (see Theorem 4.1.1), Rice’s theorem (see Section 9.3.3 in [5]) implies that
we cannot use them to parse all recursively enumerable languages. Therefore, we
should focus on variants of one-sided random context grammars that are not com-
putationally complete, such as propagating one-sided random context grammars.

In Chapter 9, we have studied LL versions of one-sided random context gram-
mars, which may be suitable for syntax analysis. Even though they are equally
powerful as context-free grammars (see Theorem 9.3.2), they still may be useful
since for some languages, they can describe languages in a more economical way
(see Section 9.2).

Linguistics

In terms of linguistics, one-sided random context grammars may be used for gen-
erating or verifying that the given texts contain no forbidding passages, such as
vulgarisms or classified information. More specifically, generalized one-sided for-
bidding grammars (see Chapter 8), which are one-sided forbidding grammars that
can forbid the occurrences of strings, are suitable to formally capture such applica-
tions.

Another application area of one-sided random context grammars may be syntax-
oriented linguistics. Observe that many common English sentences contain expres-
sions and words that mutually depend on each other although they are not adjacent
to each other in the sentences. For example, consider the following sentence: He
sometimes goes to bed very late. The subject (he) and the predicator (goes) are re-
lated. Therefore, we cannot rewrite goes to go because of the subject. One-sided
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random context grammars form a suitable formalism to capture and verify such
dependencies.

Application-oriented topics like the ones outlined in this section obviously represent
a future investigation area concerning one-sided random context grammars.

10.2 Bibliographical and Historical Remarks

This section gives an overview of the crucially important studies published on the
subject of the thesis from a historical perspective.

One-sided random context grammars were introduced in [14]. Their special vari-
ants, left permitting and left forbidding grammars, were originally introduced in [2]
and [4], respectively. The generative power of one-sided forbidding grammars and
their relation to selective substitution grammars were studied in [16]. The nonter-
minal complexity of one-sided random context grammars was investigated in [15].
A reduction of the number of right random context rules was the topic of [19]. Sev-
eral normal forms of these grammars were established in [22]. Leftmost derivations
were studied in [17]. The generalized version of one-sided forbidding grammars
was introduced and investigated in [18]. A list of open problems concerning these
grammars appears in [23]. Finally, the LL versions of one-sided random context
grammars are based on [11] and appear in the thesis for the first time.

10.3 Open Problem Areas

We finish the thesis by summarizing open problems concerning one-sided random
context grammars.

(I) What is the generative power of left random context grammars? What is the role
of erasing rules in this left variant? That is, are left random context grammars
more powerful than propagating left random context grammars?

(II) What is the generative power of one-sided forbidding grammars? We only know
that they are equally powerful as selective substitution grammars (see Theo-
rem 4.2.1). Thus, by establishing the generative power of one-sided forbidding
grammars, we would establish the power of selective substitution grammars, too.

(III) By Theorem 6.1.1, ten nonterminals suffice to generate any recursively enumer-
able language by a one-sided random context grammar. Is this limit optimal? In
other words, can Theorem 6.1.1 be improved?

(IV) Recall that propagating one-sided random context grammars characterize the
family of context-sensitive languages (see Theorem 4.1.1). Can we also limit
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the overall number of nonterminals in terms of this propagating version like in
Theorem 6.1.1?

(V) What is the generative power of one-sided forbidding grammars and one-sided
permitting grammars? Moreover, what is the power of left permitting gram-
mars? Recall that every propagating scattered context grammar can be turned
to an equivalent context-sensitive grammar (see Theorem 3.21 in [10]), but it is
a longstanding open problem whether these two kinds of grammars are actually
equivalent—the PSC = CS problem. If in the future one proves that propagat-
ing one-sided permitting grammars and propagating one-sided random context
grammars are equivalent, then so are propagating scattered context grammars
and context-sensitive grammars (see Theorem 4.3.1), so the PSC = CS problem
would be solved.

(VI) By Theorem 6.2.4, any recursively enumerable language is generated by a one-
sided random context grammar having no more than two right random context
nonterminals. Does this result hold with one or even zero right random context
nonterminals? Notice that by proving that no right random context nontermi-
nals are needed, we would establish the generative power of left random context
grammars.

(VII) By Theorem 6.3.1, any recursively enumerable language is generated by a one-
sided random context grammar having no more than two right random context
rules. Does this result hold with one or even zero right random context rules?
Again, notice that by proving that no right random context rules are needed, we
would establish the generative power of left random context grammars.
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[7] Martín-Vide, C., Mitrana, V., Păun, G. (eds.): Formal Languages and Applica-
tions. Springer, Berlin (2004)

[8] Meduna, A.: Generalized forbidding grammars. International Journal of Com-
puter Mathematics 36(1-2), 31–38 (1990)

[9] Meduna, A.: Automata and Languages: Theory and Applications. Springer,
London (2000)

[10] Meduna, A., Techet, J.: Scattered Context Grammars and their Applications.
WIT Press, Southampton (2010)

[11] Meduna, A., Vrábel, L., Zemek, P.: LL one-sided random context grammars.
Unpublished manuscript

[12] Meduna, A., Zemek, P.: One-sided random context grammars: A survey. Un-
published manuscript

[13] Meduna, A., Zemek, P.: Regulated Grammars and Their Transformations. Fac-
ulty of Information Technology, Brno University of Technology, Brno, CZ
(2010)

30



References 31

[14] Meduna, A., Zemek, P.: One-sided random context grammars. Acta Informat-
ica 48(3), 149–163 (2011)

[15] Meduna, A., Zemek, P.: Nonterminal complexity of one-sided random context
grammars. Acta Informatica 49(2), 55–68 (2012)

[16] Meduna, A., Zemek, P.: One-sided forbidding grammars and selective sub-
stitution grammars. International Journal of Computer Mathematics 89(5),
586–596 (2012)

[17] Meduna, A., Zemek, P.: One-sided random context grammars with leftmost
derivations. In: LNCS Festschrift Series: Languages Alive, vol. 7300, pp. 160–
173. Springer Verlag (2012)

[18] Meduna, A., Zemek, P.: Generalized one-sided forbidding grammars. Interna-
tional Journal of Computer Mathematics 90(2), 127–182 (2013)

[19] Meduna, A., Zemek, P.: One-sided random context grammars with a limited
number of right random context rules. Theoretical Computer Science 516(1),
127–132 (2014)

[20] Meduna, A., Zemek, P.: Regulated Grammars and Automata. Springer, New
York (2014)

[21] Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, Volumes
1 through 3. Springer, New York (1997)

[22] Zemek, P.: Normal forms of one-sided random context grammars. In: Pro-
ceedings of the 18th Conference STUDENT EEICT 2012, vol. 3, pp. 430–434.
Brno University of Technology, Brno, CZ (2012)

[23] Zemek, P.: One-sided random context grammars: Established results and open
problems. In: Proceedings of the 19th Conference STUDENT EEICT 2013,
vol. 3, pp. 222–226. Brno University of Technology, Brno, CZ (2013)



Curriculum Vitae

Ing. Petr Zemek
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