
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

FIREFOX OS APPLICATION FOR LEARNING LAN-
GUAGES

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE JAKUB CHUDÍK
AUTHOR

BRNO 2015

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

APLIKACE PRO VÝUKU JAZYKŮ PRO FIREFOX OS
FIREFOX OS APPLICATION FOR LEARNING LANGUAGES

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE JAKUB CHUDÍK
AUTHOR

VEDOUCÍ PRÁCE Prof. Ing. TOMÁŠ VOJNAR, Ph.D.
SUPERVISOR

BRNO 2015

Abstrakt
Tato práce se zabývá vytvořením aplikace pro výuku jazyků specificky pro mobilní operační
systém Firefox OS. Vzhledem k své povaze, uživatelské rozhraní aplikace se snaží uspokojit
ergonomické potřeby aplikací určených pro kapesní zařízení. Aplikuje několik konceptů
gamifikace ke zlepšení procesu učení, jehož výsledky jsou prezentovány a vyhodnoceny.
Aplikace také přináší své vlastní jedinečné vlastnosti, které jí pomáhají vyniknout mezi
ostatními aplikacemi pro výuku jazyků.

Abstract
This thesis deals with creating a language learning application specifically for the Friefox OS
operating system for mobile, handheld devices. Because of its nature, the application’s user
interface attempts to cater specifically to the ergonomic needs of applications for handheld
devices. It applies several concepts of gamification to improve the language learning process,
the results of which are presented and evaluated. The application also brings its own unique
features to make it stand out among existing state of art language learning applications.

Klíčová slova
Firefox OS, Webové technologie, Uživatelské rozhraní, Gamifikace, HTML5, CSS3, Javascript,
Výuka jazyků

Keywords
Firefox OS, Web technologies, User interface, Gamification, HTML5, CSS3, Javascript,
Language learning

Citace
Jakub Chudík: Firefox OS Application for Learning Languages, bakalářská práce, Brno,
FIT VUT v Brně, 2015

Firefox OS Application for Learning Languages

Prohlášení
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením Prof. Ing.
Tomáše Vojnara, Ph.D. Další informace mi poskytl technický konzultant Ing. Martin Strán-
ský z firmy Red Hat Czech. Uvedl jsem všechny literární prameny a publikace, ze kterých
jsem čerpal.

. .
Jakub Chudík
May 20, 2015

Poděkování
I would like to thank my supervisor, Tomáš Vojnar, for his patience, support and construc-
tive criticism regarding the thesis. I would like to thank the company Red Hat Czech for the
opportunity to do a thesis on this topic and Martin Stránský for invaluable technical advice
and guidance on the project. Lastly, I would like to thank my family for their emotional
and financial support – I wouldn’t have made it this far without them.

c© Jakub Chudík, 2015.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 Language Learning 4
2.1 Learning Software Comparison . 4

2.1.1 Duolingo . 4
2.1.2 Rosetta Stone . 5
2.1.3 busuu . 6

2.2 Learning Concepts . 6
2.2.1 Forgetting curve . 6
2.2.2 Spaced repetition . 7
2.2.3 Learning curve . 7
2.2.4 Gamification . 8

3 Application Design 11
3.1 The Learning Process and Analysis . 11

3.1.1 Language Division . 11
3.1.2 Evaluating Language Skill Level . 11
3.1.3 Regular Progress . 12

3.2 A Community-driven Multimedia Pool . 13
3.3 User Interface . 13

3.3.1 Design Philosophy . 13
3.3.2 Context Action Menu . 14
3.3.3 Preferences Menu . 14
3.3.4 Main Page . 14

4 Implementation 17
4.1 Interface Implementation . 17
4.2 Local Storage . 17
4.3 Language Data Format . 18
4.4 Calibration Algorithm . 20
4.5 CALL Implementation . 21
4.6 Web API Usage for Multimedia Implementation 22

5 Testing 24
5.1 Prerequisites & Preparation . 24
5.2 Test Results . 24

5.2.1 Explanation . 26
5.2.2 User Feedback . 26

1

5.3 Evaluation . 27

6 Conclusion 29

2

Chapter 1

Introduction

Firefox OS is one of the latest commercially developed operating systems for smartphones
and tablet computers. It was designed as a community-based open-source alternative system
for mobile devices that utilizes HTML5, JavaScript, and novelty features such as open web
APIs that communicate directly with cellphone hardware [5]. In example, this enables
Firefox OS users to use apps without having to install them beforehand. As a relatively
recent addition to the smartphone market, Firefox OS is not yet widely available or a
popular of operating system for smartphones, but the aforementioned features help to make
it stand out among its competition and what ultimately makes or breaks a new mobile
platform these days is not the hardware but apps available for the operating system.

The purpose of this bachelor’s thesis is to create a language-learning application for Fire-
fox OS. There is a multitude of reasons why such application would be beneficial specifically
for this operating system. According to telecommunications companies [13] smartphones
with the Firefox OS are most well accepted in the emerging markets of developing coun-
tries but perform poorly in the United States. It is explained by their relatively low price
thanks to utilizing cheaper hardware that doesn’t really compare to today’s flagship phones
but makes the smartphones more accessible for such economies, as well as viable first-time
smartphone owners. Seeing that developing countries are mostly populated by non-native
English speakers, it is reasonable to assume that a language-learning application for this
particular operating system would be much more helpful than a similar application for
other operating systems which are more popular in the West. Ultimately, there’s also the
fact that currently there are no sophisticated language-learning applications available for
the Firefox OS in the Firefox Marketplace and here’s hoping that the application produced
in this bachelor’s thesis will provide a solid freeware alternative.

3

Chapter 2

Language Learning

This chapter introduces popular and acknowledged existing language-learning software,
both commercial and freeware, focusing specifically on their applications for smartphones.
These applications, namely Duolingo, Rosetta Stone and busuu, will be used for comparison
with the application produced in this thesis. Additionally, it will explain some of the most
important terms and techniques with regards to language-learning, such as the forgetting
curve, spaced repetition, learning curve and gamification of learning.

2.1 Learning Software Comparison

2.1.1 Duolingo

Duolingo is freeware language-learning software. It differentiates quite substantially from
other language-learning applications due to the fact that it also serves as a crowdsourced
text translation platform. As users progress through the lessons, they simultaneously help
to translate websites and other documents. This allows Duolingo not to charge students
to learn a language. Organizations and businesses provide Duolingo with content in need
of translating and the users of Duolingo are invited to translate these documents and vote
on translations. Another unique feature is

”
The Language Incubator“ which is a tool that

allows the community to build new language courses. Volunteers who wish to add a specific
language to Duolingo can do so if sufficient interest in contributing is detected. After they
fully prepare a course it enters the Beta phase which is, once again, open to the public. In
the final phase, the Beta testing is considered over but users can still report wrong questions
or misleading answers and Duolingo allows the volunteering contributors to tweak the course
further to fix such issues. Much like other modern learning applications, Duolingo utilizes
a gamified and a heavily data-driven approach to learning. Language lessons are divided
in a

”
skill tree“ fashion, through which the users can progress to learn new words, which

can be then practised in the vocabulary section. Users have limited
”
lives“ that are lost

when they make a mistake, and they earn
”
experience points“ as they advance through the

course. After they complete all lessons associated with it, they earn a particular
”
skill“.

Mistakes made by the user are aggregated and analysed, so that the system can learn and
adapt to help the user with the specific parts of the language they find difficult. The main
drawback of Duolingo compared to other language-learning software is that the lessons are
almost exclusively text based. As a result it goes rather light on usage of stock photos for
learning and it offers much less speaking practice.

Duolingo is available on the World Wide Web as well as a smartphone app for the iOS,

4

Android and Windows Phone 8.1 platforms. It is considered by the press to be the best free
language-learning app available, completely without charge for additional lessons. A study
conducted with native English speakers learning Spanish compared the writing ability of
the users of Rosetta Stone and Duolingo found that Duolingo is nearly twice as effective
in this regard [15]. Speaking ability was not measured, since Duolingo is rather lacking in
this area.

2.1.2 Rosetta Stone

Unlike Duolingo, Rosetta Stone is a proprietary language-learning software. It has been
released in multiple versions for more than a decade. Rosetta Stone itself is available
exclusively as a computer-based product on the OS X and Windows XP plus later platforms.
However, since Version 4 it has a Rosetta Stone TOTALe Online subscription service that
offers unlimited Web and app access to all lessons for a specific language. The TOTALe
software suite that comes with the service is somewhat chaotic to navigate. The application
designed specifically for mobile devices is the TOTALe Mobile Companion, available for
iOS and Android devices. It is however only an inferior variant of the Rosetta Stone
software and it is limited mostly to listening to and repeating sentences. The iPad and
Nook exclusive Language Training application (formerly known as Rosetta COURSE) offers
lessons identical to the computer-based Rosetta Stone program, along with all of its unique
features described in the next paragraph. Finally, there’s TOTALe Studio HD, an iPad
exclusive app for pre-scheduled video chats with native speakers.

Rosetta’s trademarked approach to language-learning is called
”
Dynamic Immersion“.

It utilizes a combination of images, text, audio and video to teach words, sentences and
grammar by spaced repetition completely without any translation. In a typical exercise, the
student gets to either hear a sound or see text in the foreign language they’re learning. They
are then provided with a variable number of images on screen from which they are supposed
to pick the correct option. In example, a native speaker makes a statement that describes
one of the pictures and based on the context the student choose the one that is associated
with the statement the most. In more advanced courses, the student is instead given a
picture and they’re supposed to complete or give a textual description of the photograph.
As an additional feature, the software is also capable of evaluating word pronunciation, if
the user has a microphone. It is useful as it compares the student’s flawless imagined accent
that comes from repeating sentences in their head with their actual accent in reality. The
voice recognition function has trouble operating in crowded spaces though, diminishing its
benefit for mobile applications. Rosetta Stone uses a mundane scoring system for its user’s
progress in a language course.

In terms of reception from both the media and language experts, Rosetta Stone is notable
for having over 34 language courses with various degrees of learning depth, including courses
for endangered languages. Its institutional usage (in example, a special military version of
Arabic courses from Rosetta Stone is available to all United States Army personnel) crowns
Rosetta Stone as the most popular commercial language-learning software. Criticism is
focused on overusing the same stock photos, with only four different picture sets designed
to be

”
culturally relevant“ towards specific groups of language courses. It has also been

for its lack of a pedagogical foundation and focus on marketing to create an economically
viable product.

5

2.1.3 busuu

In many ways, busuu is kind of the middle road between Duolingo and Rosetta Stone.
busuu is described as a social network for learning languages. It is neither freeware, nor
proprietary software. Its business model is described as freemium. It offers courses in twelve
languages which are initially free but the user must subscribe to get a time-limited access
to further, more advanced lessons. Similarly, the mobile apps offered by busuu are free to
download with a set of basic learning units with additional content available for purchase.
Subscribers get all mobile app content as well. busuu’s applications are designed for iOS
and Android devices.

Much like Rosetta Stone, busuu offers audio-visual courses. The courses are not based
on arbitrary skill trees or levels, but an actual guideline for foreign language learners –
the Common European Framework of Reference for Languages (CERF). Study material
is divided into units. Each unit consist of multiple-choice questions, speaking and writing
assignments and multimedia material. Similarly to Duolingo, the learning process is also
affected by the community. Users can act as both student and tutor, with the ability to
correct another’s work, or converse via chat, or a audio or video connection. The program is
overall received as well-designed pedagogically with its alternating between different kinds
of exercises and the ability to be corrected by fellow busuu users who are native users. In
practice, however, less than half requests receive a request from the community. Another
stand out feature of busuu is more of a convenience than a language-learning speciality.
busuu downloads its exercises to your mobile device in advance, which can be useful for
studying in areas that lack reliable Internet access or any access at all.

2.2 Learning Concepts

2.2.1 Forgetting curve

Figure 2.1: Depiction of the forgetting curve from [7].

In the field of psychology, the forgetting curve is a term that refers to a hypothesis
for the decline of memory retention over time. The hypothesis was first extrapolated by

6

Hermann Ebbinghaus in 1885. It describes how the ability of the brain to retain information
decreases as time progresses. A plot of a typical forgetting curve (shown here 2.1) purports
to show that at the beginning, the exact point when you actually learned a particular piece
of information, retention is exactly 100%. As time goes on the retention drops sharply
down to around 50% in the first couple of days. The forgetting curve is exponential. Half
the memory of newly learned knowledge is lost in matter of days and as time goes on, the
forgetting continues but at a rate that is much, much slower. This shows the importance
of reviewing learned material. It also supports transience, the process of forgetting that
occurs with the passage of time, from one of the seven kinds of memory failure.

The conclusion drawn from the effects of the forgetting curve are that each repetition in
learning increases the optimum interval before the next repetition is needed. Spending time
each day to remember information greatly decreases the negative effects. This essentially
changes the shape of the curve for the repeated information. Another related concept is
the strength of the memory, which affects the durability a memory traces in the brain. The
stronger the memory, the longer can a person recall it. Ebbinghaus asserted that the best
methods for increasing the strength of a memory are either using mnemonic techniques
to better represent the memory or repetition based on active recall, which leads us to the
concept of spaced repetition.

2.2.2 Spaced repetition

Spaced repetition is a learning technique that incorporates increasing intervals of time
between subsequent review of previously learned material in order to prevent the negative
effects of the forgetting curve. It exploits the psychological phenomenon known spacing
effect, whereby humans remember and learn more easily if information is studied a few
times over a longer timespan rather than repeatedly in a short timespan (also known as

”
cramming“ or massed presentation). The long-term effects of spacing have been specifically

assessed to have a major, positive impact in the context of learning a foreign language. Since
the 1960s, multiple systems, such as the Pimsleur method for language-learning or the all-
purpose Leitner system, which use flashcards, have been devised. Flashcards were simple
pieces of paper with a word on one side and its translation on the other.

Naturally, with the advancements of personal computers, this advanced into modern
spaced repetition systems for computer-assisted language learning and software-based so-
lutions [3]. While staying true to the original flashcard models, these solutions allow for
automated scheduling and most importantly automatic statistic gathering where the soft-
ware is able to adjust its spacing intervals for specific questions that the student found
difficult. In example, every time the student is unable to produce a correct response, the
material is considered harder than the rest and will appear more often than the the sub-
jectively easier questions that the student had no problem with. Other beneficial effects
of computer-assisted spaced repetition are automatic question-answer plus meaning gen-
eration (data has to be put in only once), availability of additional information such as
examples in sentences and most importantly audiovisual alternatives to written pairs. The
aforementioned Duolingo language-learning software makes great use of the spacing effect.

2.2.3 Learning curve

The learning curve represents graphically the increase of learning with experience. Once
again, it was first described by Hermann Ebbinghaus. The term itself is used when the same
task is repeated over and over again in a series of tests, or for learning a body of knowledge

7

over time. The learning curve is closely related to the experience curve effect. Experience
shows that the more times a task is performed, the less time and effort is required on each
subsequent repetition of the task [14]. In a broader sense, the learning curve is used not
only for learning itself, but also things such as the natural limits for resources, production
costs or technologies in general.

In terms of language-learning, the learning curve supports a collection of methods that
support learning at a higher rate without reduction of understanding the material and
without negatively affecting the memory retention. The most relevant method in this case
is visualisation of the learned knowledge. It purports that new foreign language terms can
be learned more easily if the foreign term is paired with a picture, which the term describes,
rather than the classic term-translation pair. Such approach also enables another method
to enhance the speed of learning – removing the context in the user’s native language and
letting them get through the test purely on the context, or simply trial and error (referred
to in in Rosetta Stone as

”
Dynamic Immersion“).

2.2.4 Gamification

Gamification is a term used to describe the usage of video game mechanics and game
thinking in a non-game context [16]. Broadly defined, gamification defines and takes the
elements from games that make them fun and motivate the players to continue playing
and uses these elements in a different kind of software in order to influence said software’s
users to behave similarly. Gamification has been studied and successfully applied in several
domains and the majority of reviews and studies on gamification found it to have positive
effects. It is argued that video games themselves often do a better job of teaching than
de-contextualized, skill-and-drill instruction. Students can use educational games to engage
in difficult tasks without embarrassment when they fail, and teachers can use educational
games to build problem-solving skills and help students see the meaning in their lessons.
In the context of education, gamification can potentially influence the students’ focus on
meaningful learning tasks, attendance or even them taking the initiative when it comes
to learning [11]. Gamification is not to be confused with game-based learning or outright
educational games, where the learning agenda is encompassed within the game itself. Gam-
ification methods don’t even necessarily demand to be in some sort of software and can be
applied to a real life education process (in example, even a classroom that incorporates
these methods can be considered

”
gamified“) [10].

In terms of language-learning software, Duolingo makes the most out of gamification
elements in their approach to learning. The elements relevant to this field (explained on
the Duolingo example) are:

• progress mechanics – the users progress is being tracked all the time with
”
experience

points“ that increase linearly as the user invests more time in the application (and
answers the questions correctly) and

”
skills“ that are awarded for when the user com-

pletes all tasks associated with it. This does not actually differ much from other
language-learning software that also awards the user with points for completing tasks
or even certificates when they fulfil the specific requirements. Such things are almost
a necessity for computer-assisted learning to begin with. Although it’s basically the
same system, the difference in the narrative, simply giving the reward system a new,
glorified name and directly presenting it to the user has a positive impact compared
to hiding these statistics away or treating them normally.

8

• player control – the
”
skill trees“ in Duolingo branch at certain points. This gives

the user the illusion of choice where they can progress the way they want rather than
the way the application expects them to go. Ultimately, they have to go through
the entire tree to advance to the next level but with this approach the user feels less
rail-roaded and less forced to learn specific aspects of the language that they perhaps
would not wish to at that moment.

• immediate feedback – the users immediately lose
”
lives“ for giving a wrong answer

and gain
”
experience points“ for giving the correct one. The constant risk and reward

can make the learning process potentially addictive. On its own this can have a
negative effect where it rewards the user for

”
meta-gaming“ such as doing menial

tasks over and over again to get their instant gratification with minimal thought
input and they learn nothing new. However, when other elements of gamification are
incorporated as well, it can have a huge impact on the user’s motivation and their
willingness to keep using the application in future as well. Much like a video game,
this can engage the user for hours more than standard, mundane learning software
would.

• scaffolded learning with increasing challenges – as mentioned beforehand, Duolingo
has multiple levels, each dealing with increasingly complicated parts of the language
being taught in them. Its data-driven approach that analyses the user’s mistakes also
allows it to increase the difficulty by focusing more on the parts of the language that
the user had issues with in the past and such questions are bound to occur more often
due to the spacing effect.

• opportunities for mastery, and levelling up – the levelling up part happens ob-
viously when the Duolingo user progresses through the actual levels into which the
language and its

”
skill trees“ are divided into. Its

”
skills“ are the representations of

actual mastery. Even before the user gets on a specific level (from an actual language
proficiency perspective – as in beginner, intermediate, native, etc.) they can get these
achievements as rewards for mastering specific parts of the language. It can be in
example a reward for completing the vocabulary section or the grammar section and
so on. This can be used to differentiate users on the same level proficiency-wise giving
them still a sense of achievement for having accomplished something that others did
not.

• social connection – possibly the most subtle but also the most important part of
Duolingo as well as the most resonating gamification method. It strives to leverage
people’s natural desire for socializing, self-expression within a group and competition.
Duolingo offers its users the option of creating a profile that not only saves their
progress (if using the Web application rather than the smartphone app) but also
to upload their results, progress, acquired

”
skills“ and so on to the Internet and

actually compare them with other users. This makes their achievements visible and
can potentially encourage the user to compete with others that they know who also
share this information about them. In a broader sense, it is potentially problematic
as it can consequently lead to unethical behaviour, low cooperation, collaboration or
even disadvantaging certain user demographics but such issues are relatively a non-
factor in language-learning applications as the first and foremost goal for the user is
still their own betterment in the foreign language, for practical reasons. Duolingo’s

9

community driven and created language courses also cleverly take advantage of this
particular gamification method, as the volunteers and contributors are credited (along
with the percentage of work they did in comparison to others) and visible for all other
users to see on the language course itself.

busuu’s social network approach to learning is also considered an element of gamifi-
cation – giving an opportunity for collaborative problem solving, something that can po-
tentially freshen up the learning process but it relies heavily on the willingness and the
participation of other users.

Criticisms of gamification methods claim that the most popularly implemented strate-
gies are not actually fun and merely create an artificial sense of achievement. Gamification
was described as a

”
populist idea that actually benefits corporate interests over those of

ordinary people“ [2] as it exploits human psychology to first and foremost keep the users
invested into the software. As pointed out in the previous paragraphs, it can also encourage
unintended behaviour. Nonetheless, from a purely computer engineering standpoint, it is
overall beneficial to implement at least some of these methods as it certainly helps the
software to stand out and survive on the app market, especially when it comes to indepen-
dently developed language-learning software without a huge marketing budget to promote
it or without professional pedagogic experience behind the design of the learning process.

10

Chapter 3

Application Design

This chapter describes the actual design of the application produced in this bachelor’s
thesis. Many of the design choices rely on the language-learning methods described in the
previous chapter and the overall intention is to create an application that is inspired by the
already mentioned popular mobile applications for language-learning, taking

”
the best of

all worlds“, whilst also contributing with something further, something of its own.

3.1 The Learning Process and Analysis

3.1.1 Language Division

One of the biggest assumptions that the application makes in regards to languages that are
available for learning is that the language can be split as follows:

• Language Levels – the levels represent big milestones achieved by the user in progress
of learning the language. A level can be divided into multiple sections. Once all of
the sections at a certain level are finished, the user proceeds to the next level.

– Level Sections – a section represents some particular skill required to master
the language, at the current language mastery level. Sections are independent by
default, so you can proceed in multiple sections at once. However, if necessary,
sections can be set to be dependent on one another. A section contains multiple
questions, which usually share at least one common grammatical tag.

∗ Section Questions – self-explanatory. Questions can be either purely tex-
tual, or they can come with images that visually represent the foreign lan-
guage term that’s being tested.

3.1.2 Evaluating Language Skill Level

As soon as the user makes their decision as to what language course they want to study,
they proceed directly by jumping into a test. The point of this test is to evaluate the user’s
current proficiency with the language.

The alternative, letting the user rate themselves is a poor design choice. It is highly
unlikely that the average user is able to correctly ascertain their skill level and it may lead
to over- or underestimating themselves.

Another important point of the introductory test is that the user does not actually know
that it’s assessing their initial rating, as it is not mentioned to them. This is to prevent

11

dishonest behaviour where the user may be inclined to use outside help with the test if they
know about its importance. The intention is for them to assume that this is just how the
application always works like. The test starts with the most basic and the easiest questions
available in the language for the first few tasks. At some points, however, the difficulty
may jump to a much higher level, even relatively early in the test. This is to check whether
the user is significantly more skilled than a user who might have had more trouble with the
relatively easier questions.

Naturally, answering just one of these questions correctly does not make the application
assume that the user is an expert – perhaps they managed to do so just because of plain
luck. To deal with such situations, the test not only manages an initial skill rating but
also a uncertainty factor for the user’s rating. The more unpredictable the user’s answers
get (in example, they are able to answer hard questions, yet fail on the most basic ones),
the higher the uncertainty factor. Similarly, the factor decreases when the user’s results
start becoming consistent when compared to a certain, predefined skill rating level. Once
the uncertainty factor is dealt with and the user answers a minimal amount of questions,
the test is done. If they continue to behave chaotically, the test may take significantly
longer. Consequently, the amount of questions the user has to answer is the smallest if they
completely fail the test. The test is also rather short if the user completely aces it.

After the test is finished, the user gets the appropriate Language Levels unlocked. If
they did better than a certain skill level, all the exercises considered to be required to obtain
that skill level are already considered finished and are not necessary to be done by the user.
If the user starts at the most basic level, the fact that their language skill was rated in
the initial test (and the fact that they did not do very well) is completely obfuscated to
them – they merely managed to unlock the first level. This prevents negatively affecting
the user’s self-esteem, if they had perhaps thought that they were better at the language
than the results showed. After all, positive reinforcement is one of the main pillars of the
application.

3.1.3 Regular Progress

After the evaluation process, the analysis of the user’s progress continues in a slightly
different way even in normal tests and exercises. The application keeps track of whenever
the user makes a mistake. As described in the spacing effect, such functioning is desirable
because it enables to identify which questions the user has the worst difficulties with. In a
spaced repetition system, such questions would repeat a lot more often than others to help
the student overcome their specific weak points in the language they’re learning. However,
to make things more sophisticated, the method used for the spacing effect in the application
does not keep

”
mistake records“ for the specific question, which would make the exact same

question appear over and over again.
A better solution is to apply certain tags which identify the questions and group them

together based on what part of the language they are associated with. In example, if the
user has trouble answering a question that is associated with the

”
preposition“ tag, they

are more likely to get more questions from this tag in general, rather than this specific
question only.

A single question may even be associated with multiple tags and as the user gets more
and more questions wrong, the spaced repetition system can see patters within the wrongly
answered questions simply due to the common denominator tag standing out. With this
approach, the application could potentially find out that (in more complicated questions)

12

the crux of the matter was not actually the most obvious part that was being predominantly
tested by the question, but something else within the wording of the question. The user
may make a mistake in an exercise related to, say, present perfect (in English) but over time
the algorithm finds out that they did not actually have a problem with the grammatical
part of the question, but the vocabulary used in it.

Of course, it is also necessary to repeat questions that the user had no trouble with,
occasionally, to help the learned information stay in the user’s memory. However, they
appear less frequently than the new and the troublesome ones.

3.2 A Community-driven Multimedia Pool

This part of the application design section describes the perhaps least language-learning
related, but also the most standout, original idea of the application itself. The thought
behind the idea was to come up with a comfortable and easy way how to update the images
that are used in some of the exercises within the language-learning process. Surely, it would
get tiresome to look at the same set of stock pictures overused mercilessly. At the same
time, it might be too time-consuming for the developer to find multiple variant pictures for
the same term and it could quickly bloat the space requirements necessary to keep all these
images on the memory card, limiting the applications potential to be deployed on cheaper
devices.

The most interesting solution to the problem is to make use of Firefox OS open approach
to Web APIs. The application can allow the user the download images from a suitable image
hosting platform if they wish to do so. Multiple candidates for the service were considered,
and the resulting service is described in the implementation chapter. The most important
part is that they allow some way that can be used to describe the images. A specific album
reserved for the application would be used. The images are not downloaded permanently
but only used temporary (if the cache is enabled on the operating system) by accessing the
album and getting the image from there only when it’s needed.

There is also the option that the users of the application could suggest images to be
used in the learning process by uploading them into another album. This

”
download image

pool“ could be maintained by a developer or chosen community members and contributors,
who filter out the inappropriate images and check if the uploaded images are actually
representative for the term that the uploader themselves meant them for. The images that
fulfil all the necessary requirements get to be uploaded in the actual albums used for the
multimedia questions in the language learning process and basically shared with all the
other application users in the world.

3.3 User Interface

This section of the Design chapter talks about how the application looks like and most
importantly, it gives the reasoning why it looks like that.

3.3.1 Design Philosophy

The main
”
philosophy“ behind the design of the user interface is to take advantage of the

fact that the application is being designed specifically for Firefox OS, an operating system
for handheld devices (primarily smartphones). This means, that everything about the
user interface design can cater specifically to the controls of such devices and the practical

13

demands of their users. The design also attempts to keep everything simple, so that once
the user gets a basic understanding of how the controls work or where all the important
control elements are, they can safely assume that there will be no

”
surprises“.

3.3.2 Context Action Menu

The Context Action Menu is accessed by the
”
plus“ sign in the top right corner of the

user interface, on its header. Basically, every
”
action“, everything that triggers progress in

the application is controlled through here. The user presses the relatively small button in
the corner, and a menu that shows all the actions available to the user. The actions vary
depending on what context the user is in – the inner state of the application (in example,
if the user is currently being evaluated or not) and the page that the user is currently on
(that they can visually see). Whilst this design may seem too simple, or even primitive, it
is actually very practical. It allows the user to hold the device in one hand and to control
pretty much everything that happens in there with just the thumb of the same hand. It
is quite the ergonomic solution as well. The user can relatively safely rest their fingers on
most of the phone’s screen area without having to

”
lock“ the device to avoid tampering with

whatever is on the screen when this application is running. This also means that there are
no text input control elements which would allow to perhaps answer questions by writing
the answer instead of choosing it. Although that may sound like an unfortunate limitation,
I personally do not believe that having a different way of answering question really does
anything beneficial for the learning process. If anything, it is detrimental, because it messes
with the user’s rhythm and, especially on typically cheap Firefox OS handheld devices, using
the keyboard can be a rather unpleasant experience.

3.3.3 Preferences Menu

The preferences menu (pictured here 3.1), where all the settings of the applications are, is
on the horizontally opposite side of the user interface. It is meant to be the most rarely
clicked control element of the application and hence it is the most further away from the
user’s right thumb. The most notable setting in this menu is the one that allows the user
to flip almost the entire interface horizontally. Basically, it flips the position of all the
control elements. This allows left-handers, or people who prefer to hold their device in the
left hand, to enjoy the same ergonomic comfort as everyone else. The install button (if
necessary) also appears on the top header, as is usual with Firefox OS applications.

3.3.4 Main Page

The main page refers to the body of the application where the majority of information
is displayed. It is rather simple and straightforward, since the only real control elements
here are expandable thumbnails of images and a footer/toolbar at the bottom of the user
interface which is used to switch between the interface display pages, which are referred to
as follows:

• Main – initially, this page displays the splash-screen that the user sees when they open
the application. During the learning process, it is then used to display the questions
and answers, whether they’re textual or visual in nature. Visual questions only come
in the form of image-question and text-answers. Originally, it was planned to also
have the opposite of that, text-question and multiple image-answers, however I was

14

Figure 3.1: Picture of the UI with an active question and a left-hand interface on the left
and a picture of its preferences menu on the right.

unable to find a way how to display the images comfortably, and more importantly
it would bring some technical limitations due to the way the images are represented
in the application. These limitations are explained in the Implementation chapter of
the thesis. On this page, the context menu is used to select the user’s option (answer)
to the presented question, most of the time. An example of the question page can be
seen here 3.1.

• Overview – just like the name says, the purpose of this page is to show the overview
of the user’s active language courses, what level they are on, what levels they have
already finished and their progress through the active level sections. The progress
bars (or

”
experience bars“) are shown for each section in the section overview display

page. The context menu actions for this page are used to navigate between choosing
a language, a level and a section (the former being available from the start, while the
latter two are only available if an already calibrated language was chosen).

• Images – this page displays instructions how to upload and properly share images that
the user would like to add to the multimedia pool of the application. The context
action menu is used to select an image, whose expandable thumbnail is then presented
on the page, and afterwards it leads to the selection of the category tag that the user
would wish to upload their image as. An example of the image upload page can be
seen here 3.2.

15

Figure 3.2: Picture of the UI with enabled multimedia and a picture selected for upload on
the left and a picture of its context action menu on the right.

16

Chapter 4

Implementation

This chapter describes how, and with what technologies, the design mentioned in the pre-
vious chapter was implemented. As far as (computer) languages go, the application is pro-
grammed exclusively in HTML5, CSS3 and Javascript. It uses

”
pure“ Javascript – though

the popular jQuery or AngularJS libraries would certainly be useful, they weren’t used to
avoid potential issues in the testing phase caused by some arbitrary restrictions based on the
imperfect implementation of (some versions of) the Firefox OS simulator. The application
is considered a

”
Packaged app“ – a type of an Open Web App that has all of its resources

(the source code, the manifest etc.) packaged in a zip file, rather than having resources on
a Web server. Such apps are distributed for the Firefox OS end users strictly through the
Firefox Marketplace.

For the sake of the implementation, the application’s project codename is ffOSill – an
abbreviation for Firefox OS Interactive Language Learner. Whist the name is certainly
catchy, it may cause some trademark problems when trying to get a place in the Firefox
Marketplace.

4.1 Interface Implementation

I used Gaia Building Blocks as a foundation for the user interface of the application. Specif-
ically, ffOSill is built upon an already pre-edited, simplified form of Building Blocks with
some basic added functionality by Pierre Richard from hacks.mozilla.org [12]. Addi-
tionally, the generic install.js and dispatcher.js scripts for installing applications and
dispatching events were also taken from him. Whilst retaining much of the visual design of
the Building Blocks original (such as the color scheme and general proportions) some UI
elements were significantly modified for the application’s needs. The Building Blocks ver-
sion used is the same as the one recommended for the 1.3 version of the operating system,
to ensure maximum backwards compatibility. They were also chosen because they already
fulfil the recommended visual standards for Firefox OS applications [5], so I wouldn’t need
to trouble myself with making my own graphics matching their requirements.

4.2 Local Storage

Since ffOSill is a Packaged app, it needs some way to store its memory between user sessions
locally. Otherwise, the user’s progress would be lost every time they quit the application or
turn off the device. The most obvious way is using localStorage – a new HTML5 feature

17

which allows web applications a new way of storing persistent information [8]. Unlike
cookies, it allows for a lot more storage space and it isn’t necessary to transmit it to the
server. Since the application has no server of its own and doesn’t use cookies, this would
seem like an ideal solution. However, it has its issues:

• accessing information in localStorage is a synchronous operation, meaning it blocks
the main thread and can potentially make for an unpleasant, laggy experience for the
user, especially if it’s accessed too often and to retrieve big chunks of data.

• its size is limited to 5MB and there is no way of selectively deleting records or telling
how full it is.

• a single call to the localStorage.clear() method can wipe the memory of all ap-
plications using it.

• all data has to be stored as strings.

Hence, its usage for storing data of Firefox OS applications is not recommended. For-
tunately, there have been improvements (or

”
hacks“ if you will) to improve the situation.

The one chosen for this application is async storage.js, an edited version of the original
Gaia project version, by Asier Arizkuren [1]. It is basically an asynchronous version of the
localStorage API based on an IndexedDB database, which uses the same relatively simple
methods of storing and loading information that the former did. Additionally, it can also
store entire objects instead of just strings, allowing me to store the entire Language object
created for each language course in language.js without having to serialize it for storing
and parsing it for loading information.

4.3 Language Data Format

The language data is encoded using the Extensible Markup Language (XML) format. It
mirrors the design mentioned in 3.1.1. An example of how it’s encoded follows:

<?xml version ="1.0" encoding ="UTF -8"?>

<data>

<languages >

<language name="LANGUAGENAME">

<tags>

<tag>TAGNAME </tag>

</tags>

<replace_string >QTEXT_STRING </replace_tag >

<questions >

<level id="LEVELID">...</level>

</questions >

</language >

</languages >

<multimedia >

<available_category_tags >

<category name="CATEGORYNAME"/>

...

</available_category_tags >

18

<category in_LANGUAGENAME="CATEGORYNAME">

<album >LINK</album >

<picture in_LANGUAGENAME="TERMNAME">LINK</picture >

</category >

...

</multimedia >

</data>

The XML definition of a Language Level:

<level id="LEVELID">

<subsection name="SECTIONNAME">

<info>

<main_tags >

<tag>TAGNAME </tag>

</main_tags >

<dependency >SECTIONNAME </dependency >

<requirement >NUMBER </requirement >

</info>

<question id="QUESTIONID">

<qtext >QUESTION_TEXT </qtext >

<answer id="correct">CORRECT_ANSWER </answer >

<answer id="false">INCORRECT_ANSWER </answer >

...

<additional_tag ></additional_tag >

<img_alt >

<ref_term >[CATEGORYNAME .] TERMNAME <ref_term >

<ref_link >LINK</ref_link >

<qtext>...</qtext>

<answer >...</answer >

...

</img_alt >

</question >

</subsection >

...

</level id="LEVELID">

Most of the language definition is rather self-explanatory. As you can see, the data
.xml file includes all the language info as well as the multimedia info which are split in the
two main XML nodes. The <replace string> element defines what string (that should be
found in all question strings of its parent element language) is visually replaced with the
correct answer upon answering. The <requirement> element in the section info is used to
enable the language creator to put emphasis on certain sections and the <dependency> ele-
ment is optional and it says what section must be completed before this section is unlocked
to the user. The element is optional but highly recommended, since it enables
usage of visual question types. It is used as the alternative (but preferred) version of the
question if multimedia access is enabled. The visual question is replaced with a thematically
similar standard, text question if multimedia are unavailable, so the non-visual question
part is obligatory. The inside of the <multimedia> tag is explained in the Multimedia
Implementation section of this chapter (4.6).

19

The main reasoning behind the XML structure is that potentially anyone can add new
language records, new sections and questions to existing languages or new multimedia,
even with relatively little understanding of computer engineering. It means that a separate
individual, who is an actual professional expert on the language subject, can edit and add
questions, independently of the software engineer.

4.4 Calibration Algorithm

This section describes the concrete algorithm of the skill evaluation method designed in
3.1.2.

Algorithm 1: Language Skill Evaluation Algorithm Pseudocode
Data: initial MMR, defined MMR brackets for each Level
Result: final MMR which defines the user’s Language Level

1: uncertainty = 100%
2: questionsCount = 0
3: while uncertainty > minimumThreshold or questionsCount < 20 do
4: questionsCount++
5: get random question from the random range based on current MMR bracket
6: if answered correctly then
7: check consistency
8: if consistent good performance then
9: decrease uncertainty
10: increase MMR by a function of uncertainty
11: modify random range based on current bracket upwards
12: else
13: increase MMR by a function of uncertainty
14: increase uncertainty
15: end if
16: else
17: check consistency
18: if consistent bad performance then
19: decrease uncertainty
20: decrease MMR by a function of uncertainty
21: modify random range based on current bracket downwards
22: else
23: decrease MMR by a function of uncertainty
24: increase uncertainty
25: end if
26: end if
27: recalculate MMR bracket
28: end while

The MMR acronym used in the algorithm stands for
”
Matchmaking Rating“. It is

one of the gamification influences on the overall conception of the application (the MMR
term itself generally comes from the Elo rating system method for calculating relative skill
levels of players). The idea behind this part of the application is that the whole point
of the language evaluating is to find the right skill bracket for the user who just started

20

a new language course. While they aren’t competing against anyone per se, the concept
of

”
defeating“ stronger opponents (more difficult questions than they were expected to be

able to handle) giving more rating than others still applies. Consistence is a very important
factor in here – answering just one in ten difficult questions is nothing more than a stroke
of luck and should be treated as such by the algorithm as well.

The values itself that are used to define the initial MMR and the MMR brackets were
implemented empirically, based on observations of how different skilled users fared in an
actual placement test done by pedagogic professionals. The main advantage of this method
is that users’ language skill is determined much faster than simply copying existing tests
with pre-determined question counts and gradually difficulty progression. It comes at the
cost that there is also a possibility that the user is placed in a higher or lower skill level
than he should be in. To lessen the impact, the algorithm’s MMR placement takes a
pessimistic approach towards the user’s progression – it simply assumes the worst about
them. It is much harder to climb back up in MMR once the user already made some
consistent mistakes at low level questions. This is done simply by having the MMR bracket
ranges biggest for the lower level and allowing only a fraction of the top MMR range for
the highest bracket. The decision comes from a common sense assumption that, despite
the fact that all

”
unlocked“ levels are still retroactively available for revisiting, it is quite

unlikely that the user will click on them, even if they’re having a tough time in the current
level (as a result of being placed higher that they should be). On the other hand, if a highly
skilled user gets accidentally placed in a lower level than he should be, he should have no
trouble getting to the next one within a short period of time. At worst, it hurts their pride,
rather than significantly impeding their progress. The majority of the time spent testing
this application was spent towards proving or potentially disproving this assumption, as
described in the Testing chapter.

4.5 CALL Implementation

This section briefly describes how the computer-assisted language learning (CALL) methods
based on general learning concepts, which were described in 2.2, were implemented in
ffOSill. The forgetting curve and spaced repetition concepts are enabled by making use of
the short and long term memory of the application. Once they got past the calibration
process, the user’s progress through individual sections is much slower and based on small

”
experience points“ (XP) rewards for each correctly answered question. These XP are

effectively synonymous with progress points. Users never lose XP for answering a question
wrong (ffOSill focuses on the positive). However, if a user keeps getting the same question
over and over again in the same session, they keep getting less XP for it, down to a minimal
amount. Such behaviour, tracked through the short term memory of the application, would
indicate that the section is either low on questions or that the user is genuinely trying to

”
grind it out“ by putting lots of time into the same section within the same application

session. As explained in 2.2, this is not an efficient way of learning, and is punished by
slowing it down.

On the other hand, when the user makes a mistake, the tags of the question he made
a mistake on are recorded in the long term memory, to aid the spaced repetition concept.
Once some tag’s errata counter reaches a certain threshold (based on the level the user is
in, or more precisely the total amount of questions in the level), the tag is

”
popped“ from

the queue of tags waiting to be repeated. If no question with the appropriate tag is found
in the currently active section, other sections on the level are searched through. Testing

21

how well this works on real users is rather difficult, since it relies on the assumption that
the questions are well inter-tagged to begin with, which may require more pedagogic input
than the application had at the time of testing. Furthermore, the users themselves may
find it difficult to tell that the forgetting curve triggered question they get was actually the
one they had trouble with, because they may have, ironically, by that time forgotten that
they had trouble with the material.

Finally, it should be noted that since there are no pre-determined tests to go through
in the application, some degree of randomness to freshen things up is necessary. When
a section is selected, question order (outside of questions triggered by CALL methods) is
determined by all available questions in the active sections from a randomly shuffled queue
(once it’s empty, it’s shuffled again). Similarly, every time a question is generated, the
correct and incorrect answer positions on the screen are randomly shuffled. To implement
this, the application makes use of a standard variation of the Fisher-Yates shuffle (aka
Knuth shuffle) algorithm.

4.6 Web API Usage for Multimedia Implementation

The main tool for implementing the visual question content of the application is the Imgur
API Version 3 [4]. The Imgur on-line image hosting service has been chosen because of
all the currently popular image sharing sites, it was the most suitable one that fulfilled all
the conditions for usage by ffOSill. As a service, it allows its end users to create multiple
albums with easily editable album names and image titles. Its API allows easy and fast
access to the created albums. A simple GET request can be used to get information about all
images on the album through an XML (or JSON, if preferred) response, and through there
it is easy to find an image (or images) inside the album based on the title the application
is looking for.

In the context of the application it means that it can search for an appropriate image
for an image type question which describes a referential term that consists of a category
and a tag from said category. In example, the category name can be

”
animals“ and the tag

that belongs to this category might be
”
dog“. From the implementation perspective, this

means that ffOSill searches through the XML data if the category and tag combination
exists and, if so, if there is a direct picture link for it. However, it can also find an album
link instead of a direct picture link. If it does that, the application uses the Imgur API
to check if an image with a title that corresponds to the tag exists in there. If yes, the
link(s) to the found picture(s) can also be used as the image pool for the category and tag
combination. One image is randomly chosen from this pool and used for the image type
question that requested the term.

Basically, for every term, there is either a direct link provided in the image question’s
definition in the XML data, or the application uses a term to find a combination of albums
and direct links for the term and randomly chooses one of them. It could be said that
category tags are synonymous to albums and terms are synonymous to direct picture links.
However, the use case scenario where the XML data was defined as available categories
with no albums is also not unexpected. It could mean that the term category is available
to create albums for in the future – perhaps with the contribution of the application’s end
users.

This brings us to the other benefit of using the Imgur API. It was the only service
that could provide a feasible way for the users to contribute images without the application
actually needing its own server to control the flow. Other than creating regular albums,

22

which can be controlled through the Imgur website after signing in, The Imgur API Version 3
also allows creation of so called

”
anonymous albums“. Unlike the regular ones, which require

OAuth 2.0 authentication – in other words, to be logged in – in order to be manipulated with,
anonymous albums require nothing but a Client ID (the to which the application using the
API is registered) and a

”
deletehash“ which is a random string that is return on creation

of an anonymous album. Knowledge of the deletehash is basically the authorization for
editing the anonymous album. The only downside to this is that the anonymous albums
have to be controlled fully through the Imgur API (the service provider does not give this
option to regular registered accounts on their websites).

To make matters even simpler, Mozilla Firefox provides its own API called Web Activ-
ities (documentation available here [5]) which is supposed to be available to all installed
code running on Firefox for Android, but is currently only enabled on Firefox OS. Activi-
ties are something that the user wants to do on the device. Typically, send an e-mail, save
bookmark, or most relevantly for this application – pick an image. This activity enables the
application to let the image picking handling completely to Firefox OS. It offers the user to
choose an image from gallery, resize it, or to go to the in-built Camera application and take
a picture which will be then selected for uploading. The only downside to Web Activities
is the fact that it is necessary to use slightly different code for Firefox OS 1.3 and below
and Firefox OS 2.0+.

As far as usage limitations go, the Imgur API is free for non-commercial usage. ffOSill
has been planned to be released under a free license from the start (one that is compatible
with / considered a Good License by Fedora) so this is no problem. Heavy free usage comes
with certain bandwidth limitations, but the application is not expected to exceed any of
them, especially since the idea of having multiple image answers (instead of just image
type questions) abolished. All that’s necessary to use the API is that the application is
registered (which is a simple and free process) after which the developer is granted their
own Client ID and Client Secret.

23

Chapter 5

Testing

This chapter describes the entire testing process, all the input necessary for testing, infor-
mation about the test subjects and feedback from them. Finally, it evaluates the outcomes
of the testing phase from both the technical and language skill perspective and how ffOSill
compares to the existing language learning application software.

5.1 Prerequisites & Preparation

The main prerequisite for testing this application is, of course, having a thoroughly imple-
mented language for testing. Despite the fact that the application is localized in English,
the language used for testing purposes was English as well. In order to make the experience
for the language learners at least somewhat professional and productive, and make the test
results as accurate as possible, most of the questions and sections used were taken from
the Cambridge book English Grammar in Use [9]. Since publicizing the questions would
be copyright infringement, my personal best interpretation of what an English language
course should look like was used for the purposes of demonstrating the language learning
aspect of the application.

Although it has been said that you only need to test with five users [6], I managed to
find seven different test subjects willing to go through an approximately month long test
phase. Because most of them don’t own an actual device with Firefox OS, to make things
as even as possible, they all tested the application using the Firefox OS simulator, running
the 2.0 version of the operating system. All the test subjects needed to use an instruction
manual to get the simulator running on a Mozilla Firefox web browser, regardless of their
computer literacy level, although the least proficient users needed some personal help and
instructions as well.

5.2 Test Results

The test results, with all the relevant data listed for each test subject, are here 5.1. A brief
explanation of the data in the table:

• The Computer Literacy tracks the individuals’ ability to use all kinds of computer
software in general as well as their experience specifically with handheld devices, such
as smartphones. Mostly a subjective, self-reported statistic, but the highest skilled
individuals had education to back it up and the lowest rated subjects wouldn’t lie
about that.

24

Test Subjects

Their #1 #2 #3 #4 #5 #6 #7

Computer
Literacy

High High Average Average High Low Minimal

Achieved
Language
Skill

BAN4 B2 & FCE B1 BAN4 B1 → BAN2 N/A C2

CEF Level
Equivalent

B1 B2 B1 B1 B1 → A2 A1 C2

Expected
Evaluation
Level

Level 3 Level 4 Level 2 Level 3 Level 3 or 2 Level 1 Level 4

Actual
Evaluation
Level

Level 2 Level 4 Level 1 Level 3 Level 2 Level 1 Level 3

Time To
Reach
Next
Level

5 hours 1.5 hours 1 hour 8 hours 4.5 hours 6 hours 3 hours

Table 5.1: A comparison of the subjects’ technical & language skills and their results.

• Achieved Language Skill is based on relatively objective standards – skill in En-
glish that the individual is actually, officially confirmed to have achieved. The BAN
levels are based on the BUT standards for judging English language skills. Some are
supposed to directly correlate to a particular CEF level. The FCE language skill
refers to the Cambridge English: First certificate. Although it is supposed to be a
practice level of B2, it is differentiated since the B levels listed in this row all come
from school state exams.

• The CEF Level Equivalent row transforms the previous one into the Common
European Framework for Languages: Learning, Teaching, Assessment guideline used
to describe achievements of foreign language learners across Europe. They are split
into Basic User (A1, A2), Independent User (B1, B2) and Proficient User (C1, C2).
BAN4 is said to officially correlate to the B1 level.

• Expected Evaluation Level is the language skill level that I expected the user
would get based on their aforementioned official skill and sometimes my personal
assessment of the individual if their case was unclear. In general, the rules could be
summed up as follows:

25

– A1 is always Level 1.

– A2 might be Level 1, but is most likely Level 2.

– B1 might be Level 2, but is most likely Level 3.

– B2 is at least Level 3, but might be Level 4.

– C1 should be Level 4 and go up from there.

– C2 should be Level 4 and have no trouble finishing it.

• Actual Evaluation Level is the level the test subject obtained after they were done
with the calibration process in ffOSill.

• Time To Reach Next Level is probably the most important statistic, since it
tracks the approximate (or estimated) time to advance to the next milestone in the
language according to the application. Although it is expressed in hours, it is not
necessarily as absolute as presented, since it wasn’t measured exactly and was self-
reported by the individuals themselves, based on the time they thought they spent
with the application. In some cases, the test subject could only provide a relative
amount of time they spent on the application overall (as in a third of it, in example).

5.2.1 Explanation

The fact that none of the users actually went above their expected level is appeasing.
The only real example of overperforming was subject #2, but that was somewhat to be
expected, because they managed to go through both the B2 level state exam and the FCE
exam with relative ease, so their real achieved language skill should be most likely at least
C1, hence the Level 4. BAN4 holders were expected to live up to the B1 equivalent Level
3. Subject #1 unfortunately did not manage to do so. Since it also took them a relatively
long time to go to the next level (which was supposed to be their actual level), the most
feasible explanation to me is that their language skill is no longer reflected in the level
they’ve officially acquired – something that is bound to happen without repeated practice.
Test subject #3 has also achieved a lower level than expected, and the expectations were
already set at the lowest level. They may have had a B1 level according to a school state
exam, but their language skills hardly reflected that to begin with and they managed to
pass only barely. The most jarring discrepancy is test subject #7. They had officially
obtained a certificate that says they are able to use English at a near-native level at some
point in time and yet they failed to obtain the highest level in the application. This may
be explained by a multitude of factors, but mainly the fact that this user had the lowest
expertise with handling handheld devices and also the oldest among the test subjects.

5.2.2 User Feedback

This section contains some of the interesting feedback that the individuals who tested the
applications provided themselves regarding the application:

• The user interface was generally well received. Though not deemed as particularly
visually attractive, the design was commended for keeping all the control elements
clearly at hand at all times. Ironically, the users with the highest computer literacy
needed the most time accepting the way the application is controlled, but even those
test subjects could see the practical value of the control elements’ distribution on the

26

interface. The idea itself was actually inspired by complaints from test subject #7 in
a very early stage of testing.

• The calibration process implementation can be considered a success, since none of the
test subjects had any particular, negative remarks regarding it and this phase took
them one hour at the most to complete.

• Although its usage during the test phase was very limited, due to the lack of a
functional camera to take pictures with in the Firefox OS simulator, the idea of
potentially sharing images from the device with the entire user-base was universally
welcomed.

• The forgetting curve and spaced retention went mostly unnoticed by the test subjects.
This is because it’s hard to realize that the method is being applied from an end user’s
perspective and because I had difficulties coming up with proper tagging that would
interconnect the questions in the English language test version.

5.3 Evaluation

Language Learning Applications

Features Duolingo busuu Rosetta Stone ffOSill

License Proprietary Proprietary Proprietary Free (Apache License)

Payment
Model

Freeware Freemium Payware Freeware

Available
Multime-
dia

Minimal Audio-Visual Audio-Visual Visual (Images)

Community
Input

Create courses Tutoring Minimal Contribute images

Availability Online platform iOS & Android iOS & Android Firefox OS

Table 5.2: A comparison of the applications mentioned in this thesis and ffOSill, the appli-
cation created for this thesis.

As evident from the previous section, it can be concluded that the application did at the
very least succeed in applying it’s slightly gamified approach to the language skill evaluation
method. Its

”
experience bars“ and methods of implementing the typical computer-assisted

language learning methods are not bad per se, but they do not stand out amongst the
competition. The user’s reaction to the application was generally positive but that may be
expected with cherry-picked test subjects. For a retrospective view, a table that compares
the application created in this thesis, ffOSill to the rest of the language learning applications

27

mentioned in this thesis can be found here 5.2. This is ultimately what the average user’s
decision to use or not use a language learning application would be based on.

28

Chapter 6

Conclusion

In this Bachelor Project, I have developed an application called ffOSill. It is an interactive
language learning application designed specifically for the Firefox OS operating system for
handheld devices. It was designed with this in mind and attempts to break new ground
by utilizing an unorthodox user interface, allowing its users to control it easily and com-
fortably with just one hand. It applies many of the typical language learning methods
used in contemporary software of this kind but it also takes the concept of gamification to
comparatively new levels. Its attempts to create a faster language skill evaluating method
have been thoroughly tested and the test results proved that it can have a positive con-
tribution towards the language learning process. The application makes smart use of Web
APIs to circumvent some of the shortcomings of typical Firefox OS devices and even better
use at enabling the application’s users to contribute to the language’s multimedia pool.
The thesis clearly points out how ffOSill is different from the competition and that there
are valid reasons for choosing it over similar, even commercial software. In the long term
vision, there are many useful potential developments for the application, such as making
it even more open towards the community by improving on the language creation process
and improving its tag definition. The more welcoming to the community it is, the more
will the pedagogic language level increase and the application will become gradually more
professional. With its dynamic approach to question definition, it could also be modified
into software for learning more than just languages.

29

Bibliography

[1] Arizkuren A. asynchronous version of the localStorage API [online].
https://github.com/aarizkuren/asyncStorage, 2014-11-21 [Accessed 2015-4-3].

[2] Chaplin H. I Don’t Want To Be a Superhero [online].
http://www.slate.com/articles/technology/gaming/2011/03/i_dont_want_to_

be_a_superhero.2.html, 2011-3-29 [Accessed 2014-11-28].

[3] Goodwin-Jones, R. Emerging Technologies: Mobile Apps for Language Learning.
Language Learning & Technology, 15(2):2–11, July 2011.

[4] Imgur.com. Imgur API Version 3 [online]. https://api.imgur.com/, 2015-4-2
[Accessed 2015-1-2].

[5] Mozilla Developer Network and individual contributors. The Firefox OS platform
[online]. https://developer.mozilla.org/cs/Firefox_OS/Platform, 2005-2015
[Accessed 2014-10-16].

[6] Nielsen, J. Why You Only Need to Test with 5 Users [online]. http:
//www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/,
2000-03-19 [Accessed 2015-05-11].

[7] phase-6 GmbH. phase-6 system of repetition [online]. https://www.phase-6.com/
en/vocabulary-tool/scientific-background/scientific-background.html,
2007-2017 [Accessed 2014-11-29].

[8] Pilgrim M. The Past, Present & Future of Local Storage for Web Applications
[online]. http://diveintohtml5.info/storage.html, 2009-2011 [Accessed
2015-4-3].

[9] Murphy R. English Grammar in Use. Cambridge University Press, third edition,
2006. ISBN 978-0-521-53289-1.

[10] Renaud, C., Wagoner, B. The Gamification of Learning. Principal Leadership,
12(1):56–59, 7 2011.

[11] Ricci, K.E. The use of computer-based videogames in knowledge acquisition and
retention. Journal of Interactive Instruction Development, 7(1):17–22, 1994.

[12] Richard P. A minimalist’s working example of
the design guide rules for Firefox OS [online]. https://hacks.mozilla.org/2012/12/
fxosstub-a-minimalists-working-example-of-the-design-guide-rules-for-firefox-os/,
2012-12-10 [Accessed 2015-02-24].

30

https://github.com/aarizkuren/asyncStorage
http://www.slate.com/articles/technology/gaming/2011/03/i_dont_want_to_be_a_superhero.2.html
http://www.slate.com/articles/technology/gaming/2011/03/i_dont_want_to_be_a_superhero.2.html
https://api.imgur.com/
https://developer.mozilla.org/cs/Firefox_OS/Platform
http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.phase-6.com/en/vocabulary-tool/scientific-background/scientific-background.html
https://www.phase-6.com/en/vocabulary-tool/scientific-background/scientific-background.html
http://diveintohtml5.info/storage.html
https://hacks.mozilla.org/2012/12/fxosstub-a-minimalists-working-example-of-the-design-guide-rules-for-firefox-os/
https://hacks.mozilla.org/2012/12/fxosstub-a-minimalists-working-example-of-the-design-guide-rules-for-firefox-os/

[13] Shah, J. ZTE finds Firefox OS faring better in emerging markets than the US
[online]. http://www.pcworld.com/article/2839579/
zte-finds-firefox-os-faring-better-in-emerging-markets-than-the-us.

html, 2014-10-27 [Accessed 2014-11-28]. PCWorld.

[14] Sousa, D.A. How the Brain Learns. SAGE Publications, third edition, 2006-1-28.
ISBN 9781412937382.

[15] Vesselinov, R., Grego, J. Duolingo Effectiveness Study [online].
http://static.duolingo.com/s3/DuolingoReport_Final.pdf, December 2012
[Accessed 2014-11-28].

[16] Werbach, K. For the Win: How Game Thinking Can Revolutionize Your Business.
Wharton Digital Press, 2012. ISBN 978-1613630235.

31

http://www.pcworld.com/article/2839579/zte-finds-firefox-os-faring-better-in-emerging-markets-than-the-us.html
http://www.pcworld.com/article/2839579/zte-finds-firefox-os-faring-better-in-emerging-markets-than-the-us.html
http://www.pcworld.com/article/2839579/zte-finds-firefox-os-faring-better-in-emerging-markets-than-the-us.html
http://static.duolingo.com/s3/DuolingoReport_Final.pdf

	Introduction
	Language Learning
	Learning Software Comparison
	Duolingo
	Rosetta Stone
	busuu

	Learning Concepts
	Forgetting curve
	Spaced repetition
	Learning curve
	Gamification

	Application Design
	The Learning Process and Analysis
	Language Division
	Evaluating Language Skill Level
	Regular Progress

	A Community-driven Multimedia Pool
	User Interface
	Design Philosophy
	Context Action Menu
	Preferences Menu
	Main Page

	Implementation
	Interface Implementation
	Local Storage
	Language Data Format
	Calibration Algorithm
	CALL Implementation
	Web API Usage for Multimedia Implementation

	Testing
	Prerequisites & Preparation
	Test Results
	Explanation
	User Feedback

	Evaluation

	Conclusion

