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Computation of Equilibrium Paths in Nonlinear Finite Element Models 
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Abstract. In the present paper, equilibrium paths are simulated applying the nonlinear finite element model. On the 
equilibrium paths, there are identified critical points which contribute to understanding and quantification of stability 
processes in a nonlinear system. By means of nonlinear solution, bifurcation points from which two equilibrium path 
branches emanate and so there is no unique tangent were identified and drawn. Mutual position of limit and 
bifurcation points was identified. The paper describes multidisciplinary problems of the analysis of limit states of 
nonlinear systems. The methods of stochastic and sensibility analyses which are frequently applied to assessment of 
the safety and reliability of supporting structural systems are discussed. 

1 Introduction  

The stability of slender bars is a phenomenon associated 
with buckling [1]. Even though the failure mechanism of 
a steel bar may appear to be a fundamental problem, its 
basis has often eluded researchers and practitioners. No 
matter how slender a steel bar, it does not reach its 
ultimate static resistance (load-carrying capacity) under 
elastic buckling, but rather after sufficient yielding of the 
critical cross-section under combined compression and 
bending [2]. 

In reality, steel bars are not perfectly straight, but are 
invariably subjected to some degree of initial 
crookedness. The shape of the steel bar is typically 
defined by the path denoted as "Imperfect bar" plotted in 
Fig. 1. Results of theoretical and experimental research 
present an important source of data for sensitivity 
analyses [3-6], assessment of structural reliability [7-10], 
and for multiple-criteria decision analyses, see, e.g., [11-
16]. Results of experimental research of the load-
deflection path have been published, e.g., in [17-19]. 

Specific scenarios of post-buckling behaviour are 
frequently attributed to certain structural types, like 
columns, shells or plates [1]. Structural post-buckling 
response has strong implications on the structural load 
carrying capacity, sensitivity to imperfection, structural 
safety, and is of great significance to current design 
procedures [1]. 

The nonlinear finite element solution performed using 
current software is, as a result of the instabilities of high 
von Mises truss, numerically demanding, and 
discrepancies could exist between the obtained result and 
experimental results [19]. In general, the phenomenon of 
loss of stability is present in the deforming structure 
regardless of whether the loading process is controlled by 
force [5, 7] or by displacement [20]. The geometrically 

nonlinear solution performed on the basis of increasing 
the deflection reliably investigates the full path of beam 
imperfection, see Fig. 1. Upon reaching the peak, the 
force decreases and the deformation increases. Reaching 
the peak of the load-deflection path can result in 
numerical problems for common software based on the 
geometrically nonlinear finite element solution, 
especially in cases, when the loading process is 
controlled by load increments. 

The geometrically nonlinear finite element method, 
which has proven to be suitable for solving stability types 
of problems of the von Mises trusses [21], was applied in 
the presented article. The system load-deflection paths 
were evaluated using this method. The resulting outputs 
of the geometrically nonlinear solution are the static 
equilibrium states. 

 

Figure 1. Load-deflection path of pin-ended model.  
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2 Bifurcation and limit points  

Light weight steel structures often work in a nonlinear 
range; this is due to always increasing requirements for 
low price and high strength. The stability analysis of 
slender steel members is the key aspect of safety and 
reliability of constructional solution. The structure 
stability is often determined by singular points in its 
equilibrium path. These points can represent severe 
problems for common geometrically nonlinear finite 
elements methods based on increase of load actions 
which are routinely applied to engineering designs [22-
24].

Each point of an equilibrium path represents an 
equilibrium state. Along a static equilibrium path of a 
conservative system, transition from stability to 
instability can occur at critical points only. Critical points 
are divided into limit and bifurcation points, see Fig. 2 
and Fig. 3.  

Figure 2. P vs u1 plane: Limit point before bifurcation.

The parameter P which controls the structural 
behaviour in dependence on displacement u1 is 
introduced to vertical axes. The identification of critical 
points is well known [24]. When applying the finite 
elements method, critical points can be identified using 
tangent stiffness matrix K. The matrix K is symmetric and 
real. The critical point takes place at the moment when 
matrix K is singular. The value of determinant of matrix 
K is the fundamental criterion for the identification of 
critical points. The isolated critical point has only one 
zero eigenvalue of matrix K. The multiple critical point 
has two or more zero eigenvalues of matrix K. The 
structure with multiple critical point is more sensitive to 
imperfections in the vicinity of that critical state [25]. The 
matrix of toughness K of the regular point of equilibrium 
path is nonsingular.

Figure 3. P vs u1 plane: Bifurcation point before limit point.

Bifurcation point, also called branch point or 
branching point, is point from which two equilibrium 
path branches emanate and so there is no unique tangent. 
Bifurcation of equilibrium is characterized by the sudden 
transition from one deformation regime to another 
regime.

General understanding of the basic characteristics of 
the elastic buckling and postbuckling behaviour of 
members that become unstable as a result of bifurcation 
can be obtained by considering the simple model in 
Fig. 4. The object of the present paper is computing of 
equilibrium paths of pin-ended slender elastic von-Misses 
truss. The imperfect truss was considered as symmetrical, 
so only one half of the structure is plotted, see Fig. 4. The 
determination of failure load of the slender strut requires 
to take the influence of initial curvature of the bar axis 
into consideration and to consider the entire nonlinear 
load deflection curve of the structure, see Fig. 4.

Figure 4. Bifurcation-buckling model of imperfect system. 

3 Post buckling analysis

The planar truss with member HEA 200 and initial angel 
�=15� was analyzed, see Fig. 4. The HEA 200 is the 
cross-section with second moment of area Iz=13.36E6 
mm4 and section area A=5380 mm2. Young’s modulus is 
E=210 GPa. The bar has initial imperfection of bar axis. 
The one half sine function with aplitude e0 was used for 
this imperfection. The computing of equilibrium paths of 
these geometrically nonlinear systems was solved using 
the software created by the author of the present paper, 
see Fig. 5.

  

Figure 5. Computer program for bifurcation-buckling analysis. 
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The full-line black curve in Fig. 6 corresponds to the 
truss with e0=0 (without initial imperfections). During 
increasing the load we reach the point "A" as the top of 
load-deflection curve. If we increase the load, the jump 
must occur and the displacement will be fixed in the point 
"D". Then, we can continue increasing the load. The 
jump is the so called snap-trough effect [26]. Buckling in 
the bar with e0=0 will occur by bending about minor axis 
in the moment when the axial force in bar is equal to the 
Euler critical force Ncr = 1.54 MN. The bifurcation point 
at which buckling will occur, is marked by the black 
point "B", see Fig. 6. 

Figure 6. The snap-trough effect of von Misses truss.

After the bifurcation point, there follows the 
bifurcation of equilibrium, based on which buckled or 
unbuckled configuration of bar deformation is possible. 
Limit points of imperfect (e0>0) bars are illustrated in
hollow manner on dashed lines, see Fig. 7.  

Figure 7. Load-deflection curves for S = �. 

The bifurcation point and limit points lie on the 
straight line. After buckling, there will take place the 

snap from the point B � B due to the negligible increase 
of force F or there will be decreasing F due to increasing 
w, see Fig. 7. Snap-through instability mechanism of 
structure deformation is unstable under force F control of 
loading but it is stable under displacement w control of 
loading.

Figure 8. Load-deflection curves for S = 21.21 MNm-1. 

The full-line black curve in Fig. 8 corresponds to the 
truss with e0=0 (without initial imperfections) for 
stiffness S = 21.21 MNm-1. The bifurcation point and 
limit points are not presented on the straight line. The 
connection of configuration both of bifurcation point and 
limit points with initial imperfection and stiffness S can 
be analysed. When comparing Fig. 7 with Fig. 8, it is 
evident that the bifurcation point and limit points change 
their configuration from the position on the straight line 
to the situation on the curve. Finding dependences 
between e0, S and limit points forms the basis for the 
analysis of equilibrium paths without application of 
nonlinear finite elements models.

4 System stability and randomness  

A stable structure is the one which remains stable for any 
conceivable (imaginable) system of loads. The stability is 
mostly examined on a structure without imperfections. 
The result of common stability analysis is the value of 
critical loading at which the structure buckles. If the 
critical load is remarkably higher than the load action of
structure, then the structure service is reliable and safe. 
Stability analysis should be carried out for all load action 
states, which can be counted up to thousands. 
Engineering computation and evaluation of results can be 
complicated, in particular if there occur multiple critical 
points. A large number of loading states in real structures 
represents a complication which is overcome by the 
engineers by means of approximate methods.  

4.1. Buckling length  

The static resistance of bars under compression stress can 
be computed by using the so-called buckling length. 
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Buckling length is represented by the structure 
parameters which take into consideration the influence of 
initial imperfections on the resistance decrease. Although 
there exist sophisticated approaches how to calculate the 
buckling length, it is always the engineer who estimates 
the structure as for ultimate limit states, who is 
responsible for their resulting choice. The occurrence of 
multiple critical points can cause the incorrect and 
dangerous assessment of buckling lengths. An alternate 
parameter to the buckling length is the slenderness of the 
bar, for the application of which the same cautiousness is 
valid as that for buckling lengths. 

4.2 Failures and stability phenomenon  

Many failures of building structures are caused by the 
stability loss. Many times repeated loading, which causes 
repeated buckling of slender elements and fatigue crack, 
is dangerous above all [27]. This phenomenon is met in 
bridge structures. Safety and reliability of slender bridge 
structures gets degraded in time, and enforces regular 
inspection checking up. The lifetime of bridge structures 
must be always specified, based on results of each 
inspection checking up which helps detect fatigue cracks 
and other failures occurring in bridges. 

4.3 Imperfections and initial imperfections  

In literature, the notions “imperfection” [28] and “initial 
imperfections” [3-5] are frequently met. In general, 
material and geometrical imperfections are distinguished 
[29]. Whereas an imperfection can be both small and 
large, an initial imperfection is assumed, as a rule, to be 
very small, in particular when geometrical imperfections 
are concerned. The size of initial imperfections always 
influences the safety and reliability of structures. 
Ultimate limit states are sensitive to the variability of 
initial imperfections less than serviceability limit states.

4.4 Stochastic computational models  

The general development of theory and methods of 
design of structures is remarkable due to its 
multidisciplinary approach the tendency of which is the 
step by step transition from deterministic approach 
through semiprobabilistic conception to the direct 
probabilistic computation method. The development of 
computer technology enables to elaborate numerically 
demanding computer simulations of nonlinear systems 
based on computer modelling, non-linear systems, 
stochastic systems, neural networks, fuzzy systems, 
evolutionary computation, systems theory, soft 
computing, lightwave engineering and mathematical 
theory of stability. Stochastic calculation models consist 
of the deterministic nonlinear computation model 
(usually based on the nonlinear finite elements method), 
and on the numerical simulation method of Monte Carlo 
type. It is not possible to find the real value of structure 
failure probability; therefore it is being worked with its 
theoretical value. The calculation of probability of 
structure failure is always possible with a certain 

accuracy only. Therefore it is frequently spoken on the 
assessment of failure probability which testifies to the 
structure reliability, and provides information for 
decision makers. The lower fuzzy uncertainty of input 
data and of parameters of computation models, the more 
credible can be the assessment of structure reliability. 

4.5 Sensitivity analysis  

Sensitivity analysis is the crucial part of sophisticated 
computation models the influences of input quantities on 
the model output of which cannot be understood by 
simple intuition. Research [3-7] showed that the 
evaluation of the ultimate limit state by the sensibility 
analysis based on correlation between load carrying 
capacity and geometrical imperfection would lead to 
incorrect results. It is due to the fact that the imperfection 
decreasing or increasing from zero decreases the load 
carrying capacity.

The dependence and the correlations cannot be 
interchanged, nevertheless, a correlation can be chosen as 
the sensitivity indicator of the first choice in numerically 
demanding nonlinear computation models which other 
sophisticated approaches cannot be applied to.

5 Conclusion  

In the paper, there were identified load-deflection curves 
of a geometrically nonlinear model with imperfections, 
and problems of multiple critical points were discussed. 
The probability of occurrence of multiple critical points 
can indicate high sensitivity of response of the system to 
initial imperfections [25]. The basic methods of stability 
analysis of nonlinear systems used in engineering 
practice were described in the present paper. The failures 
of slender structural system caused by stability loss 
frequently cause the decrease of safety and reliability. 
Modern methods of stability analysis are important 
instruments to ensure function reliability and general 
effectiveness of modern structural systems. 
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