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Abstract. This paper proposes a novel Super-Resolution
(SR) technique based on wavelet feature extraction and sparse
representation. First, the Low-Resolution (LR) image is in-
terpolated employing the Lanczos operation. Then, the im-
age is decomposed into sub-bands (LL, LH, HL and HH)
via Discrete Wavelet Transform (DWT). Next, the LH, HL
and HH sub-bands are interpolated employing the Lanczos
interpolator. Principal Component Analysis (PCA) is used
to reduce and to obtain the most relevant features informa-
tion from the set of interpolated sub-bands. Overlapping
patches are taken from the features obtained via PCA. For
each patch, the sparse representation is computed using the
Orthogonal Matching Pursuit (OMP) algorithm and the LR
dictionary. Subsequently, this sparse representation is used
to reconstruct a High-Resolution (HR) patch employing the
HR dictionary and it is added to the LR image. By apply-
ing the quality objective criteria PSNR and SSIM, the novel
technique has been evaluated demonstrating the superiority
of the novel framework against state-of-the-art techniques.
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1. Introduction
Single-image Super-Resolution (SR) techniques have

played an important role in image enhancement resolution
from the acquired low-resolution (LR) images and is one of
the most active fields in image processing. The main task
in image SR is to recover the HR image by minimizing the
loss of fine details, contours and edges. In many applications
such as medicine, remote perception, HDTV, engineering,
video production and so on, there is a need for HR images,
for several reasons. It is not possible to recover these HR
images because such images or videos are acquired by elec-
tronic devices that use different sensors, and these sensors do
not have enough resolution. In other cases, the sensed en-

vironment is a limitation, e.g., the presence of atmospheric
clutter, background noise, unfavorable weather, etc. Finally,
it can be a combination of both factors, for example, the ac-
quisition of medical images is limited both by the physical
issues of imaging, as well as the time constraints of subject-
ing patients to the magnetic field without becoming a health
hazard. A knownmeasurement of image quality is the spatial
resolution of the pixels distributed per unit length/area [1].

In various applications, the images and frames in the
video sequences depend on the spatial resolution which is
defined as the number of pixels per square area in a camera
sensor. Due to the physical limitations and high costs that are
required to improve the precision and stability of the imaging
system by manufacturing techniques, different image/video
processing applications [2] such as those mentioned above,
require the development of post-processing techniques and
algorithms that should restore the resolution degraded by
a sensor, permitting better observations of the texture, edges,
and fine details. This step can be performed using the SR pro-
cedures that generate the HR images from one or several LR
images/video frames. Thus, SR restoration technology is
a popular research topic in computer vision applications [3].

To recover an HR image, first, the LR image is mod-
eled. It is assumed that the LR image was obtained using
degradation and down-sampling operators. The formation of
the LR image is addressed as follows:

Y = SBX + η (1)

where X is the unknown HR image, Y is the LR image, S
is a downsampling operator, B is a blurring filter, and η is
modeled as zero-mean additive white Gaussian noise.

In SR applications, the S operator should be inverted
to resolve the inverse problem presented in (1), which is an
ill-posed problem because many solutions can satisfy this
equation. The core idea is to attach the LR image Y to obtain
X̂ , where X̂ must be similar or very close to the HR im-
age X . Recently, many approaches have been developed to
obtain HR images [4]. These SR techniques can be clas-
sified into three categories: interpolation-based methods,
reconstruction-based methods and learning-based methods.
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In interpolation-based methods, the bicubic method
[5], [6] uses a cubic polynomial function for the estimation
of the unknown pixels. Another state-of-the-art method is
Lanczos interpolation [7], which uses the Lanczos window
or sinc funtions where the kernel for Lanczos interpolation
is the product of two sinc functions. This interpolation has
better approximation capabilities than classical bicubic in-
terpolation. In the literature, there are many edge-directed
interpolation methods, for example, the new edged-directed
interpolation (NEDI) [8] estimates the local covariance co-
efficients from an LR image, and then uses this covariance
value to estimate and to adapt the linear interpolation between
the LR pixels to reconstruct the HR image via the geomet-
ric duality among the covariances. The method [9] pro-
poses a new edge-guided nonlinear interpolation technique
through directional filtering and data fusion. The authors em-
ploy two observation sets for each pixel to be interpolated,
and each set produces an estimate of the pixel value, where
the missing pixels are fused by the linear minimum mean
square-error estimation (LMMSE). Medical images, such as
magnetic resonance images, often require HR images in or-
der to observe fine details. Zheng et al. [10] proposed an
approach to enhancemulti-contrast brainmagnetic resonance
images, where they explored the statistical information esti-
mated from another contrast MRI image that shared similar
anatomical structures. They assumed that some edge struc-
tures were shared between different images acquired from the
same subject. Their proposal aimed to recover these types of
structures to generate an HR image.

Reconstruction-based methods are based on the use of
some type of transformation of the pixel intensity contained in
an image, where the typical mathematical tools used are Dis-
crete Wavelet Transform (DWT) and Discrete Fourier Trans-
form (DFT). For example, [11], the LR image was decom-
posed by using the DWT in four sub-bands. These sub-bands
were simultaneously processed in spatial and wavelet do-
mains to produce an HR image with better preserved edges.
The SR technique proposed in [12] used the DWT to decom-
pose the LR image in sub-bands, and then these sub-bands
were interpolated using the bicubic interpolation, and finally,
the inverse DWT was applied to the LR image and to the
interpolated sub-bands obtaining the SR image.

The learning methods use mathematical tools that at-
tempt to predict the HR image based on a priori knowledge,
i.e., sparse representation. The learning methods learn prior
knowledge using databases and this prior knowledge is incor-
porated during the reconstruction process [13]. In the state-
of-the-art methods, there are pioneeringworks that use sparse
representation to solve the inverse problem presented in (1).
For example, Yang et al. [14] proposed an SR technique,
in which the LR image is decomposed into patches where
for every patch, the sparse representation is performed, and
then their coefficients are used to recover the HR image. This
sparse representation improves a pair of dictionaries that have
the similarity of sparse representations among the HR and
the LR patches. Mallat et al. [15] used linear estimators that

adapt the prior knowledge. For every patch, the weights are
calculated, and according to the signal regularity, an adaptive
directional interpolation is performed. A common problem
in the learning methods is the use of dictionaries and how
to learn and to train over-complete dictionaries. He et al.
[16] proposed a Bayesian method to learn the over-complete
dictionaries. This Bayesian method employs a beta pro-
cess model and shows that the sparse representation can be
decomposed to values and dictionary atom indicators. Their
coupled dictionaries, learned in this way, are used to solve the
problem of single image super-resolution. Sparse represen-
tation has been used to obtain different types of images. For
example, in satellite imaging, the work [17] employed sparse
representation to generate HR satellite images using feature
extraction of the LR image via Laplacian and Gradient fil-
ters. In the field of magnetic resonance, the images obtained
through this process always contain aliasing artifacts. The
work [18] proposed a patch-based nonlocal operator, called
PANO, to sparsify magnetic resonance images by making
use of the similarity of image patches. The PANO operator
incorporated prior information learned from under-sampled
data or another contrast image, which led to optimized sparse
representation of images to be reconstructed. Other medical
approaches, for example [19], generate overcomplete dictio-
naries to enhance the quality of Magnetic Resonance (MR)
images. This couples high and low frequency information,
so an HR version of an LR brain MR image is generated.

In computer vision, Convolutional Neural Networks
(CNN) are widely used to solve different vision tasks, such
as image classification, denoising, etc. Additionally, several
methods have been applied to the SR problem. Some recent
works rely on directly learning an end-to-end mapping that
can generate HR images using a CNN on an LR image. For
example, the pioneering work of Dong et al. [20], presents
a deep learning method to solve the problem of single im-
age SR. Their CNN employed four layers to obtain an HR
image. In the first layer, the LR image was up-scaled to the
desired HR size using a bicubic interpolation. Then, a set of
features maps were extracted from the up-scaled LR image
in the second layer. A non-linear mapping was performed
on the third layer to reconstruct HR maps from the LR fea-
ture maps. Finally, in the fourth layer, the HR image was
generated. Alternatively, Kim et al. [21] proposed a cascade
network, where their cascade network employed d layers to
generate a residual image that was added to the initial LR
image in order to recover the HR image.

Feature extraction is fundamental to the methods that
use sparse representation to super-resolve images. In this pa-
per, a novel single-image SR method that employs the DWT
to extract informative features in three directions (horizontal,
vertical and diagonal) is proposed. Additionally, the method
incorporates prior information via two dictionaries obtained
from the combination of the K-SVD algorithm and the fea-
tures extracted on the wavelet domain. To demonstrate that
the single-image resolution enhancement algorithm designed
in this study (called Super-Resolution using Wavelet Feature
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Extraction and Sparse Representation - SR-WAFE-SR) has
real advantages, we have compared the novel SR procedure
with promising state-of-the-art techniques using objective
and subjective criteria that demonstrate the competitive per-
formance of the novel technique.

This paper is organized as follows: Sec. 2 describes the
process of dictionary training. The proposed SR technique
is presented in Sec. 3. Section 4 describes the experimental
results and the discussion. Section 5 explains the principal
contributions, and finally, the study’s conclusion is drawn
in Sec. 6.

2. Dictionary Training
The novel method in SR trains a pair of dictionaries

with atoms from LR and HR patches. To train the pair of
dictionaries [22], a large database is used that consists of
69 images (i = 1 . . . 69). These images were obtained from
the code provided by Yang et al. [14] and Zeyde et al. [23].
In this database, all the images are treated as HR images
and the LR version is obtained by using the down-sampling
operator and the blurring filter as follows:

Yi = SBXi + η. (2)

Each Yi image obtained from the training database was
interpolated using the operator L, which performs a Lanczos
interpolation over all the i images. This can be defined as:

Zi = L{Yi} = L{SBXi + η} = LSBXi + Lη = QXi + η̃ (3)

where Zi are the intermediate LR images via the operator L,
andQ transforms an HR image in an LR image. By removing
the Low-Frequency (LF) details in each HR image [24], the
HR training set Sh is obtained. This operation is performed
as follows:

Fi = Xi − Zi (4)

where Fi are the High-Frequency (HF) details for every HR
image of the database. Patches are extracted from each Fi of
size
√

n×
√

n, and every column of the patch is concatenated
column by column to form a vector obtaining a matrix of
training set of vectors called Sh , where Sh = [sh1 , . . . , s

h
m].

Figure 1 shows the different images used for the training
set Sh .

The training set Sl was obtained using feature extraction
in the Zi images. Feature extraction was performed using the
DWT, which decomposes each Zi into four sub-sampled sub-
bands. These sub-bands provide the low (LL) and the high
(LH, HL and HH) frequency details. In this part, only the HF
sub-bands (LH, HL and HH) were used. The HF sub-bands
were interpolated using the L operator to recover the size of
the LR image. Figure 2 shows the HF sub-bands obtained
via DWT for a given image.

(a) HR image Y (b) LR image Z (c)Difference imageF

Fig. 1. The three images involved in the training of the set Sh .

(a) LH sub-band (b) HL sub-band (c) HH sub-band

Fig. 2. The HF sub-bands obtained through DWT.

Principal Component Analysis (PCA) [25] was em-
ployed to reduce the data obtained through the sub-bands
interpolated to obtain the most relevant features. One train-
ing set Sl with the same size as the training set Sh was
obtained.

The training set Sl was used as input in the K-SVD al-
gorithm [23], [26], which was used to solve the optimization
problem presented as:
[D̂l, Â] = arg min

Dl,A
| |Sl − Dl A| |2F s.t. | |αi | |0 ≤ T, ∀ m (5)

where Dl is the dictionary that contains atoms from the LR
training set. As in Wang et al. [27] and Zeyde et al. [23],
the dictionary Dh can be obtained using the representation
coefficient matrix A:

Dh = ShA+ = ShAT(AAT)−1. (6)

3. Proposed SR-WAFE-SR Technique
The LR image Y was interpolated via the operator L

to obtain an initial SR image during the interpolation stage.
This initial image was named Xl . Next, in the feature extrac-
tion stage, the Xl image was decomposed into sub-bands (LL,
LH, HL and HH) using the DWT. The four sub-bands have
half size due to decimation of the DWT. Each HF sub-band
was interpolated using Lanczos interpolation to recover the
same size of the initial image. PCA was applied to three
interpolated HF sub-bands (LH, HL and HH) to reduce the
dimensionality and to obtain one band Xr

l
with the most rele-

vant details. Next, overlapping patches of
√

n×
√

n size were
obtained from Xr

l
as follows:

xlp = EpXr
l (7)

where E is the extractor operator in position p and xlp is
a matrix that contains all the vectorized patches extracted
from Xr

l
. Each xlp patch can be approximated via using lin-

ear combination of few atoms contained in the matrix called
dictionary.
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The Orthogonal Matching Pursuit (OMP) algorithm
[28] was employed with the previously trained dictionary
Dl to obtain the atoms that provide the best reconstruction of
the patch. The sparse coefficients αp were identified for each
patch xlp , according to the following minimization problem:

αp = argmin
αp

| |αp | |0 s.t. xlp ≈ Dlαp . (8)

The SR patch xsp was recovered using the dictionary
Dh and the sparse representation αp from the patch. This
reconstruction was performed using a simple product written
as follows:

xsp = Dhαp . (9)

Overlapping patches were extracted from the Xl im-
age in the same position p. The overlapping patches were
extracted by applying the same operator E:

x̄lp = EpXl . (10)

Finally, in the reconstruction stage, the HR patch is per-
formed by adding the previous xsp and the x̄lp , performing
reconstruction as:

xhp = xsp + x̄lp . (11)

Each xhp patch was replaced at the same position p, in
which they were taken to obtain the final HR image X̂h . Be-
cause we used the overlapping patches, there were areas in
which the patches overlap. In these overlapping areas, the
average of the overlapping pixels was calculated, and it was
rounded to the nearest integer. As a result, this final image
had better quality than the first initial image Xl . A block
diagram of the described technique is presented in Fig. 3.

4. Simulation Results and Discussion
The performance of different state-of-the-art techniques

and the proposed SR-WAFE-SR technique were evaluated
employing the following criteria: Peak Signal-to-Noise Ra-
tio (PSNR) [29] to determine the noise suppression and im-
provement in the image reconstruction, and the Structural
Similarity Index Measure (SSIM) [29], [30] to estimate the
visual quality.

To confirm the results obtained from the proposed SR
technique over the state-of-the-art image resolution enhance-
ment techniques, the novel SR-WAFE-SR technique was
compared with interpolation methods such as Bicubic in-
terpolation [6], Lanczos interpolation [7] and New Edge-
Directed Interpolation (NEDI) [8]. It was also comparedwith
promising reconstruction methods that employ wavelet trans-
form (WT), such as Wavelet Zero Padding (WZP) [31] and
Demirel-Anbarjafari Super Resolution (DASR) [12]. Finally,
the proposed SR-WAFE-SR technique was compared with
state-of-the-art learning methods that use sparse representa-
tion and CNN such as Super-Resolution with Sparse Mixing
Estimators (SME) of Mallat et al. [15], the Sparse coding
of Yang et al. (ScSR) [14], Beta Process Join Dictionary
Learning (BP-JDL) of He [16], and the Super-Resolution
Convolutional Neural Network (SRCNN) of Dong et al. [20].

In simulations, the proposed SR technique was tested
with images of different types (standard, medical and aerial
images). Figure 4 shows the test images used in this paper.

The LR version of the set of grayscale test images was
obtained using two scenarios:

1. A bicubic filter followed by downsampling by a scale
factor of S = 2.

2. AGaussian filter of size 3×3with standard deviation 0.5
followed by downsampling by a scale factor of S = 2.

Fig. 3. Block diagram of the proposed SR-WAFE-SR technique.
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(a) Baboon (b) Home (c) Peppers (d) Tiffany (e) Aerial-A

(f) Med.-1 (g) Med.-2 (h) Med.-3 (i) Med.-4 (j) Aerial-B

Fig. 4. The set of grayscale test images.

The first scenario was used to super-resolve the stan-
dard images and the aerial images, and the second scenario
was used according to the medical SR simulations presented
in [13]. The DWT employed to extract features was the
CDF 9/7 WT [32], the trained dictionaries (Dh and Dl) have
25×1024 atoms.

The inverted error image (Ie) was obtained as the ab-
solute difference between the HR image X and the image X̂
recovered by each state-of-the-art technique. Then, this im-
age was inverted to identify the dark areas where the errors
could be observed. The error image is presented as follows:

Ie = ` − c |X − X̂ | (12)

where ` is themaximum range of values for a grayscale image
and c is an error amplification constant.

In the SR reconstructed Peppers image, one can observe
from analyzing Fig. 5 that the novel algorithm performs bet-
ter in PSNR. In the error images, there is better perception
especially in the well-defined borders (see the zoomed por-
tion of the image), where there are presented the LR and the
HR images for a better visual perception.

The Tiffany image (see Fig. 6) is an image with flat
zones, fine details and textures. The SR algorithm was ap-
plied to anLR256×256 pixels image to obtain a 512×512 pix-
els HR resolution enhancement image. The novel resolution
enhancement algorithm appears to perform better in terms of
subjective perception via the human vision system that one
can observe in the error images, specifically, better recon-
struction over the edges can be seen.

Medical images are usually employed during clinical
analysis, treatments and disease prevention. In medical diag-
nostics, it is necessary to observe hidden structures such as
tissues, bones and organs to receive a visual representation of
the body. The proposed SR process can be efficiently applied
in medical imaging with the purpose of observing these fine
structures. Several medical images were tested. For example,
Fig. 7 compares the visual perception results obtained over
theMedical-4 image. In the zoomed images, one can observe
that the state-of-art SR methods cannot recover fine details
(e.g., edges). On the other hand, the proposed SR-WAFE-SR
algorithm provides a better image objective quality PSNR
value. In the error images, one can observe that in the dark
areas there is a difference. Therefore, in this area, the re-

construction result was inferior. Additionally, this fact shows
that there is an edge where the intensity changes. In the white
areas, the reconstruction result was sufficient, so there is no
error.

The proposed SR-WAFE-SR technique was applied in
remote sensing images (Fig. 8) where HR images have been
restored. In the resolution enhancement of the Aerial-B im-
age, one can observe that the proposed SR-WAFE-SR per-
forms well in terms of the objective criteria PSNR and SSIM
as well as in the subjective perception compared with the
learning state-of-the-art techniques when the proposed SR
procedure is employed.

Analyzing different experiments that involve images of
different databases and natures, it can be concluded after
observing SR images that the novel framework results in
sharper edges and fine features, better detail cleaning, result-
ing in SR images that visually closely resemble the original
HR image when the proposed SR method is compared with
state-of-the-art SR techniques.

Table 1 shows the objective criteria PSNR and SSIM
for the standard, medical and aerial test images. One can see
better performance on average in accordance with the objec-
tive criteria and via subjective visual perception, when the
proposed SR enhancement scheme is employed.

(a) HR / PSNR (b) Bicubic / 33.15 (c) ScSR / 34.05

(d) LR (e) Error Bicubic (f) Error ScSR

(g) BP-JDL / 33.59 (h) SRCNN / 34.01 (i) Proposed / 34.19

(j) Error BP-JDL (k) Error SRCNN (l) Error Proposed

Fig. 5. Visual perception results for the Peppers image, the am-
plification error c is set as 3.
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(a) HR / PSNR (b) Bicubic / 32.80 (c) ScSR / 33.26

(d) LR (e) Error Bicubic (f) Error ScSR

(g) BP-JDL / 33.13 (h) SRCNN / 33.58 (i) Proposed / 33.88

(j) Error BP-JDL (k) Error SRCNN (l) Error Proposed
Fig. 6. Visual perception results for the Tiffany image, the am-

plification error c is set as 3.

(a) HR / PSNR (b) Bicubic / 34.84 (c) ScSR / 34.46

(d) LR (e) Error Bicubic (f) Error ScSR

(g) BP-JDL / 33.97 (h) SRCNN / 34.24 (i) Proposed / 36.94

(j) Error BP-JDL (k) Error SRCNN (l) Error Proposed
Fig. 7. Visual perception results for the Medical-4 image, the

amplification error c is set as 3.

(a) HR / PSNR (b) Bicubic / 30.37 (c) ScSR / 31.54

(d) LR (e) Error Bicubic (f) Error ScSR

(g) BP-JDL / 31.25 (h) SRCNN / 31.86 (i) Proposed / 31.42

(j) Error BP-JDL (k) Error SRCNN (l) Error Proposed

Fig. 8. Visual perception results for the Aerial-B image, the am-
plification error c is set as 3.

5. Principal Contributions
The principal contributions of the proposed SR tech-

nique, which appears to demonstrate better performance
compared with state-of-the-art techniques, are as follow:

1. A methodology for training coupled over-completed
dictionaries via employing theK-SVDalgorithm, where
the coupled dictionaries are performed using the WT
feature extraction and PCA reduction selecting the most
informative features.

2. In the reconstruction stage, the fine details and edges
zones are restored well using sparse coding obtained
by the trained over-completed dictionaries and initial
interpolation approximation based on the Lanczos al-
gorithm.

3. The proposed SR algorithm can be used in images of
different types (standard, medical and aerial) resulting
in better performance compared with the state-of-the-
art methods that use sparse representation and convo-
lutional neural networks, as well as interpolation or
transform based methods.
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PSNR
Technique Baboon Home Peppers Tiffany Medical-1 Medical-2 Medical-3 Medical-4 Aerial-A Aerial-B Average
Bicubic 24.96 30.48 33.15 32.80 33.35 26.85 32.91 34.84 27.42 30.37 30.71
Lanczos 24.99 30.53 33.20 32.87 33.35 26.87 32.91 34.84 27.45 30.41 30.74
NEDI 23.82 27.96 30.60 31.04 29.55 22.83 29.31 29.61 25.61 28.30 27.86
WZP 23.98 28.36 31.31 31.22 29.17 22.53 28.97 29.40 25.95 28.44 27.93
DASR 23.84 28.11 31.41 31.65 28.99 22.54 28.78 29.26 25.71 28.21 27.85
SME 23.95 28.47 31.49 31.33 29.48 22.78 29.31 29.66 25.90 28.53 28.09
ScSR 25.36 31.12 34.05 33.26 33.12 26.58 32.63 34.46 28.15 31.54 31.03

BP-JDL 25.24 30.79 33.69 33.13 32.89 26.21 32.40 33.97 27.84 31.25 30.74
SRCNN 25.80 31.67 34.01 33.68 32.38 26.00 31.94 34.24 28.69 31.86 31.03

SR-WAFE-SR 25.70 31.40 34.19 33.88 34.80 28.12 34.30 36.94 28.34 31.42 31.91
SSIM

Technique Baboon Home Peppers Tiffany Medical-1 Medical-2 Medical-3 Medical-4 Aerial-A Aerial-B Average
Bicubic 0.725 0.905 0.901 0.906 0.911 0.925 0.889 0.966 0.793 0.848 0.877
Lanczos 0.727 0.906 0.902 0.907 0.911 0.925 0.889 0.966 0.795 0.849 0.878
NEDI 0.651 0.852 0.875 0.880 0.830 0.821 0.804 0.909 0.720 0.790 0.813
WZP 0.688 0.874 0.886 0.888 0.823 0.817 0.799 0.908 0.760 0.809 0.825
DASR 0.680 0.865 0.881 0.885 0.815 0.812 0.791 0.903 0.751 0.799 0.818
SME 0.668 0.868 0.886 0.888 0.832 0.823 0.808 0.911 0.742 0.804 0.823
ScSR 0.757 0.920 0.911 0.918 0.909 0.925 0.888 0.966 0.822 0.882 0.890

BP-JDL 0.749 0.914 0.906 0.916 0.907 0.919 0.886 0.963 0.811 0.874 0.884
SRCNN 0.794 0.931 0.914 0.922 0.897 0.916 0.878 0.965 0.848 0.890 0.896

SR-WAFE-SR 0.787 0.927 0.910 0.920 0.935 0.942 0.918 0.980 0.840 0.882 0.904

Tab. 1. PSNR and SSIM comparison for all the different test images among different methods for upscaling factor ×2.

6. Conclusion
A novel resolution-enhancement technique based on

sparse representation and feature wavelet extraction was
proposed. Compared with state-of-the-art resolution-
enhancement techniques, the proposed SR technique uses
DWT to obtain the details from the LR image, and then,
these details are applied in reconstruction of the HR im-
age via sparse representation with the help of two dictionar-
ies. By comparing the novel approach with state-of-the-art
resolution-enhancement techniques, the proposed SR frame-
work appears to demonstrate superior performance in terms
of objective criteria (PSNR and SSIM), as well as in the
subjective perception via the human visual system.
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