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Abstract: In this paper, a new low-voltage MOS current 
mode logic (MCML) multiplexer based on the triple-tail cell 
concept is proposed. An analytical model for static 
parameters is formulated and is applied to develop a design 
approach for the proposed low-voltage MCML multiplexer. 
The delay of the proposed low-voltage MCML multiplexer is 
expressed in terms of the bias current and the voltage swing 
so that it can be traded off with the power consumption. The 
proposed low-voltage MCML multiplexer is analyzed for the 
three design cases namely high-speed, power-efficient, and 
low-power. Finally, a comparison in performance of the 
proposed low-voltage MCML multiplexer with the 
traditional MCML multiplexer is carried out for all the 
cases. 
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1. Introduction 
The rapid advances in the VLSI technology have led to 

the development of high-resolution mixed-signal 
applications [1]-[2]. These applications demand high 
performance digital circuits to be integrated with analog 
circuitry on the same chip. The traditional CMOS logic style 
is not suitable as it generates a large amount of switching 
noise [3]-[4]. Many alternative logic styles have been 
suggested in literature [5]-[12]. Among them, MOS current 
mode logic (MCML) style is the most preferred option for 
high-resolution mixed-signal integrated circuits due to the 
reduced switching noise [12]-[13]. Also, MCML style 
exhibits better power-delay than CMOS at high frequencies 
[14]-[15]. Hence, MCML is suitable for designing high-
speed communication systems [15]-[21] wherein a 
multiplexer is a key element for serialization of parallel data 
during transmission.  

The implementation of traditional MCML multiplexer 
is based on the series-gating approach (i.e. stacked source-
coupled transistor pairs) [22]. This approach requires that all 
the stacked transistor pairs should operate in saturation 
region thereby limiting the power supply requirement. The 
power supply may however be lowered by reducing the 
number of stacked transistor pair levels with triple-tail cell 
concept [23]-[27]. In this paper, a new low-voltage MCML 

multiplexer based on the triple-tail cell concept is proposed. 
An analytical model for static parameters is formulated and 
is used to size transistors of the proposed low-voltage 
multiplexer. From the knowledge of the transistor sizes, the 
delay is expressed in terms of the bias current and the 
voltage swing so that it can be traded off with the power 
consumption. Then, the proposed low-voltage multiplexer 
for high-speed, power-efficient and low-power design cases 
is illustrated and finally its performance is compared with 
the traditional MCML multiplexer for each case. 

In this paper, the operation of the traditional MCML 
multiplexer is briefly reviewed in Section 2. Then, the new 
low-voltage MCML multiplexer is proposed and its 
analytical formulations for different static parameters and 
delay are presented in Section 3. The analysis of the 
proposed multiplexer for the three design cases, namely 
high-speed, power-efficient, and low-power, and its 
performance comparison with the traditional MCML 
multiplexer is discussed in Section 4. Finally, the paper is 
concluded in Section 5. 

2. Traditional MCML Multiplexer 

A traditional 2:1 multiplexer with differential inputs, 
namely SEL A and B is shown in Fig. 1 [28]. It consists of 
two levels of source-coupled transistor pairs to implement 
the logic function and a constant current source MTR1 to 
generate bias current ISS. The differential SEL input drives 
the lower level transistor pair MTR2-MTR3 that alternatively 
activates the upper level transistor pairs MTR4-MTR5 and 
MTR6-MTR7. When differential input SEL is high, MTR3 is 
off, the bias current ISS flows through MTR2 and is steered 
either to MTR4 or MTR5 according to the differential input A. 
Conversely, when differential input SEL is low, the bias 
current ISS flows through MTR3 and is steered to one of the 
two transistors, i.e. either MTR6 or MTR7 depending on the 
differential input B. The bias current ISS is converted to the 
differential output voltage ( ) through the transistors 
MTR8 and MTR9 [28]. The load capacitance CL includes the 
effect of fanout, and the interconnect capacitances. 

The minimum supply voltage, VDD_MIN_TR for the 
traditional multiplexer is defined as the lowest voltage at 
which all the transistors in the two levels and the current 
source operate in the saturation region [29] and has been 
computed as 
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Fig. 1. Traditional MCML 2:1 multiplexer. 

 VDD_MIN_TR = 3VBIAS – 3VT_TR1 + VT_TR (1) 

where VT_TR is the threshold voltage of the transistors  
MTR4,5,6,7, VT_TR1 is the threshold voltage of MTR1, VBIAS is 
the biasing voltage of MTR1. 

3. Proposed Low-voltage MCML 
Multiplexer  
The proposed low-voltage 2:1 multiplexer with 

differential inputs, namely SEL A and B, is shown in Fig. 2. 
It consists of two triple-tail cells (MLV3, MLV4, MLV7) and 
(MLV5, MLV6, MLV8) biased by separate current sources of 
ISS/2 value. The transistors MLV7 and MLV8 are driven by the 
differential SEL input and are connected between the supply 
terminal and the common source terminal of transistor pairs 
MLV3-MLV4 and MLV5-MLV6 respectively. A high differential 
SEL voltage turns on the transistor MLV8, and deactivates 
the transistor pair MLV5-MLV6. At the same time, the 
transistor MLV7 turns off so that the transistor pair MLV3-
MLV4 generates the output according to the differential input 
A. Similarly, the transistor pair MLV5-MLV6 gets activated 
for low differential SEL voltage and produces the output 
corresponding to the differential input B.  

The minimum supply voltage, VDD_MIN_LV for the 
proposed multiplexer has been computed by the method 
outlined in [29] as 

 VDD_MIN_LV = 2VBIAS – 2VT_LV1 + VT_LV (2) 

where VT_LV  the threshold voltage of transistor MLV3,4,5,6, 
VT_LV1 is the threshold voltage of MLV1, VBIAS is the biasing 
voltage of MLV1. 

3.1 Static Model 
The static model has been derived by modeling the 

load transistors MLV9, MLV10 by an equivalent linear 
resistance, Rp [30]. Using the standard BSIM3v3 model, the 
linear resistance Rp has been computed as  
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where RDSW is the empirical model parameter, WP is the 
channel width of the load transistor and the parameter Rint is 
 

 
Fig. 2. Proposed low-voltage 2:1 multiplexer. 

the intrinsic resistance of the PMOS transistor in the linear 
region and is given as 
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where Cox is the oxide capacitance per unit area. The 
parameters 
eff,p, VT,p and LP are the effective hole mobility, 
the threshold voltage and the effective channel length of the 
load transistor, respectively.  

It may be noted that if equal aspect ratio of all 
transistors in the triple tail cells is considered, then the 
transistors MLV7 and MLV8 will not be able to completely 
switch off the transistor pair MLV3-MLV4 and MLV5-MLV6. 
Hence, for proper operation, the aspect ratio of transistors 
MLV7, MLV8 is made greater than other transistors’ aspect 
ratio by a factor N. As an example if the value of differential 
inputs A and B is chosen such that the transistors MLV3, 
MLV5 are on while the transistors MLV4, MLV6 are off. Then, 
a high differential SEL voltage turns on the transistor MLV8 
and deactivates the transistor pair MLV5-MLV6. But since the 
transistors MLV8 and MLV5 have the same gate-source 
voltages, the currents flowing through MLV5 (iD,5) and MLV8 
(iD,8) can be written as  
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The current through MLV5 can be minimized by 
increasing factor N. This input condition produces minimum 
output voltage VOL as  
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where  iD,3, iD,4, iD,5, iD,6 are the currents through transistors 
MLV3, MLV4, MLV5, MLV6 respectively. The differential 
output voltages for various input combinations are enlisted 
in Tab. 1. It can be observed from Tab. 1 that there are two 
values of both maximum output voltage VOH and minimum 
output voltage VOL for different input combinations. 
Consequently, the voltage swing, VSWING1 for the same 
differential inputs (A and B) can be expressed as 
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Tab. 1. Differential output voltages for various input combinations. L/H= low/high differential input voltage. I1 = ISS/2, I2 = ISS/2 (N/(1+N)), 
I3 = ISS/2 (1/(1+N)). 
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where VOH1, VOL1 are maximum output voltage and 
minimum output voltage respectively for the same 
differential inputs. The voltage swing, VSWING2 for the 
different differential inputs (A and B) can be expressed as 
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where VOH2, VOL2 are maximum output voltage and 
minimum output voltage respectively for different 
differential inputs. 

As VSWING2 < VSWING1, VSWING2 has been considered 
as the worst case voltage swing, VSWING and has been 
further approximated as 

 
SSpSWING IRV �  for large values of N. (8) 

The small-signal voltage gain (AV) and noise margin 
(NM) for the proposed multiplexer have been computed by 
the method outlined in [30] as 
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where 
eff,n, gm,n, WN and LN are the effective electron 
mobility, the transconductance, the effective channel width 
and length of transistors MLV3,4,5,6 respectively. 

3.2 Transistor Sizing  
In this section, an approach to size the transistors of 

the proposed multiplexer based on the static model is 
developed. For a specified value of NM and AV ( > 1.4 for 
MCML [31]), the voltage swing of the proposed multiplexer 
has been calculated using (10) as  

 

 
.

21

NM2

V

SWING

A

V
�

�
 (11) 

It may be noted that VSWING should be lower than the 
maximum value of 2 VT so as to ensure that transistors 
MLV3,4,5,6 operates in saturation region. The voltage swing 
obtained from (11) requires sizing of the load transistor with 
equivalent resistance Rp (= VSWING/ISS). To this end, the 
equivalent resistance, RP_MIN, for the minimum sized PMOS 
transistor is first determined and then the bias current IHIGH 
for the required voltage swing is determined as 
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If the bias current is higher than IHIGH, then RP should 
be less than RP_MIN and this is achieved by setting LP to its 
minimum value i.e. LMIN and WP which is calculated by 
solving (3) and (4) as 
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Simulation Condition: AV = 4, VSWING = 0.4 V, CL = 50 fF, ISS = 100 μA 

                                                  NMOS 
                                                  PMOS 

Parameter 

T 
T 
 

F 
F 
 

S 
S 
 

F 
S 
 

S 
F 
 

VSWING (mV) 
Proposed 344 481 260 430 350 

Traditional 366 465 267 378 370 

AV 
Proposed 3.1 2.1 5.2 3.1 3.1 

Traditional 3.2 2.1 4.3 3.1 3.1 

NM (mV) 
Proposed 94.2 78.5 94.6 116.6 95.4 

Traditional 100.6 76.7 90 103.1 101.1 

Simulation Condition: AV = 4, VSWING = 0.4 V, CL = 50 fF, ISS = 10 μA 

VSWING (mV) 
Proposed 410 498 265 420 415 

Traditional 342 519 294 443 407 

AV 
Proposed 3.8 1.9 5.5 2.9 3.7 

Traditional 2.98 1.81 4.39 2.67 2.81 

NM (mV) 
Proposed 130.2 63.6 98.9 110.6 129.4 

Traditional 89.8 56.7 99.6 104.2 101.1 

Tab. 2. Effect of process variation on static parameters. Different design corners are denoted by T = Typical, F= Fast, S= Slow. 
 
Similarly, if the bias current is lower than IHIGH, then 

RP should be greater than RP_MIN which is achieved by 
setting WP to its minimum value i.e. WMIN, and LP which is 
calculated by solving (3) and (4) as 
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The small-signal voltage gain (AV) computed in (9) has 
been used to size transistors MLV3,4,5,6. Assuming minimum 
channel length for the said transistors, the width has been 
computed as 
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Sometimes (15) results in a value of WN smaller than 
the minimum channel width. This happens when the bias 
current is lower than the current of the minimum sized 
NMOS transistor, ILOW given as 
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Therefore, in such cases, WN is also set to WMIN. 

The accuracy of the static model for the proposed 
multiplexer has been validated through SPICE simulations 
by using TSMC 0.18 μm CMOS process parameters. The 
proposed multiplexer is designed for wide range of 
operating conditions: voltage swing of 300 mV and 
400 mV, small-signal voltage gain of 2 and 4, and the bias 
current ranging from 10 μA to 100 μA. 

The designs were simulated and the error in simulated 
and theoretical values for voltage swing, small-signal 
voltage gain and noise margin using equations (8), (9) and 
(10) respectively are calculated and are plotted in Fig. 3. It 
may be noted that maximum error in voltage swing, small-
signal voltage gain and noise margin are 16 %, 15 % and 
19 % respectively. 

The impact of parameter variation on the proposed 
low-voltage and traditional MCML multiplexer perform-
ance is studied at different design corners. The findings for 
various operating conditions are given in Tab. 2. It is found 
that the voltage swing, small-signal voltage gain, and noise 
margin of the proposed low-voltage multiplexer varies by 
a factor of 1.87, 2.94, and 2.28 respectively between the best 
and the worst cases. For the traditional MCML multiplexer, 
the voltage swing, small-signal voltage gain, and noise 
margin varies by a factor of 1.76, 2.42, and 1.8 respectively 
between the best and the worst cases. Thus, the proposed 
low-voltage multiplexer shows slightly higher variations 
than the traditional MCML multiplexer for different design 
corners which can be attributed to the smaller aspect ratio of 
transistors in the proposed low-voltage multiplexer [31].  

The effect of temperature variation on proposed low-
voltage and traditional MCML multiplexers performance is 
studied for a typical process corner. The results are shown in 
Tab. 3. It is found that the voltage swing, small-signal 
voltage gain, and noise margin of the proposed low-voltage 
multiplexer varies by about 0.025 %/oC, 0.17 %/oC and 
0.122 %/oC respectively. For the traditional MCML 
multiplexer, the voltage swing, small-signal voltage gain, 
and noise margin varies by about 0.022 %/oC, 0.11 %/oC 
and 0.098 %/oC respectively. Thus, the proposed low-
voltage multiplexer shows slightly higher variations than the 
traditional MCML multiplexer. 

3.3 Delay Model 
In this section, a delay model of the proposed 

multiplexer is formulated in terms of bias current and 
voltage swing. There are two delay parameters, namely 
select to Q (SEL-Q) and input to Q (A-Q or B-Q), described 
for a multiplexer. The SEL-Q delay is evaluated when SEL 
changes with constant inputs (A and B) whereas A-Q (B-Q) 
delay is evaluated when A (B) switches while SEL remains 
constant. However in practical cases, the SEL-Q delay is 
prominent and is therefore considered for further discussion.  
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Simulation Condition: AV = 4, VSWING = 0.4 V, CL = 50 fF, ISS = 100 μA 

Temp (oC) 

Parameter 

0o 

 

70o 

 

125o 

 

VSWING (mV) 
Proposed 387 394 399 

Traditional 386 392 396 

AV 
Proposed 3.6 4.0 4.3 

Traditional 3.58 3.9 4.1 

NM (mV) 
Proposed 117 127 134.8 

Traditional 116 124 130.21 

Tab. 3. Effect of temperature variations on static parameters. 

Fig. 3. Error in the static parameters versus ISS for different values of VSWING and Av, (a) VSWING, (b) Av, (c) NM. 

 
In case of a low-to-high transition on SEL input that 

causes output to switch by activating (deactivating) the 
transistor pair MLV3-MLV4 (MLV5-MLV6), the circuit reduces 
to a simple MCML inverter. The equivalent linear half 
circuit is shown in Fig. 4 where Cgdi, Cdbi represent the 
gate-drain capacitance and the drain-bulk junction 
capacitance of the ith transistor. For NMOS transistors 
operating in saturation region, Cgd is equal to the overlap 
capacitance CgdoWn between the gate and the drain where 
Cgdo is the drain-gate overlap capacitance per unit transistor 
width [30]. For the PMOS transistor operating in linear 
region, Cgd is evaluated as the sum of the overlap 
capacitance and the intrinsic contribution associated with 
its channel charge [30]. The junction capacitance Cdb for 
the transistors has been computed as explained in [32]. 

The SEL-Q delay (tPD_SEL) of the proposed 
multiplexer can be expressed as 
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Fig. 4. Linear half-circuit (with low differential input A). 
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The capacitances may be expressed in terms of bias 
current and voltage swing as  



264 K.GUPTA, N. PANDEY, M.GUPTA, LOW-VOLTAGE MOS CURRENT MODE LOGIC MULTIPLEXER 

� � xy
SS

SWING
xySS2

SWING

xy
xy c

I
VbI

V
a

C ���  

where Cxy is the capacitance between the terminals x and y 
and  axy, bxy, cxy are the associated coefficients. Using (14) 
and (15), various capacitances in (18) for ISS ranging from 
ILOW to IHIGH have been expressed as 
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where Cjn, Cjswn are the zero-bias junction capacitance per 
unit area and zero-bias sidewall capacitance per unit 
parameter respectively. The coefficients Kjn, Kjswn are the 
voltage equivalence factor for the junction and the sidewall 
capacitances of the NMOS transistor respectively [32]. 
Parameter Ldn is extrapolated from design rules [22].  
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where Abulk,max is a parameter defined in BSIM3v3 model 
[28]. 

   � � dpjswpjswpjswpjswpdpjpjpMINdb9 22 LCKCKLCKWC ���  (25) 

where Cjp, Cjswp are the zero-bias junction capacitance per 
unit area and zero-bias sidewall capacitance per unit 
parameter respectively. The coefficients Kjp, Kjswp are the 
voltage equivalence factor for the junction and the sidewall 
capacitances of the PMOS transistor respectively [32]. 
Parameter Ldb is extrapolated from design rules [22].  

The coefficients axy, bxy and cxy of all the capacitances 
in (18) are summarized in Tab. 4. Using equations (20) – 
(25), equation (18) can be written as  
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where 

 ,22 3db3 gdaaa ��  (27a) 

 ,gd9bb �  (27b) 

 .22 db99db3 cccc gd ���  (27c) 

The delay model can also be used for ISS value outside 
the range [ILOW, IHIGH]. This is because for ISS > IHIGH , the 
capacitance coefficients of PMOS transistor in (26) differ 
as explained in Section 3.2. But, since for high values of 
ISS, the capacitive contribution of PMOS transistor is 
negligible, therefore (26) can predict the delay. Similarly, 
for ISS < ILOW, the capacitance coefficients of NMOS 
transistor in (26) differs. But, since for low values of ISS, 
the delay majorly depends on the capacitances of PMOS 
transistor. So, the expression in (26) can estimate the delay 
of the proposed multiplexer.  

The accuracy of the delay model for the proposed 
multiplexer has been validated through SPICE simulations 
by using TSMC 0.18 μm CMOS process parameters. The 
proposed multiplexer is designed for wide range of 
operating conditions: voltage swing of 300 mV and 
400 mV, small-signal voltage gain of 2 and 4, bias current 
ranging from 10 μA to 100 μA, and load capacitance of 
0 fF, 10 fF, 100 fF and 1 pF. It is found that there is a close 
agreement between the simulated and the predicted delay 
for all the operating conditions. The simulated and the 
predicted delay in particular for VSWING = 400 mV, AV= 4 
and with different load capacitances are plotted in Fig. 5. 

The impact of parameter variation on proposed low-
voltage and traditional multiplexers delay is studied at 
different design corners. The findings for various operating 
conditions are given in Tab. 5. It is found that the 
propagation delay of the proposed low-voltage multiplexer 
varies by a factor of 1.89 between the best and the worst 
cases. For the traditional MCML multiplexer, the delay 
varies by a factor of 1.85 between the best and the worst 
cases. Thus, the proposed low-voltage multiplexer shows 
slightly higher variation than the traditional MCML 
multiplexer in delay for different design corners. The 
process variations are more prevalent in the designs with 
smaller aspect ratio [31] and the results for proposed low-
voltage multiplexer conform to this fact. 

The effect of temperature variation on proposed low-
voltage and traditional MCML multiplexers delay is 
studied for a typical process corner. The results are shown 
in Tab. 6. It is found that delay of the proposed low-voltage 
multiplexer varies by about 1.2 %/oC. For the traditional 
MCML multiplexer the delay shows a variation of 1 %/oC. 
Thus, the proposed low-voltage multiplexer shows slightly 
higher variations than the traditional MCML multiplexer. 
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Tab. 4. The capacitance coefficients for the proposed multiplexer. The symbols have their usual meanings. 
 
 
 

Simulation Condition: AV = 4, VSWING = 0.4 V, CL = 50 fF, ISS = 100 μA 

NMOS 

PMOS 

Parameter 

T 

T 

 

F 

F 

 

S 

S 

 

F 

S 

 

S 

F 

 

tPD (ps) 

Proposed 265 237 448 255 262 

Traditional 553 515 954 527 550 

Simulation Condition: AV = 4, VSWING = 0.4 V, CL = 50 fF, ISS = 10 μA 

tPD (ns) 

Proposed 2.4 1.7 3.2 2.1 2.3 

Traditional 3.7 3.2 4.6 3.5 3.6 

Tab. 5. Effect of process variation on delay. 

 

 

 
Fig. 5. Simulated and the predicted delay of the proposed low-voltage multiplexer versus ISS with NM =130 mV, AV= 4 for different CL values:  

(a) 0 fF, (b) 10 fF, (c) 100 fF, (d) 1 pF. 
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Simulation Condition:  
AV = 4, VSWING = 0.4 V, CL = 50 fF, ISS = 100 μA 

Temp 

Parameter 

0o 

 

70o 

 

125o 

 

tPD (ps) 
Proposed 151 280 387 

Traditional 339 590 762 

Tab. 6.  Effect of temperature variation on delay. 

4. Design Cases 
In the previous section, the proposed multiplexer has 

been modeled and various parameters are expressed as 
a function of bias current and voltage swing. In practice, 
the voltage swing is set on the basis of the specified noise 
margin while the bias current is chosen according to 
power-delay considerations. Therefore, the proposed low-
voltage multiplexer for high-speed, power-efficient, and 
low-power cases is discussed. 

4.1 High-Speed Design 
A high-speed design requires bias current that results 

in minimum delay. The delay in (26) decreases with the 
increasing ISS and tends to an asymptotic minimum value 
of 0.69∙(a / VSWING) for ISS → ∞. A substantial improve-
ment in delay with increasing bias current may be achieved 
if condition 

 
SS

2
SS

SWING
2

SWING I
Cc

I
Vb

V
a L�

��  (28) 

is satisfied. However, high value of bias current results in 
large transistor sizes. Therefore, the bias current should be 
set to such a value after which the improvement in speed is 
not significant. If equality sign in (28) is considered then 
the delay is close to its minimum value and the use of high 
bias current is avoided. Therefore, this assumption leads to 
a bias current (ISS_HS) and delay (tPD_MIN) as  

� � ,1411
2 SWING

2
L

2
SS_HS �

�

�

�

�
�

�

�

�
��

�
�

VCc
abV

a
CcI SWING

L  (29) 

 .69.02
SWING

PD_MIN V
at ��  (30) 

The proposed high-speed multiplexer designed with 
a noise margin of 130 mV, small-signal gain of 4, and load 
capacitance of 50 fF, gives ISS_HS as 112 μA. A delay of 
254 ps and 224 ps are obtained from (30) and simulations 
respectively. On the contrary, a traditional high-speed mul-
tiplexer designed using the method outlined in [28] for the 
same specifications results in a delay of 528 ps. This 
indicates that the proposed multiplexer can achieve much 
higher speed than the traditional one.  

4.2 Power Efficient Design 

A power efficient design requires bias current that 
results in minimum power-delay product (PDP). The power 
is calculated as the product of VDD and ISS. So, the PDP of 
the proposed multiplexer may be expressed as: 

 .69.0PDP L
SS

SWING
SS2

SWING
SWINGDD ��

�

�
��
�

�
���� Cc

I
VbI

V
aVV (31) 

Therefore, the current ISS_PDP for minimum PDP may 
be given as 

 � � .2
3

SWINGSS_PDP V
a
bI �  (32) 

Accordingly, the minimum PDP results to 

.269.0PDP L

SWING

SWINGDD �
�

�

�

�
�

�

�
��� Cc

V
abVV  (33) 

The proposed power-efficient multiplexer designed 
with a noise margin of 130 mV, small signal gain of 4, and 
load capacitance of 50 fF, gives ISS_PSP as 4.5 μA. A PDP 
value of 19 fJ has been obtained for the proposed 
multiplexer. On the other hand, a traditional power-
efficient multiplexer designed using the method outlined in 
[28] for the same specifications results in a PDP value of 
13 fJ. The result signifies that the proposed multiplexer 
results in higher PDP values than the traditional one. 

4.3 Low-Power Design 
In low-power designs, the bias current ISS is set to low 

values so that the term  

 
2
SS

SWING

I
Vb  

is dominant in (26). Hence, the delay reduces to 

 .69.0
2

SS

SWING
_SELPD ��

�

�
��
�

�
�

I
Vbt  (34) 

The proposed low-power multiplexer designed with 
a noise margin of 130 mV, small signal gain of 4, load 
capacitance of 5 fF, and with value of  as 2 μA gives 
a power consumption of 2.2 μW while the traditional low-
power multiplexer designed using the method outlined in 
[28] for the same specifications results in power 
consumption of 2.8 μW. 

5. Conclusions 
A new low-voltage MCML multiplexer based on the 

triple-tail cell concept is proposed. Its static parameters are 
analytically modeled and are used to develop a design 
approach for the proposed low-voltage MCML multi- 
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plexer. The delay is formulated as a function of the bias 
current and the voltage swing and is traded off with power 
consumption for high-speed, power-efficient, and low-
power design cases. An improvement in performance is 
obtained for the proposed low-voltage multiplexer in 
comparison to traditional MCML multiplexer for high-
speed and low-power design cases. 
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