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Abstract: Two approaches to solving optimization problems of dynamic systems are well-known.
The first approach needs to find a fixed control (program control) for which the system described
by differential equations reaches a predetermined value and minimizes an integral quality criterion.
Proposed by L.S. Pontryagin, this method was in essence a further development of general optimiza-
tion methods for dynamical systems. The second method consists in finding a control function (in
the form of a feedback) guaranteeing that, simultaneously, the zero solution is asymptotically stable
and an integral quality criterion attains a minimum value. This method is based on what is called
the second Lyapunov method and its founder is N.N. Krasovskii. In the paper, the latter method is
applied to linear differential equations and systems with integral quality criteria.
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1 INTRODUCTION

As it is well-known, there are two approaches to solving optimization problems of dynamic systems.
The first approach is based on finding what is called a fixed control (program control) for which the
system described by differential equations reaches a predetermined previously value and minimizes
the integral quality criterion. This method was designed by L.S. Pontryagin and can be regarded as a
further development of the general optimization methods for dynamical systems. The second method
suggests finding a control function in the form of a feedback such that the zero solution will be
asymptotically stable and, simultaneously, an integral quality criterion attains a minimum value. This
method is based on what is called the second Lyapunov method, known from the theory of stability of
differential equations and was proposed by N.N. Krasovskii. In the contribution, we apply the second
method to linear differential equations and systems with integral quality criteria.

We describe the general scheme for the construction of an optimal control by the second Lyapunov
method (see, e.g. [1, p. 476]).

The stabilization problems applied, together with the requirement of asymptotic stability of a given
motion described by a system of differential equations

dx(t)
dt

= f (t,x(t),u(t)) , x ∈ Rn, u ∈ Rm, t ≥ t0, (1)

require the best possible quality of the transition process. The best quality criterion is very often
expressed as a condition of minimizing the integral

I [x(t),u(x(t))] =
∫

∞

t0
ω(t,x(t),u(t))dt (2)

where ω(t,x,u) is a positive function defined for t ≥ t0, ‖x‖ < M, u ∈ Rm, ‖ · ‖ is a norm, and M is
a positive constant. Frequently, the integrand ω(t,x(t),u(t)) is reduced to ω(x(t),u(t)) where ω is
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assumed to have a quadratic form

ω(x,u) = xTCx+uT Du

with a positive semi-definite matrices C and D.

We will deal with the optimal stabilization problem (see [1, p. 479]). Let a quality criterion of a
process x(t) in the form (2) be fixed. It is necessary to find a control function u = u0(t) ensuring
the asymptotic stability of non-perturbed motion x(t)≡ 0 such that, for any other admissible control
function u = u∗(t), the inequality∫

∞

t0
ω(t,x(t),u0(t))dt ≤

∫
∞

t0
ω(t,x(t),u∗(t))

holds. Then, the function u = u0(t) is called an optimal control function.

Define an auxiliary function

B [V, t,x,u] :=
∂V (t,x)

∂t
+grad T

x V (t,x) f (t,x,u)

where V is a Lyapunov function defined for t ≥ t0, ‖x‖ < M and formulate the main theorem on
optimal stabilization.

Theorem 1. [1, p. 485] Assume that, for the system of differential equations (1), there exist a
Lyapunov function V0(t,x) having an infinitesimal upper bound and a function u0(t,x) such that

1. The function ω(x, t) = ω(t,x,u0(t,x)) is positive definite for every t ≥ t0, ‖x‖< M.

2. B [V0, t,x,u0(t,x)]≡ 0.

3. B [V0, t,x,u(t,x)]≥ 0 for any u(t,x) 6≡ u0(t,x).

Then, the function u0(t,x) is a solution to the optimal control problem and∫
∞

t0
ω(t,x(t),u0(t,x))dt = min

u

[∫
∞

t0
ω(t,x(t),u(t,x))dt

]
=V0(t0,x(t0)). (3)

2 OPTIMIZATION OF LINEAR DIFFERENTIAL EQUATIONS AND SYSTEMS

Consider a scalar equation
dx(t)

dt
= ax(t)+bu(x) (4)

where a and b are real constants. We need to find a control function u = u0 (x) for which the equation
with u = u0 (x) is asymptotically stable and a given integral quality criterion

I [x(t),u(x(t))] =
∫

∞

0

(
αx2(t)+βu2(x(t))

)
dt, α > 0, β > 0

attains a minimum value. Solving this problem, we look for a Lyapunov function in the form V (x) =
hx2. Its total derivative along the solutions of given equation is

d
dt

V (x(t)) = 2hx(t)ẋ(t) = 2hx(t) [ax(t)+bu(x(t))] .

Equating it with the integrand multiplied by−1 (this general recommendation applied here and below
follows from (3)), we obtain

2hax2(t)+2hbx(t)u(x(t)) =−αx2(t)−βu2(x(t)).
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This equation will be satisfied if

2hax2(t) =−αx2(t), 2hbx(t)u(x(t)) =−βu2(x(t)).

We get h =−α/2a and u(x(t)) = (αb/βa)x(t). Hence, the optimal stabilization conditions are

h =− α

2a
, u0(x(t)) =

αb
βa

x(t).

Thus, for the control function u = u0(x) = (αb/βa)x(t) and Lyapunov function V0(x) = −(α2a)x2,
a < 0, the equation (4) will be asymptotically stable and the integral criterion attains a minimum
value.

As a next application, consider a linear system with scalar control function:

dx(t)
dt

= Ax(t)+bu(x) (5)

where A ∈ Rn×n, b ∈ Rn, x(t) ∈ Rn, u(t) ∈ R. We need to find a control function u = u0(x) for which
the system (5) is asymptotically stable and a given integral quality criterion

I [x(t),u(x(t))] =
∫

∞

0

(
xT (t)Cx(t)+du2(x(t))

)
dt (6)

has a minimum value provided that C is a symmetric, positive definite matrix and d > 0. To solve
this problem, we use Lyapunov function taken in the form V (x) = xT Hx where H ∈ Rn×n is a positive
definite symmetric matrix. The total derivative of the Lyapunov function along the trajectories of (5)
is

d
dt

V (x(t)) = [Ax(t)+bu(x(t))]T Hx(t)+ xT (t)H [Ax(t)+bu(x(t))] .

Equating it with the integrand (multiplied by −1), we obtain

[Ax(t)+bu(x(t))]T Hx(t)+ xT (t)H [Ax(t)+bu(x(t))] =−xT (t)Cx(t)−du2(x(t)).

This equation will hold if
xT (t)

[
AT H +HA

]
x(t) =−xT (t)Cx(t)

and
u(x(t))bT Hx(t)+ xT (t)Hbu(x(t)) =−du2(x(t)).

The first equation holds if H is the solution to the Lyapunov matrix equation

AT H +HA =−C. (7)

If the matrix A is asymptotically stable, then, for an arbitrary positive definite matrix C, the Lyapunov
matrix equation has a unique solution - the positive definite matrix H (see, e.g. [2]). Consider the
second expression. Since the control function u(x) is a scalar, we derive

u(x(t)) = u0(x) :=−1
d

[
bT Hx+ xT Hb

]
. (8)

Thus, for the control function (8) and the Lyapunov function used, the system (5) is asymptotically
stable and the quality criterion (6) has a minimum value.

As the last application, consider a system:

dx(t)
dt

= Ax(t)+Bu(x) (9)
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where A ∈ Rn×n, B ∈ Rn×m, x(t) ∈ Rn, u(t) ∈ Rm. We need to find a control function u = u0(x) for
which the system is asymptotically stable and an integral quality criterion

I [x(t),u(x(t))] =
∫

∞

0

(
xT (t)Cx(t)+uT (x(t))Du(x(t))

)
dt (10)

takes a minimum value provided that C ∈ Rn×n is a symmetric, positive definite matrix and D is a
diagonal control matrix, D = diag{d j}, d j > 0, j = 1, . . . ,m. The total derivative of the Lyapunov
function V (x) = xT Hx along the trajectories of (9) is

d
dt

V (x(t)) = [Ax(t)+Bu(x(t))]T Hx(t)+ xT (t)H [Ax(t)+Bu(x(t))] .

Equating it with the integrand (multiplied by −1), we obtain

[Ax(t)+Bu(x(t))]T Hx(t)+ xT (t)H [Ax(t)+Bu(x(t))] =−xT (t)Cx(t)−uT (x(t))Du(x(t)).

This equation will hold if
xT (t)

[
AT H +HA

]
x(t) =−xT (t)Cx(t),

and
uT (x(t))BT Hx(t)+ xT (t)HBu(x(t)) =−uT (x(t))Du(x(t)).

If the matrix H is a solution to the Lyapunov matrix equation (7), the first equation is satisfied.
Consider the second equation. Set

bi =


b1i

b2i
...

bni

 , i = 1, . . . ,m, h j =


h1 j

h2 j
...

hn j

 , j = 1 . . . ,n.

Then, the second equation can be rewritten as
u1
u2
...

um


T 

bT
1 h1 bT

1 h2 . . . bT
1 hn

bT
2 h1 bT

2 h2 . . . bT
2 hn

...
...

. . .
...

bT
mh1 bT

mh2 . . . bT
mhn




x1
x2
...

xn

+


x1
x2
...

xm


T 

hT
1 b1 hT

1 b2 . . . hT
1 bm

hT
2 b1 hT

2 b2 . . . hT
2 bm

...
...

. . .
...

hT
n b1 hT

n b2 . . . hT
n bm




u1
u2
...

um



=−


u1
u2
...

um


T 

d1 0 . . . 0
0 d2 . . . 0
...

...
. . . 0

0 0 0 dm




u1
u2
...

um

 ,

or in the form 
u1
u2
...

um


T 

bT
1 (h1x1 +h2x2 + . . .+hnxn)

bT
2 (h1x1 +h2x2 + . . .+hnxn)

...
bT

m (h1x1 +h2x2 + . . .+hnxn)



+


(
hT

1 x1 +hT
2 x2 + . . .+hT

n xn
)

b1(
hT

1 x1 +hT
2 x2 + . . .+hT

n xn
)

b2
...(

hT
1 x1 +hT

2 x2 + . . .+hT
n xn
)

bm


T 

u1
u2
...

um

=−d11u2
1−d22u2

2−·· ·−dmmu2
m.
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Hence, we obtain the system of equations

2
(
hT

1 x1 +hT
2 x2 + . . .+hT

n xn
)

b1u1 =−d11u2
1,

2
(
hT

1 x1 +hT
2 x2 + . . .+hT

n xn
)

b2u2 =−d22u2
2,

. . . . . . . . .

2
(
hT

1 x1 +hT
2 x2 + ...+hT

n xn
)

bmum =−dmmu2
m.

Thus, the optimal control has the form

u0
1 (x) =−

2
d11

(
hT

1 x1 +hT
2 x2 + ...+hT

n xn
)

b1,

u0
2 (x) =−

2
d22

(
hT

1 x1 +hT
2 x2 + ...+hT

n xn
)

b2,

. . . . . . . . .

u0
m (x) =− 2

dmm

(
hT

1 x1 +hT
2 x2 + ...+hT

n xn
)

bm.

3 CONCLUSION

In the paper we applied a method developed by N.N. Krasovskii to solving optimal stabilization
problems for several classes of differential equations and their systems. By this method, a control
function can be found in the form of a feedback such that the zero solution of a given equation
or system will be asymptotically stable and, simultaneously, an integral quality criterion attains a
minimum value. Further investigation can be directed to the problem of optimal stabilization of
system (9) if the matrix D in the integral quality criterion (10) is not diagonal.
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