
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

THE PARALLEL GENETIC ALGORITHM
FOR MULTICORE SYSTEMS

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. LUKÁŠ VRÁBEL
AUTHOR

BRNO 2010

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

PARALELNÍ GENETICKÝ ALGORITMUS
PRO VÍCEJÁDROVÉ SYSTÉMY
THE PARALLEL GENETIC ALGORITHM FOR MULTICORE SYSTEMS

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. LUKÁŠ VRÁBEL
AUTHOR

VEDOUCÍ PRÁCE Ing. JIŘÍ JAROŠ
SUPERVISOR

BRNO 2010

Zadání práce

1. Seznamte se s genetickými algoritmy a jejich aplikacemi v oblasti numerické optimal-
izace.

2. Prostudujte paralelizaci algoritmů pro systémy se sdílenou pamětí.

3. Navrhněte novou techniku paralelizace genetického algoritmu pro systémy se sdílenou
pamětí. Zaměřte se na maximální možné zrychlení daného algoritmu oproti sekvenční
verzi.

4. Navrženou koncepci realizujte a experimentálně ověřte zrychlení oproti sekvenční
verzi.

5. Zhodnoťte dosažené výsledky a diskutujte možné pokračování v projektu.

3

Abstrakt
Genetický algoritmus je optimalizačná metóda zameraná na efektívne hľadanie riešení ro-
zličných problémov. Je založená na princípe evolúcie a prirodzeného výberu najschopnejších
jedincov v prírode. Keďže je táto metóda výpočtovo náročná, bolo vymyslených veľa spô-
sobov na jej paralelizáciu. Avšak väčšina týchto metód je z historických dôvodov založená
na superpočítačoch alebo rozsiahlych počítačových systémoch. Moderný vývoj v oblasti
informačných technológií prináša na trh osobných počítačov stále lacnejšie a výkonnejšie
viacjadrové systémy. Táto práca sa zaoberá návrhom nových metód paralelizácie genet-
ického algoritmu, ktoré sa snažia naplno využiť možnosti práve týchto počítačových systé-
mov. Tieto metódy sú následne naimplementované v programovacom jazyku C za využitia
knižnice OpenMP určenej na paralelizáciu. Implementácia je následne použitá na experi-
mentálne ohodnotenie rozličných charakteristík každej z prezentovaných metód (zrýchlenie
oproti sekvenčnej verzii, závislosť konvergencie výsledných hodnôt od miery paralelizácie
alebo od vyťaženia procesoru, . . .). V poslednej časti práce sú prezentované porovnania
nameraných hodnôt a závery vyplývajúce z týchto meraní. Následne sú prediskutované
možné vylepšenia daných metód vyplývajúce z týchto záverov, ako aj možnosti spraco-
vania väčšieho množstva charakteristík na presnejšie ohodnotenie efektivity paralelizácie
genetických algoritmov.

Abstract
Genetic algorithm is a powerful optimization and search method successfully used in prac-
tice to solve many different problems. Underlying concept is based on the evolutionary
mechanics observed in nature. As the GAs are computationaly intense applications, it is
natural that there are many efficient methods for parallelization of these algorithms. How-
ever, most of these methods deal with supercomputers or large computer clusters with
specialized hardware, as these were the most common parallel architectures in the past.
With modern-day computers the trend in personal computer design is also moving towards
parallel architectures bringing small and cheap parallel multicore processors. That’s why it
is imperative to have efficient methods to exploit capabilities of this system. This document
presents prototypes of new methods of parallel genetic algorithms designed especially for
these multiprocessor computers with shared memory.

Klíčová slova
paralelní, genetický algoritmus, vícejádrové systémy, víceprocesorové systémy, OpenMP

Keywords
parallel, genetic algorithm, multicore, multiprocessor system, OpenMP

Citace
Lukáš Vrábel: The Parallel Genetic Algorithm for Multicore Systems, diplomová práce,
Brno, FIT VUT v Brně, 2010

Citation
Lukáš Vrábel: The Parallel Genetic Algorithm for Multicore Systems, master’s thesis, Brno,
FIT VUT v Brně, 2010

The Parallel Genetic Algorithm for Multicore Sys-
tems

Prohlášení
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením pana Ing. Jiřího
Jaroše

. .
Lukáš Vrábel
May 26, 2010

Acknowledgment
I would like to thank Ing. Jiří Jaroš for information, ideas and help with the thesis.

c© Lukáš Vrábel, 2010.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3
1.1 Organization . 3

2 Genetic Algorithms 4
2.1 Introduction . 4
2.2 Methodology . 5
2.3 Steady-State GA . 6
2.4 History . 7
2.5 Genome Encoding and Problems . 7

3 Genetic Operators 9
3.1 Mutation . 9
3.2 Crossover . 10

3.2.1 One-point crossover . 10
3.2.2 Two-point crossover . 10
3.2.3 Uniform crossover . 11
3.2.4 Ordered chromosome crossover . 11
3.2.5 Tree crossover . 11

3.3 Selection . 12
3.3.1 Roulette-wheel selection . 13
3.3.2 Rank selection . 13
3.3.3 Tournament selection . 14

4 Parallel Genetic Algorithms 15
4.1 Introduction . 15
4.2 Classification . 15

4.2.1 Global Parallel GA . 15
4.2.2 Fine-grained Parallel GA . 16
4.2.3 Multi-Deme Parallel GA . 16
4.2.4 Hierarchical PGA . 17

5 Multiprocessor Systems 18
5.1 Introduction . 18
5.2 SMP . 18
5.3 NUMA . 19

5.3.1 Hybrid NUMA . 21
5.3.2 OS Support . 21

5.4 Speedup . 22

1

5.5 Cache Coherence . 23

6 New Methods of PGA 25
6.1 Motivation . 25
6.2 Design Principles . 25
6.3 Symmetric Method . 26

6.3.1 Elitism . 27
6.3.2 Properties . 27

6.4 Asymmetric Method . 28
6.4.1 Properties . 30

6.5 SMP vs NUMA . 30
6.5.1 NUMA selection . 31
6.5.2 Disadvantages . 32

6.6 Comparison . 32
6.7 Implementation . 32

6.7.1 Synchronization . 33
6.7.2 Fitness functions . 33
6.7.3 Pseudorandom number generator . 35

7 Experimental Results 36
7.1 Speedup . 36

7.1.1 Conclusion . 38
7.2 Convergence . 38

7.2.1 Conclusion . 39
7.3 Heavy Load . 41

7.3.1 Conclusion . 41

8 Conclusion 43
8.1 Results . 43

8.1.1 Speedup . 43
8.1.2 Convergence . 43
8.1.3 Heavy Load . 44

8.2 Future work . 44

Bibliography 46

List of used abbreviations and symbols 47

A Atomic Increments 48

B Xorshift Pseudo-Random Number Generator 49
B.1 Implementation of xorshift PRNG . 49
B.2 Initialization with seed value . 49

C Speedup Data 50
C.1 System Specifications . 50
C.2 Running times . 51

2

Chapter 1

Introduction

As genetic algorithms are relatively computationaly demanding applications, it is essential
to design the most optimal methods to reduce the time needed to find a good solution.
One way to achieve this is to exploit new generation of cheap multicore and multiprocessor
personal computers with shared memory.

The purpose of this document is to analyze advantages and bottlenecks of these com-
puter systems, and also to explore various approaches to parallelizing GAs. Based on this
analysis, a design of new methods of parallel genetic algorithm is presented. The goal
of these methods is to achieve maximum possible speedup trying to utilize the strengths
and avoid the weaknesses of shared memory multiprocessor systems, as well as to explore
possible ways to paralellization of genetic algorithm.

These new methods and their variations are then implemented using low-level multi-
threading OpenMP library. This implementation is used to benchmark various aspects of
these methods as speedup, fitness convergence, performance under heavy load, and effect
of selection and migration variants on these aspects. Finally, the results of the experiments
are discussed, and possible ways of future research based on the discussions are proposed.

1.1 Organization

This document is organized into three main parts:
First part describes history and basic principles and models of genetic algorithms in

chapter two, introduces genetic operators of mutation, crossover and selection in chapter
three and basic description and taxonomy of various approaches used to parallelize genetic
algorithms in the fourth chapter.

Second part consisting of chapter five provides general information on parallel comput-
ing, hardware architectures realizing parallel computation (especially symmetric multipro-
cessing and multiprocessor systems with non-uniform memory access), its bottlenecks and
introduction to theoretical background used to assess the speedup of parallel systems and
algorithms.

The last part, consisting of chapters six to eight, presents design goals based on analysis
of current multiprocessor systems. These goals are used to design and implement the
new methods of parallel genetic algorithm. Methods are then analyzed and experimental
results are gathered from multiple runs on multiprocessor systems of various configurations.
Chapter seven presents results and conclusions based on these results. Discussions on
conclusions and future research on the subject are proposed in chapter eight.

3

Chapter 2

Genetic Algorithms

2.1 Introduction

The genetic algorithm is optimization and adaptive heuristic search technique based on
the evolutionary ideas of natural selection and genetics. GAs simulates processes in nature
necessary for evolution, such as inheritance, mutation, selection, and crossover, that ensures
the survival of the fittest. A GA allows a population composed of many individuals to evolve
under specifed selection rules to a state that maximizes the fitness (i.e.,minimizes the cost
function).[13]

Some of the advantages of a GA include that it

• Optimizes with continuous or discrete variables

• Doesn’t require derivative information

• Simultaneously searches from a wide sampling of the cost surface

• Deals with a large number of variables

• Is well suited for parallel computers

• Optimizes variables with extremely complex cost surfaces (they can jump out of a
local minimum)

• Provides a list of optimum solutions, not just one

These advantages are intriguing and produce stunning results when traditional optimization
approaches fail miserably.

Of course, the GA is not the best way to solve every problem. Sometimes the traditional
methods have been tuned to quickly find the solution of a well-behaved convex analytical
function of only a few variables. For such cases the calculus-based methods outperform
the GA, quickly finding the minimum while the GA is still analyzing the costs of the
initial population. For these problems the optimizer should use the experience of the past
and employ these quick methods. However, many realistic problems do not fall into this
category. In addition, for problems that are not overly difficult, other methods may find the
solution faster than the GA. The large population of solutions that gives the GA its power
is also its disadvantage when it comes to speed on a serial computer - the cost function of
each of those solutions must be evaluated. However, if a parallel computer is available, each
processor can evaluate a separate function at the same time. Thus the GA is optimally
suited for such parallel computations [13].

4

2.2 Methodology

Genetic algorithms are usualy implemented as a computer simulation in which a population
of representations (called genotype or chromosomes) of possible solutions (called genomes)
to an optimization problem evolves, thus moving toward better solutions. Usually, solu-
tions are represented as binary strings (containig 0s and 1s), but other encodings are also
possible. The evolution starts on a population of randomly generated individuals and hap-
pens in generations. In each generation, the fitness of every individual in the population
is evaluated, multiple individuals are stochastically selected from the current population
(based on their fitness), and modified (recombined and possibly randomly mutated) to form
a new population. The new population is then used in the next iteration of the algorithm.
Commonly, the algorithm terminates when either a maximum number of generations has
been produced, or a satisfactory fitness level has been reached for the population. If the
algorithm has terminated due to a maximum number of generations, a satisfactory solution
may or may not have been reached [26].

A typical genetic algorithm requires two things to be defined:

• a genetic representation of the solution domain

• a fitness function to evaluate the solution domain

A standard representation of the solution is as an array of bits. Arrays of other types
and structures can be used in essentially the same way. The main property that makes these
genetic representations convenient is that their parts are easily aligned due to their fixed
size, that facilitates simple crossover operation. Variable length representations may also be
used, but crossover implementation is more complex in this case. Tree-like representations
are explored in Genetic programming[26].

randomize current_generation

evaluate current_generation

while (not ending_condition)

{

select parents for reproduction from current_generation

create offsprings using crossover and mutation

evaluate offsprings

create new_generation from offsprings and parents

swap new_generation and current_generation

}

Figure 2.1: Pseudocode for general genetic algorithm

The fitness function is defined over the genetic representation and measures the quality
of the represented solution. The fitness function is always problem dependent. For instance,
in the knapsack problem we want to maximize the total value of objects that we can put in
a knapsack of some fixed capacity. A representation of a solution might be an array of bits,
where each bit represents a different object, and the value of the bit (0 or 1) represents
whether or not the object is in the knapsack. Not every such representation is valid, as the
size of objects may exceed the capacity of the knapsack. The fitness of the solution is the
sum of values of all objects in the knapsack if the representation is valid, or 0 otherwise.
In some problems, it is hard or even impossible to define the fitness expression[26].

5

Once we have defined the genetic representation and the fitness function, GA proceeds
to randomly initialize a population of solutions, then improve the overall fitness through
continuous application of crossover, mutation and selection operators. Diagram iluustrating
this process is on figure 2.2 with corresponding pseudocode on figure 2.1.

Population New Generation

Parents
Crossovers

Mutation
Offsprings Evaluation

Evaluated
Offsprings

Swap
Populations

Selection Save

Figure 2.2: New generation created from offsprings of successful parents. After the new
generation is filled, it becomes the current population.

2.3 Steady-State GA

The variant of genetic algorithm described in previous chapter is called generational GA,
because the evolution proceeds in discrete steps called generations. On the other hand, the
Steady-state genetic algorithm (SSGA) is model based on notion of continuous evolution.

Population

Selection

Parents

Offsprings

Crossovers
Mutation
Evaluation

Replace

Figure 2.3: Evolution process of steady-state GA.

The difference from generational GA model is that in SSGA there are no generations,
thus offsprings created by crossover and mutation get back to the population immediately.
To keep the size of population constant, some of the genomes of current population must
vacate a slot for these new offsprings. This process is called a replacement strategy. As
current generation and new generation overlaps, offsprings compete with parents as soon as
they enter the population [19]. Schematic diagram of SSGA evolution process is displayed
on figure 2.3.

The replacement strategy is important factor of SSGA - it affects the population dy-
namics to large degree. Replacement of the worst individual is widely used strategy, and it

6

has been shown that it induces high selection pressure (more on selections in section 3.3)
even if the parents are selected randomly [19]. Analysis in [28] also shows that the de-
crease of population variance under steady-state GA is twice compared to the traditional
GA working on generations. On the other hand, the evolution process requires half the
computational steps of generational GA to achieve the same convergence [28]).

There are different replacement strategies that try to solve this problem by enforcing
higher population diversity. Most of them belongs to the category of crowding methods,
because they are based on idea that new genomes are more likely to replace similar indi-
viduals already present in the population. Thus the population will not accumulate a lot
of genomes with similar characteristics, preserving the multiple local optima [19].

2.4 History

In the 1950s and the 1960s, there were several independent studies of evolutionary sys-
tems coducted by computer scientists with the idea that evolution could be used as an
optimization tool for solving various engineering problems. The basic idea was to evolve
a population containig candidate solutions to a given problem, using operators based on
natural selection and genetic variation. [24]

Genetic algorithms (GAs) were invented in 1960s by John Holland and were developed in
the 1970s by Holland and his colleadues and students the University of Michigan. In contrast
with then established evolutionary programming and evolution strategies, Holland’s original
goal was to formally study the phenomenon of adaptation as it occurs in nature rather than
design algorithms to solve specific problems. The main idea was to develop ways in which
the mechanisms of natural adaptation might be imported into computer systems. Holland’s
1975 book Adaptation in Natural and Artificial Systems presented the genetic algorithm
as an abstraction of biological evolution and gave a theoretical framework for adaptation
under the GA. Holland’s GA is a method for moving from one population of chromosomes
(for example strings of ones and zeros) to a new population by using a kind of natural
selection together with the operators of crossover, mutation, and inversion, inspired by
genetics. The selection operator chooses those chromosomes in the population that will
be allowed to reproduce, and it ensures that on average, the fitter chromosomes produce
more offspring than the less fit ones. Crossover combines subparts of two chromosomes,
imitating biological recombination of genomes between two organisms. Mutation randomly
changes the values of some locations in the chromosome, and inversion reverses the order
of a contiguous section of the chromosome, thus rearranging the order in which genes are
arrayed [24].

Holland’s introduction of a algorithm based on population, with mutation, crossover and
inversion was a major innovation. Moreover, Holland was the first who attempted to create
a solid theoretical background for computational evolution. This theoretical foundation,
based on the concept of schemas, was the basis for almost all of the theoretical research on
GAs [24].

2.5 Genome Encoding and Problems

Although GAs typically represents chromosomes as a string of bits, they are not restricted
to bitstrings. A number of early proponents of GAs developed GAs that use other represen-
tations such as real-valued parameters, permutations (also called ordered chromosome, used

7

for example in travelling salesman problem or scheduling problem) and treelike hierarchies
[1].

Even for binary strings, there is still a choice to be made as to which binary coding
scheme to use for encoding a numerical parameters. Most of empirical studies have found
that Gray code is produces superior results to the standard binary coding for the commonly
used test problems[1]. One reason is that the standard encoding introduces Hamming cliffs
- two numerically adjacent values may have bit representations that are many bits apart.
This could be a problem if the fitness function in gradual to some degree i.e. small changes
in the variables correspond to small changes in the function value. This is often the case
for functions with numeric parameters (also referred to as causality).

As an example, consider a five-bit parameter, with a range from 0 to 31. If it is encoded
using the standard binary coding, then 15 is encoded as 01111, whereas 16 is encoded as
10000. In order to move from 15 to 16, all five bits need to be changed. On the other hand,
using Gray coding, 15 would be represented as 01000 and 16 as 11000, differing only in 1
bit.

When choosing an alternative representation, the choice of appropriate crossover opera-
tor is critical. For example: in case of real-valued parameters as chromosome representation,
a possible crossover operator could take the parameter values of the two parents to define
an interval from which a new parameter is chosen. As the GA makes progress, it will narrow
the range over which it searches for new parameter values[1].

8

Chapter 3

Genetic Operators

This chapters briefly describes the genetic operators for most of the basic genome encodings.
As mutation is often the most simple operation, it is described as first, followed by more
complex crossover operator. Because crossover is usually the most important part of genetic
algorithm, large part of this chapters deals with various means of recombining the parent
genomes to create offsprings. The third and final section present some of the selection
operators, their advantages and disadvantages.

3.1 Mutation

The main characteristic of mutation operators is that they operate on a single individual
to produce a new individual. Most mutation operators with typical parameter settings are
relatively likely to generate offspring close to the parent solution[1].

Mutation operators are normally understood to serve two primary functions. The first
function is as an exploratory move operator, used to generate new points in the space to test.
The second is the maintenance of variability in the gene pool - the set of genomes available to
recombination in the population. This is important because most recombination operators
generate new solutions using only genetic material available in the parent population. lf the
range of gene values in the population becomes small the opportunity for recombination
operators to perform useful search tends to diminish accordingly[1].

110010110111 110000110111

Binary string mutation:

GDHFABECGAHFDBEC

Ordered chromosone muation:

C

OR

AND

BA

B

OR

AND

CA

Tree mutation:

Figure 3.1: Example of mutation operation on genomes with different encodings

9

A common view in the GA community, dating back to Holland’s book Adaptation in
Natural and Artificial Systems, is that crossover is the major instrument of variation and
innovation in GAs, with mutation insuring the population against permanent fixation at
any particular locus and thus playing more of a background role[24]. Example of mutation
operation on different genome encodings are on figure 3.1.

3.2 Crossover

The intuitive idea behind crossover is easy to state: given two individuals who are highly
fit, but for different reasons, ideally what we would like to do is create a new individual that
combines the best features from both. Of course, since we presumably do not know which
features account for the good performance (if we did we would not need a search algorithm),
the best we can do is to recombine features at random. This is how crossover operates.
It treats these features as building block’s scattered throughout the population and tries
to recombine them into better individuals via crossover. Sometimes crossover will combine
the worst features from the two parents in which case these children will not survive for
long. But sometimes it will recombine the best features from two good individuals creating
even better individuals provided these textures are collectible [1].

The success or failure of a particular crossover operator depends on the representation
of the problem, its fitness function, encoding, and specific details of the GA. It is still a very
important open problem to fully understand the interactions of these aspects and to what
extent they affect the behaviour of GA. That is also the reason that there is no definitive
guide to choosing the best type of crossover for a given problem. [24]

3.2.1 One-point crossover

One-point crossover is the simplest form: a single crossover position is chosen at random and
the parts of two parents after the crossover position are exchanged to form two offspring (see
figure 3.2). The basic idea is to recombine building blocks (schemas) of different genomess
[24]. Single-point crossover has some shortcomings: it cannot combine all possible schemas,
it often destroys schemas with longer defining lengths and the segments exchanged between
the two parents always begin and end with the endpoints of the strings.

One-point crossover:

11101 101010101 1.87

00101 010110001 1.73

00101 101010101 ???

11101 010110001 ???

← crossover point

Parents:

Offsprings:

Figure 3.2: Example of One-point corrosover on binary string

3.2.2 Two-point crossover

In two-point crossover, two positions are chosen at random and the segments between
them are exchanged (see figure 3.3). Two-point crossover is less likely to disrupt schemas
with large defining lengths and can combine more schemas than single-point crossover. In

10

addition, the segments that are exchanged do not necessarily contain the endpoints of the
strings. Again, there are schemas that two-point crossover cannot combine [24].

Two-point crossover:

111 0110101 01011.87

001 0101011 00011.73

001 0110101 0001???

111 0101011 0101???

Parents:

Offsprings:

Figure 3.3: Example of Two-point corrosover on binary string

3.2.3 Uniform crossover

Some practitioners believe strongly in the superiority of parameterized uniform crossover,
in which an exchange happens at each bit position with probability p (typically 0.5 or 0.7,
see figure 3.4).

Parameterized uniform crossover has no positional bias. Any schemas contained at
different positions in the parents can potentially be recombined in the offspring. However,
this lack of positional bias can prevent coadapted alleles from ever forming in the population,
since parameterized uniform crossover can be highly disruptive of any schema [24].

Uniform crossover:

11101101010101 1.87

00101010110001 1.73

10101011010101 ???

01101100110001 ???

12212221121112 ← mask

Parents:

Offsprings:

Figure 3.4: Example of Uniform corrosover on binary string using random mask for bit
selection

3.2.4 Ordered chromosome crossover

When the chromosome is an ordered list, such as a list the cities to be travelled for the
traveling salesman problem, a direct swap of genes may not be possible, because it would
introduce duplicates and remove necessary candidates from the list. Instead, crossover point
is selected on the parents. The chromosome up to the crossover point is retained for each
parent, and the information after the crossover point is ordered as it is ordered in the other
parent [26](for example see figure 3.5). Note that there are more ways to crossover ordered
chromosomes.

3.2.5 Tree crossover

Usually used in genetic programming, where the genome is in fact a parse-tree of a computer
program. The operation begins by independently selecting one random point in each parent

11

Ordered chromosome crossover:

ABCD EFGH 1.87

GAHF DBEC 1.73

ABCD GHFE ???

GAHF BCDE ???

Parents:

Offsprings:

← crossover point

Figure 3.5: Example of Ordered chromosome corrosover with one crossover point

to be the crossover point for that parent. The crossover fragment for a particular parent
is the subtree which has as its root the crossover point. The first offspring is produced by
deleting the crossover fragment of the first parent from the first parent and then inserting
the crossover fragment of the second parent at the crossover point of the first parent. The
second offspring is produced in a symmetric manner [17] (see figure 3.6).

Tree crossover:

C

OR

AND

C B

AND

NOT OR

A NOT A

B

crossover
points

NOT

A

C

OR

C B

AND

AND OR

NOT A

B

Parents: Offsprings:

+

Figure 3.6: Example of Tree crrosover on logical expressions

3.3 Selection

Genetic algorithms use a selection mechanism to select individuals from the population to
insert into a mating pool. Individuals from the mating pool are utilized as a parents to
generate new offspring, with the resulting offspring forming the basis of the next genera-
tion. As the individuals in the mating pool are the ones whose genes are inherited by the
next generation, it is desirable that the mating pool be comprised of ”good” individuals. A
selection mechanism in GAs is simply a process that favors the selection of better individ-
uals in the population for the mating pool. The selection pressure is the degree to which
the better individuals are favored: the higher the selection pressure, the more the better
individuals are favored. This selection pressure drives the GA to improve the population
fittness over succeeding generations. The convergence rate of a GA is largely determined by
the selection pressure, with higher selection pressures resulting in higher convergence rates.
Genetic algorithms are able to to identify optimal or near optimal solutions under a wide
range of selection pressure. However, if the selection pressure is too low, the convergence
rate will be slow, and the GA will unnecessarily take longer to find the optimal solution.
If the selection pressure is too high, there is an increased chance of the GA prematurely

12

converging to an incorrect (sub-optimal) solution. [22]
Elitism, first introduced by Kenneth De Jong (1975), is an addition to many selection

methods that forces the GA to retain some number of the best individuals at each gen-
eration. Such individuals can be lost if they are not selected to reproduce or if they are
destroyed by crossover or mutation. Many researchers have found that elitism significantly
improves the GA’s performance. [24]

There are many different techniques which a genetic algorithm can use to select the
individuals to be copied over into the next generation. Some of the most popular methods
are:

3.3.1 Roulette-wheel selection

A form of fitness-proportionate selection in which the chance of an individual’s being se-
lected is proportional to the amount by which its fitness is greater or less than its competi-
tors’ fitness. (Conceptually, this can be represented as a game of roulette - each individual
gets a slice of the wheel, but more fit ones get larger slices than less fit ones. The wheel
is then spun, and whichever individual ”owns” the section on which it lands each time is
chosen) [20].

B 101101010101 2.00

C 101001001110 2.00

A 101111000001 6.00

D 101111000001 1.00

E 101010110001 1.00

A B C D E

0.0 12.0

Total fitness = 12.00

random(0.0, 12.0)

Figure 3.7: Roulette-wheel selection, where each genome has probability based on its fitness

Probabilty of being selected is pi = fi

ΣN
j=1fj

, where N is the number of individuals in

the population (Figure 3.7). Disadvantage of this approach is that the selection pressure
heavily depends on the fitness variances in the population. Another disadvantage is that
two passes are requied for evaluating probabilities - one to compute the mean fitness and
one to compute the expected value of each individual.

3.3.2 Rank selection

Each individual in the population is assigned a numerical rank based on fitness, and selection
is based on this ranking rather than absolute differences in fitness. The advantage of this
method is that it can prevent very fit individuals from gaining dominance early at the
expense of less fit ones, which would reduce the population’s genetic diversity and might
hinder attempts to find an acceptable solution. [20]

Ranking avoids giving the far largest share of offspring to a small group of highly fit
individuals, and thus reduces the selection pressure when the fitness variance is high. It also
keeps up selection pressure when the fitness variance is low: the ratio of expected values
of individuals ranked i and i + 1 will be the same whether their absolute fitness differences
are high or low. [24] Disadvantage of this selection method is potentially time-consuming
sorting procedure, which is required for rank assignment. Figure 3.8 shows probabilities of
genomes in rank selection.

13

B 101101010101 3.00

C 101001001110 2.00

A 101111000001 5.00

D 101111000001 1.00

E 101010110001 1.00

4

3

5

2

1

A B C D E

0 15

random(0, 15)

5 4 3 2 1

Figure 3.8: Rank selection, where each genome has probability based on its rank

3.3.3 Tournament selection

Tournament selection provides selection by holding a tournament among n competitors,
with n being the tournament size. The winner of the tournament is the individual with the
highest fitness of the n tournament competitors, and the winner is then inserted into the
mating pool.

Population: Tournaments:

10110110010101 1.32

11101101010101 1.87

00110001001001 0.86

Mating pool:

11101010110101 2.08

00101001001110 2.22

11101101010101 1.87

11101101010101 1.87

00101001001110 2.22

10101111000001 2.32

10101111000001 2.32

00101010110001 1.73

10110110010101 1.32

11101010110101 2.08

00101010100100 1.45

00101001001110 2.22

00110001001001 0.86

10101111000001 2.32

10110111010000 2.13

11101101010101 1.87

00101010110001 1.73

10110111010000 2.13

elitism

Figure 3.9: Tournament selection with elitism and tournament size of 3. Only the best
genome from tournament gets selected.

Increased selection pressure can be provided by simply increasing the tournament size
n, as the winner from a larger tournament will, on average, have a higher fitness than
the winner of a smaller tournament. Tournament selection is increasingly being used as a
GA selection scheme because it’s simple to code and is efficient for both non-parallel and
parallel architectures [22]. Process of selection is on figure 3.9.

14

Chapter 4

Parallel Genetic Algorithms

4.1 Introduction

As genetic algorithms usually require more computation time than other heuristic ap-
proaches, the basic motivation of GA parallelization is the reduction of the processing
time needed to reach an acceptable solution [11].

Parallel GAs are complex non-linear algorithms that are controlled by many parameters
that affect the quality of their search and their efficiency. In particular, the design of parallel
GAs involves choices such as using one population or multiple populations. In both cases,
the size of the population or populations must be determined carefully, and when multiple
populations are used, one must decide how many to use. In addition, the populations
may remain isolated or they may communicate by exchanging individuals. Communication
involves extra costs and additional decisions on topologies, on how many individuals are
exchanged, and on the frequency of communications [4].

4.2 Classification

The parallel GAs can be divided into three main classes[3]:

• Global single-population master-slave parallel GA

• Fine-grained parallel GA (also called Massively parallel GA [11] or Neigborhood model
[1])

• Multi-deme parallel GA (also called Multiple-population [3], Distributed GA [11],
Coarse-grained GA [4] or Island model [1])

4.2.1 Global Parallel GA

This class of Parallel GA is called global because all clients operate on one population.
Probably the easiest way to parallelize GAs is to distribute the evaluation of fitness among
several slave processors while one master executes the GA operations (selection, crossover,
and mutation, see figure 4.1). Master-slave GAs are important for several reasons:

• They explore the search space in exactly the same manner as a serial GA, and therefore
the existing design guidelines for serial GAs are directly applicable

• They are very easy to implement, which makes them popular with practitioners

15

• In many cases master-slave GAs result in significant improvements in performance [4]

The most common operation that is parallelized is the evaluation of the individuals,
because the fitness of an individual is independent from the rest of the population, and there
is no need to communicate during this phase. The evaluation of individuals is parallelized
by assigning a fraction of the population to each of the processors available. Communication
occurs only as each slave receives its subset of individuals to evaluate and when the slaves
return the fitness values.

Master thread

current generation

crossover
mutation

Slave thread

Slave thread

Slave thread

evaluation

new generation

Figure 4.1: Master-Slave PGA, where master executes genetic operations and stores the
population, while slaves evaluates new genomes.

If the algorithm stops and waits to receive the fitness values for all the population before
proceeding into the next generation, then the algorithm is synchronous. A synchronous
master-slave GA has exactly the same properties as a serial GA, with speed being the only
difference. However, it is also possible to implement an asynchronous master-slave GA
where the algorithm does not stop to wait for any slow processors, but it does not work
exactly like a serial GA [3].

4.2.2 Fine-grained Parallel GA

Fine-grained parallel GAs are suited for massively parallel computers and consist of one
spatially-structured population. Selection and mating are restricted to a small neighbor-
hood, but neighborhoods overlap permitting some interaction among all the individuals
(see figure 4.2). The ideal case is to have only one individual for every processing element
available [3]. Usual parameters of fine-grained PGA are size and shape of neigborhood.

4.2.3 Multi-Deme Parallel GA

Multi-Deme Parallel genetic algorithms are the most popular parallel methods. Such algo-
rithms assume that several subpopulations (demes) evolve in parallel and that is why this
PGA is also called multiple-population or multiple-demes genetic algorithm.

The models include a concept of migration (movement of an individual string from one
subpopulation to another). It uses multiple demes (populations) that occasionally exchange
some individuals in a process called migration. A specification of an island GAs defines the

16

neighborhood
cells

selection
crossover

Figure 4.2: Fine-grained PGA with 2D spacial structure and 1-neighborhood

Figure 4.3: Multi-Deme PGA on home computer cluster with local neighborhood migration.

size and number of demes, the topology of the connections between them, the migration
rate (the fraction of the population that migrates), the frequency of migrations and the
policy to select emigrants and to replace existing individuals with incoming migrants. All
these seven new parameters have a great influence on the quality of the search and on the
efficiency of the algorithm. Because they are controlled by many parameters, the multiple
population PGAs are the hardest to use [11]. Example of multi-deme configuration is on
figure 4.3.

4.2.4 Hierarchical PGA

This class of algorithms are called hierarchical because at higher level they are multiple-
deme algorithms with single-population parallel GAs (either master-slave or fine-grained)
at the lower level. A hierarchical parallel GAs combines the benefits of its components, and
it promises better performance than any of them alone [3].

17

Chapter 5

Multiprocessor Systems

5.1 Introduction

Multiple processors were used to be the exclusive domain of mainframes and high-end
servers. Today, they estabilished a firm base in all kinds of systems, including high-end
PCs and workstations [14].

The size of components used to build both high-end and desktop machines have con-
tinually decreased in the past few decades. Shortly before 1990, Intel announced that the
company had put a million transistors onto a single chip (the i860). A few years later,
the threshold of 10 million transistors was achieved by several companies. In the mean-
time, technological progress has made it possible to put billions of transistors on a single
chip. The rate at which instructions were fetched could be increased as data paths became
shorter. The main source of advances in processor performance was the raising of the clock
speed. However, this approach had inherent limitations, particularly the heat emissions
and power consumption was getting increasingly hard to deal with [6].

Therefore, computer architects have begun to explore other strategies for increasing
hardware performance and making better use of the available on the chip available to
them: multiple processors that share memory. At first the processors were configured
in a single machine, and later, on a single chip. This approach is known as multicore.
Simultaneous multithreading platforms, multicore machines, and shared-memory parallel
computers all provide system support for the execution of multiple independent instruction
streams known as threads [6].

5.2 SMP

SMP stands for symmetric multiprocessing which represents multiprocessor system with
one shared memory. Processors and physical memory are usually connected by a bus
or crossbar switch (Figure 5.1 and 5.2). All the processors in the SMP system share the
physical memory uniformly - access time to any memory location is independent of processor
making the request or memory chip containing the requested data (it is also called UMA
- uniform memory access). Since every processor has its own private cache memory, it is
essential to ensure cache coherency - that every copy of the shared data is the same in
every cache memory. That’s why SMP architecture is also called ccUMA (cache coherent
Uniform Memory Acces) [10].

SMP is the most popular parallel architecture today[10]. SMP computers are usually

18

Bus

CPU CPU CPU

Memory
bank

Memory
bank

Memory
bank

Memory
bank

Figure 5.1: Connection between processors and memory by bus - only one processor can
access the memory at once.

Memory
bank

Memory
bank

Memory
bank

Memory
bank

CPU

CPU

CPU

Figure 5.2: Connection between processors and memory by crossbar. This connection
allows some degree of simultaneous memory access, thus achieving greater efficiency than
bus solution.

used as servers or building blocks (nodes) for larger supercomputer clusters. Symmetric
multiprocessing also dominates home computer market with multicore architecture contain-
ing two or more independent processing units called cores on one chip[10].

5.3 NUMA

The main disadvantage of SMP architectures is the memory bottleneck of the shared mem-
ory bus, which prevents effective scalability of the SMP system. This drawback can be
eliminated by providing each processor with its own local memory. Processors are then
connected by shared bus (as seen in diagram on figure 5.3) or high-throughput connections
(diagram on figure 5.4) to get access to non-local memory. As latency of local and non-
local memory is different (see 5.1), this approach is known as NUMA (or ccNUMA - cache
coherent Non-Uniform Memory Access [15]).

19

Bus

CPU

Memory
bank

CPU

Memory
bank

CPU

Memory
bank

Figure 5.3: Each processor is directly connected to local memory. Shared bus or crossbar
is used to access non-local memory.

CPU CPU

CPUCPU

Memory
bank

Memory
bank

Memory
bank

Memory
bank

Figure 5.4: Each processor is connected to its neighbour by high-speed connection. To ac-
cess some of the data, two additional processors must be enquired (two ”hops” are required)
in the worst case. Table in 5.1 describes various access times on AMD Opteron system,
which uses this form of inter-CPU communication [16].

Data location Page-hit latency (ns) Page-miss latency (ns)
Local memory 65 95
Adjacent processor 100 120
Two ”hops” processor 140 160

Table 5.1: AMD Opteron memory access latency (source: [16])

As each processor have immediate access to its local memory and this communication
channel is not shared with other processors, it can access the memory anytime without need
for synchronization mechanism. This ensures better scalability in comparison with UMA
systems. On the other hand, rather complicated inter-processor communication systems
and protocols must be employed between cache controllers to ensure cache coherence [26]
(more on cache coherence is in section 5.5). This can be obviously problem and can cause
poor performance in case that more processors tries to access the same memory resource.

20

5.3.1 Hybrid NUMA

Modern system often combine UMA and NUMA models to create hybrid architectures,
thus exploiting advantages from both approaches. Processors are grouped together with
memory to form nodes. Memory acces time within the node is the same for all the cores
in the node - there is local unified memory access. These nodes are then connected by bus
or high-speed interconnect to allow access to non-local memory banks at slightly higher
latencies, thus creating non-uniform access between the nodes[15]. There is example of
such system on figure 5.5.

Local Bus

CPU CPU

Memory
bank

Memory
bank

Local Bus

CPU CPU

Memory
bank

Memory
bank

Bus

Figure 5.5: Hybrid architecture combinig UMA and NUMA approaches to gain advantages
from both models. Server platforms like Intel Xeon are examples of such system [15].

5.3.2 OS Support

To ensure the best performance, operating system must be aware of the architure on wich
it runs. On SMP and single processor systems, each memory page is as good as another.
But this does not hold for NUMA architectures, where distance between the memory and
processor matters. The distribution of processors and memory into the nodes must be
taken into account when designing the scheduler and the kernel to find the most optimal
way of memory and thread mapping. The kernel memory allocation system must minimize
the distance between physical memory on which the thread’s data are mapped and the
processor which the thread is running on [9]. The scheduler should also avoid migration
of process or thread to another node, as this would mean that all of the data had to be
copied also. Another optimization problem is shared code of OS standard libraries, which
is normally present only once in the memory. Optimally, the parts which are used by the
multi-process application should be mirrored to each node of NUMA system [9].

21

5.4 Speedup

In parallel computing, speedup refers to how much a parallel algorithm is faster than a
corresponding sequential algorithm. Speedup is defined as:

SN =
T1

TN
(5.1)

Where N is the number of processors, T1 is the execution time of the sequential algorithm
and TN is the execution time of the parallel algorithm on system with N processors[26]. To
obtain estimated speedups of parallel programs, researchers have been using two different,
but mathematicly equivalent formulas - Amdahl’s Law and Gustafson’s Law [29].

Amdahl’s law is named after computer architect Gene Amdahl, and is used to find the
maximum expected speedup to an overall system when only part of the system is improved.
It states that serial program can be decomposed into two portions - s and p, where p is
the proportion of a program that can be made parallel, s is the proportion that cannot
be parallelized (remains serial), and s + p = 1. Then the maximum speedup that can be
achieved by using N computational units is:

s + p

(s) + p
N

(5.2)

After using s + p = 1 and s = 1− p, formula can be reduced to:

1
(1− p) + p

N

(5.3)

As N approaches infinity, the maximum speedup tends to 1/(1 − p). This means that
performance falls rapidly as N is increased once there is even a small component of (1 −
p)[26], as can be seen on figure 5.6.

Main prerequisite to applying the Amdahl’s Law is that the serial and parallel programs
must compute the same total number of steps for the same input, which is hard to satisfy for
commonly used algorithms and produce confusion [29]. Often the parallel implementation
is directly crafted from the corresponding serial implementation of the same algorithm,
therefore an alternative formulation was proposed by John Gustafson known as Gustafson’s
Law. In Gustafson’s formulation, a new serial percentage is defined in reference to the
overall processing time using N processors and it is dependant on N . This N dependent
serial percentage is easier to obtain than that in Amdahl’s formulation via computational
experiments.

The difference from Amdahl’s formulation is that Gustafson takes already parallelized
version of problem as basis for computing time needed to run that version on sequential
computer. The execution of the program on a parallel computer is decomposed into s+p =
1, where s is the serial fraction of the program and p is the parallel fraction. On a sequential
computer, the relative time would be s+Np, where N is the number of processors in parallel
case [26]. Speedup is therefore:

s + Np

s + p
(5.4)

Because s + p = 1 and p = 1− s, we can reduce this formula to:

s + N(1− s) (5.5)

22

2

4

6

8

10

12

14

16

18

20

1 4 16 64 256 1024 4096 16384

S
pe

ed
up

Number of Processors

Amdahl’s Law

Parallel Portion
95%
85%
75%
50%

Figure 5.6: Graph of expected speedup for different levels of parallelization based on Am-
dahl’s law

Gustafson discovered, that in the real-world applications, the parallel part p of a program
tends to scale with the problem size, but the serial part s, consisting of program loading,
serial bottlenecks and I/O, remains constant [12]. So as the problem size grows, s diminishes
and the speedup approaches number of processors N .

It has been observed that theoretical speedups could be overly optimistic due to overhead
incurred while parallelizing the code. This overhead often includes additional code requied
to parallelize task as well as communication latency due to shared memory bandwidth and
ensuring cache coherence [2].

5.5 Cache Coherence

Althogh theoretical speedup of algorithm can be computed independently of the architecture
of system on which the algorithm is implemented, real speedup is limited by things like
memory bandwitdth, communication speed and by cache coherence mechanism.

One of the major challenges facing computer architects today is the growing difference
in processor and memory speed. Processors have been consistently getting faster. But
more rapidly they can perform instructions, the quicker they need to receive the values of
operands from memory. Unfortunately, the speed with which data can be read from and
written to memory has not increased at the same rate [27]. This effect is illustrated on
figure 5.7.

In response, the vendors have built computers with hierarchical memory systems, in
which a small, expensive, and very fast memory called cache memory, supplies the processor
with data and instructions at high rates. Each processor of an multiprocessor system needs
its own private cache if it is to be fed quickly; hence, not all memory is shared[6]. Figure 5.8
shows an example of a generic, cache-based dual-core processor.

23

19
80

19
90

20
00

19
85

19
95

0

10

100

1000

CPU

Memory

P
er
fo
rm
an
ce

Figure 5.7: Difference between processor and memory speeds in years 1980 - 2000
(source: [27])

In a uniprocessor system, new values computed by the processor are written back to
cache, where they remain until their space is required for other data. At that point any new
values that have not already been copied back to main memory are stored back there. This
strategy does not work for multiprocessor systems. When one processor of such system
stores results of local computations in its private cache, the new values are accessible only
to code executing on that processor. If no extra precautions are taken, they will not be
available to instructions executing elsewhere on an machine until after the corresponding
block of data is displaced from cache. But it may not be clear when this will happen. In
fact, since the old values might still be in other private caches code executing on other
processors might continue to use them even then[6].

Memory

Shared
Caches

Coherency

CPU
Private
Caches

Private
CachesCPU

Figure 5.8: Diagram of generic dual-core system with cache memories

This is known as the memory consistency problem. A number of strategies have been
developed to help overcome it. Their purpose is to ensure that updates to data that have
taken place on one processor are made known to the program running on other processors,
and to make the modified values available to them if needed. A system that provides this
functionality transparently is said to be cache coherent[6].

24

Chapter 6

New Methods of PGA

6.1 Motivation

As multiprocessor architecture is dominating the computer systems market, beginning from
personal computers, through high-end workstations used for demanding computations, and
including even massively parallel supercomputer clusters, which are using multicore chips as
building blocks [18]. These systems provides better scalability of computation performance
and lower power consumption over the single-processor machines, and because of this, it
has became a trend in computer design.

As genetic algorithms are computationally demanding applications, it is imperative
to have efficient approach to exploit advantages of these systems. This chapter presents
prototypes of two new methods specifically designed for multiprocessor architectures.

Description of the methods’ inner workings, advantages and disadvanages is presented
in the second and third section, with section two describing Symmetric Method, and section
three describing Asymmetric Method.

As there is difference between SMP and NUMA systems, there are two variations for
both methods. Each variation is adapted to its corresponding architecture to avoid perfor-
mance loss. These variations are described in fourth section of this chapter.

Various implementation details as random generator and fitness function used for bench-
marking are represented in section five.

6.2 Design Principles

The most efficient parallel algorithm would have following properties:

• No communication

• No shared resources

• No sequential code

However, only limited number of problems could be parallelized efficiently while conforming
to this restriction. Unfortunately, as crossover operation is one of the core parts of GA[8], it
is not possible to completly adhere to aforementioned principles (especially the restriction
of the shared resources). Nevertheless, minimization of communication, shared resources
and sequential parts are key principles in designing new methods of PGA.

25

These methods are described in following two sections. Only variants for SMP systems
are described, and the modification of these methods for NUMA systems is then presented
in section 6.5.

6.3 Symmetric Method

The first of new methods of parallel genetic algorithm presented in this section belongs
to category of global parallel GA, because there is only one distributed population. It is
similar to master-slave model, with some properties of multi-deme parallel GA.

In traditional master-slave model, slave threads are used only to evaluate genomes while
master thread performs other evolution operators and stores the generation (figure 4.1).
This model requires communication between master thread and slave thread. On the other
hand, in Symmetric Method, all the threads are equal and each thread performs, in addition
to evaluation of fitness, full evolution process with selection, crossover and mutation, thus
eliminating master-slave hierarchy and therefore also the need for communication. Figure
6.1 shows this process on system with two processors.

Thread 1

crossover
mutation evaluate

Thread 2

crossover
mutation evaluate

current generation new generation

Figure 6.1: Schematic drawing of evolution process on system with two processors.

Since there is no communication, genomes are divided into small subpopulations of
equal size and each thread stores new genomes into its own population to prevent genome
loss due to overwrite. But as the memory is shared, selection of parents is done globally
over all subpopulations with little penalties on SMP systems (the modification for NUMA
systems is described in section 6.5). Because of that, these small subpopulations create
together one global population, where each genome has the same chance to get selected by
each thread as in serial GA.

The evolution process is divided into two phases - first is the initialization phase, where
every thread initializes its population by randomizing all genomes and then evaluates ev-
ery genome. The evolution phase, which comes after initialization, lasts until the ending
condition is met.

26

Each thread has two storage areas - current generation and new generation (see Fig-
ure 6.1). Parents are selected from current generation and offsprings are stored to new
generation. After all free places in new generation are filled, pointers to both storage areas
are swapped making new generation act as current generation. Swapping is done in an
asynchronous manner. The pseudocode for this process is in figure 6.2.

randomize all genomes in current_generation

evaluate all genomes in current_generation

while (not ending_condition):

select 2 genomes

create offspring

evaluate offspring

store offspring in new_generation

if (new_generation is full):

swap new_generation and current_generation

Figure 6.2: Pseudo-code for one thread running Symmetric Method.

6.3.1 Elitism

Elitism is very powerfull technique and helps to maintain the convergence of fitness values.
In case of Symmetric Method, the elitism is implemented on each subpopulation as copy of
the best genome in current subpopulation to its new generation.

6.3.2 Properties

A good method of parallelization should preserve any properties that sequential algorithm
with the same genetic operators would have. It should also not introduce too many addi-
tional parameters whose values could significantly affect the GA performance. [11].

Symmetric Method has almost all of this properties except identity with serial GA due
to its asynchronous matter. It is using the same genetic operators except selection operator,
which needs to be changed to work on multiple subpopulations.

Furthermore, the communication and synchronization is eliminated, with sequential part
used only for memory allocation and thread creation. Because of this, the sequential part
is not scaling with the problem size and remains constant, therefore it tends to diminishes
as the problem grows.

The description of some properties of SMP version below (for properties of NUMA
version, see section 6.5):

Advantages

Global population - because the selection operates on all of the populations equally,
every genome has a chance to compete with each other making it one global distributed
population. This eliminates the need for migration.

No communication - with no migration, non-blocking write, shared memory and asyn-
chronous approach, there is no need for threads to communicate to each other.

27

Non-blocking write - each thread stores new genomes only into its designated memory.
Threads don’t have to wait for each other to complete writing and one thread cannot
overwrite other thread’s offspring.

Everything is parallel - since whole evolution process is done in parallel, speed-up of
asynchronous approach is limited only by memory bus bandwidth and cache coherence
mechanism.

Localized memory usage - as each thread has its own private memory for writing and
this memory is not read by other threads at the time of writing, the need for cache
controllers communication to ensure cache coherence is minimal.

No additional parameters - global population doesn’t require new parameters as migra-
tion rate and frequency needed for multi-deme PGA, and shared memory eliminates
need for topologies and communication.

Easy implementation - implementation of the method is simple as only selection oper-
ator needs to be modified to work on whole population. This can be simplified even
more by using tournament selection, which selects n genomes with equal chance (as it
is no problem to choose uniformly from many population), thus minimizing amount
of modifications.

Disadvantages

Shared memory - this method requires shared uniform access memory by design, as the
selection operates on all genomes. As so, efficient implementation on computer archi-
tectures with non-uniform memory access is not possible without further modification
of algorithm described in section 6.5. Also memory bus bandwidth could be bottle-
neck on some multiprocessor systems, as each processor accesses genomes from whole
population.

Selection methods - distributing population into several subpopulations makes this method
unsuitable for any kind of fitness-proportional selection because sorting of population
after each asynchronous swap would be impossible without communication and syn-
chronization.

Thread starvation - as each subpopulation has corresponding thread, the fitness of its
genomes are dependant on flawless execution of this thread. In case the thread is
deprived of processor, the subpopulation is stagnating and low-fitness genomes are
leaking to the global population, thus slowing the convergence.

6.4 Asymmetric Method

Asymmetric Method is focusing on some problems of Symmetric Method - thread starvation
particulary. This could be serious problem, as running time of GA could be measured in
days, and it would be inconvenient to not be able to use the computer during this time.

Asymmetric Method is designed to minimize the damage in case that some thread will
be denied of processor for few generation. To solve this problem, it divides the global
population into many smaller subpopulations (more than number of threads). Due to this
fact the probability of chosing parent genomes from the defect subpopulation is lower.

28

current
generation

new
generation

Thread 1

Thread 2

Thread 3

1. 2.

3. 4.

Thread 1

Thread 2

Thread 3

current
generation

new
generation

Thread 1

Thread 2

Thread 3

current
generation

new
generation

Thread 1

Thread 2

Thread 3

current
generation

new
generation

Figure 6.3: Consecutive steps of computation by Asymmetric Method. (1) Each thread is
evolving corresponding subpopulation. (2) Thread 2 is finished, swapping new generation
with current generation and moving to next free subpopulation. (3) Thread 2 is evolving
the new subpopulation while Thread 1 finished evolution. (4) Thread 1 acquired the next
free subpopulation.

As there are more subpopulations than thread, each thread will work on more than one
subpopulation. When the thread finishes evolution of current subpopulation, it will claim
the first ”free” one and starts evolving it. Figure 6.3 displays few steps of the evolution
process done by Asymmetric Method. Pseudo-algorithm form Asymmetric Method is on
figure 6.4.

As there is possibility that each subpopulation will be evolved by each thread in some
time, the damage done by the starving thread should be divided equally between all sub-
population. The crucial difference between Symmetric Method and Asymmetric Method
is the acquisition of free subpopulation, because it cannot be done without sacrificing ad-
vantages like no thread communication or synchronization. Section 6.7.1 describes the
implementation of this acquisition.

29

while (not ending_condition):

pop = first free subpopulation

if pop was not initialized:

randomize all genomes in current_generation

evaluate all genomes in current_generation

continue to next iteration

for each genome in new_generation:

select 2 parents

create offspring

evaluate offspring

store offspring in new_generation

swap new_generation and current_generation

Figure 6.4: Pseudo-code for one thread running Asymmetric Method.

6.4.1 Properties

Experimental results in section 7.3 shows that the Asymmetric Method successfully elimi-
nates the thread-starvation disadvantage of Symmetric Method. Additionally, Asymmetric
Method retains some of the advantages from its symmetric counterpart:

• Global population

• Non-blocking write

• Whole evolution is parallel

• Localized memory usage

However, it needs additional parameter (number of subpopulations) and synchronization
(albeit with little overhead, as seen on table 6.2). Also it is not suitable for NUMA archi-
tectures, as each thread could work on any subpopulation so it is impossible to associate
the data with some processor. Asymmetric Method also retains some of the disadvan-
tages of Symmetric Method such as it need memory with uniform access to achieve efficient
performance, and the selection operator must be modified to work on subpopulations.

6.5 SMP vs NUMA

SMP technology is one of the most popular parallel architectures today. It is used in form of
multicore CPU in personal computers, servers and even building blocks of supercomputer
clusters [18]. SMP systems are also often used as nodes for hierarchical parallel genetic
algorithms.

On the other hand, high-end computer systems used for scientific calculations tends
to have higher processor count and so are using NUMA architecture because of its better
scaling. Application programming for these systems is slightly different, because memory
and processor location on chip must be taken into account when designing the parallel
algorithm. On SMP system, the algorithm could count on uniform access time to any block
of memory. This is not the case on NUMA architecture, where the data must be allocated

30

carefully and simultaneous reading or writing to the same memory block by more than one
processor must be avoided at all costs [9]. Thus algorithm designed to fully exploit all of
the resources on SMP system could have poor results on NUMA system.

So to be effective on NUMA architecture, each thread should have associated separate
data, and access to other data should be minimized, so OS can allocate data to physical
memory more effectively. Luckily, in case of genetic algorithm, the selection function is used
by thread to obtain data it will use in evolution process, so the modification is restricted
to writing two different selection operators, one for SMP system and the other for NUMA
system.

6.5.1 NUMA selection

As accesing genomes residing in non-local memory will slow down the execution of the
thread, the selection operator should be inclined to choose genomes from thread’s local
subpopulation. This could be implemented in two ways:

1. for choosing genomes from non-local subpopulation with low probability

2. restrict selection to operate only on local subpopulation, ignoring non-local subpop-
ulations entirely

To compare this two approaches, both were implemented and run on NUMA systems.
Figure 6.5 shows speedup of each approach.

System:
2x Quad-Core AMD Opteron 2387
2.8GHz, 512 KB cache, 16 GB RAM

System:
2x Quad Core Intel Xeon 5355
2.66GHz, 4096 KB cache, 32 GB RAM

0

1

2

3

4

5

6

7

1 2 3 4 5 6

S
pe

ed
up

Number of threads

Speedup

Local
Prob 0.1
Prob 0.5

SMP

1

2

3

4

5

6

7

1 2 3 4 5 6

S
pe

ed
up

Number of threads

Speedup

Local
Prob 0.1
Prob 0.5

SMP

Figure 6.5: Speedup of NUMA selection approaches compared with UMA selection. Local
describes selection restricted to local subpopulation, Prob 0.1/0.5 describes selection from
global population with 0.1/0.5 probability and SMP describes selection chosing all genomes
with uniform probability. The tests were taken on 2 different NUMA systems and values
are computed as arithmetic means of 20 independent runs.

The results shows that the selection restricted to operate only on local subpopulation
has the best speedup. With local selection, there would be no means to get the genomes
from other subpopulations, so some form of migration must be introduced to NUMA variant
of GA. To minimise the operations on non-local data, the migration scheme displayed on

31

figure 6.6 will be employed. Each thread takes best genome from all of the subpopulations
and copies these genomes into new generation. Then it will continue the evolution process
as in SMP version. Comarison of fitness convergence for SMP selection and NUMA selection
with migration is described in section 7.2

current generation new generation

best 1

best 3

best 2

best 3

best 2

best 1

best 1

best 2

best 3

best 1

best 2

best 3

best 1

best 2

best 3

Figure 6.6: Diagram showing the migration in NUMA variation. Each thread copies the
best genome from each subpopulation to its local new generation.

6.5.2 Disadvantages

The obvious disadvantage of NUMA selection is that it selects genomes only from local
subpopulation, thus altering the function of GA. With UMA selection, the paralell version
of GA behaves similary to serial GA - the evolution is done on whole population. But
with NUMA selection, it is closer to the island model of multi-deme paralell GA. Another
disadvantage is the need to implement migration schemes to mix the genomes of local
subpopulations, and this brings additional parameters required to define the process of
migration. These parameters are often very hard to optimize for achieving the best results
[4].

6.6 Comparison

Although modification of the selection operation to work on NUMA systems is simple, it
alters some of the properties of each method. Table 6.1 displays properties of each method
and its corresponding variants.

6.7 Implementation

Prototypes of both methods were implemented in C language using the OpenMP[6] library
for parallel computing. Some details of implementation are described below.

32

Method Symmetric Asymmetric
SMP NUMA SMP NUMA

Global population X X
Non-blocking write X X X X
No additional parameters X
Everything is parallel X X X X
No synchronization X X
Special selection X X

Table 6.1: Comparison of methods’ properties

6.7.1 Synchronization

To minimize communication and synchronization, the best way to acquire the free subpop-
ulation in Asymmetric Method is to keep index pointig to first free subpopulation, so the
process of acquisition can be implemented as simple atomic increment operation. In the
same atomic operation, we must also get the old value. There are several ways to do it,
and as the prototype is implemented using OpenMP and GNU Compiler Collection[25],
following options for atomic operations are available:

• OpenMP Atomic command

• OpenMP Critical section

• GNU gcc built-in function __sync_fetch_and_add [25]

Table on figure 6.2 shows running times of each operation. We can see that OpenMP
Critical section is not suited for this kind of problem as the overhead is too high for one
incrementation. Running time of OpenMP Atomic incrementation is acceptable, but it is
impossible to increment and get value in one atomic operation using this approach[6], so
GNU gcc built-in function __sync_fetch_and_add is the only choice that remains.

Method Intel Xeon AMD Opteron
Without synchronization 0.037 0.1651
OMP critical 9.56 12.6
OMP atomic 0.26614 0.29312
__sync_fetch_and_add 0.26934 0.2884

Table 6.2: Running times in seconds for various synchronization methods and computer
systems. Values are calculated as arithmetic means from 50 independent runs. Each run
consisted of 10 million corresponding operations. Source code of the benchmark program
is in appendix A.

6.7.2 Fitness functions

To benchmark the efficiency and speedup of new methods, two fitness functions are used:

• Onemax

• Cartesian Genetic Programming [7]

33

Onemax

Onemax is one of the most used fitness function for evaluating GA performance. The
calculation of fitness value is straightforward - it is the count of bits with value 1.

Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) is relatively new technique of genetic programming
(GP). It was presented by J. F. Miller and P. Thompson in 2000 [23]. CGP represents
computation algorithms by acyclic directed graphs rather than trees used by traditional GP
pioneered by John R. Koza in [17]. Each node of the graph is encoded as three numbers:
function index, node index for the first input and node index for the second input. To keep
the graph acyclic, input of each node can be taken only from previous nodes. Genotype of
CGP consists of nodes list followed by indexes of output nodes. Example of genotype and
corresponding phenotype used for solving symbolic regression is on figure 6.7.

inputs:

÷

x

1

÷

*

+
-

*

+

* output
0

1

2

3

4

5

6

7

8

9

node 2

2 0 0 0 1 1 1 2 3 3 3 1 2 2 4 0 6 1 2 2 7 3 4 1 8
node 3 node 9 output. . .

Genotype:

Phenotype:

Figure 6.7: Example of relation between CGP genotype and corresponding phenotype. The
phenotype represents computation of mathematical expression x6−2x4 +x2. First number
of each gene is function type with (0)+, (1)−, (2)∗ and (3)÷. Grey color denotes inactive
nodes. Surce: [7]

CGP was usually implemented with mutation only, because the crossover used on integer
encoding has negative impact on fitness convergence. However, in 2007, Miller and others
introduced new encoding using floating point numbers in [7]. This encoding was designed
to allow succesfull crossover operator for CGP, speeding-up the convergence considerably.
Each node consisted of three floating point numbers from interval 〈0, 1〉. Each number
corresponds with integer number in original genome so the purpose of each number is not
changed. To get the index values from floating points number, each interval is mapped to
corresponding integer range from 0 to maximum allowed index. The value of particular
index is then produced by rounding the floating point number representing it. With this
kind of encoding, the real-valued crossover can be applied to genome. This technique was
shown to produce better results than original CGP [7].

For benchmarking the new methods, CGP was used to find the logical circuit realizing

34

the 3x3 multiplier. The building blocks for this circuit was nodes with four logical functions:
and, or, xor and not. Each node has two 1-bit inputs and one 1-bit output. The input
of the whole circuit are 6 bits representig two 3-bit numbers and the output is one 6-bit
number. The circuit containins 100 nodes, although not every node must be active. Fitness
value of genome is defined as number of bits that are the same as bits in desired output.
This difference is calculated for all of 26 input combination. In case of absolutely correct
results, the number of inactive nodes are added to fitness, so the evolution can optimize
also the size of the circuit.

6.7.3 Pseudorandom number generator

As GA are essentialy stochastical algorithms, the function implementing pseudorandom
number generator (PRNP) is the most called function in the whole system. Large period
and high efficiency are the main requirements that GA put on this generator. Although
statistical quality of generated numbers can be helpfull, it was shown in [5] that it is not
essential for good convergence. Based on these requirements, xorshift [21] was selected as
PRNG for benchmarking. As its name suggests, only bitwise xor and shift instructions
are used for generating random numbers. Because these instructions are among the fastest
instruction supported by modern CPUs, xorshift can produce numbers at very high rates.
These numbers have also sufficient statistical quality as xorshift has period 2128 − 1 and
passes all of die-hard tests designed to evaluate PRNG [21]. Source code used in prototype
implementation is in appendix B.

35

Chapter 7

Experimental Results

This chapter presents results of various experiments used to benchmark the speedup and
convergence of both methods, and conclusions based on acquired data.

Goal of the GA was to optimize two problems: simple onemax and more complex design
of digital logical circuit using cartesian genetic programming. More info on implementation
details of each method and fitness functions is in section 6.7.

7.1 Speedup

This section presents a comparison of Symmetric Method and Asymmetric Method. The
speedup of each method with corresponding UMA and NUMA variant are calculated from
data acquired from 50 independent runs. Each run consisted of 5000 generations. As
the methods are essentialy asynchronous, the notion of generation is defined as number of
evaluations equal to population size (with elitism and migration not counting towards this
number)

Results are presented by graphs on figure 7.1. Tests were run on four multiprocessor
systems with different configurations. Brief description of the systems is presented in the
following list, with more detailed technical parameters described in appendix C.

edesign1, edesign2 – high-performance multiprocessor systems dedicated for research
purposes. Hybrid NUMA architecture (2 Dual-Core chips for edesign1 and 2 Quad-
Core chips for edesign2) based on AMD and Intel processor technologies. Both sys-
tems run Linux-based operating system.

merlin – computer server system set up for developing and testing student projects. As
all of the students have access to this system (opposed to edesign systems with access
restricted to authorized personell), it is under low to moderate load for most of the
time. Tests on this system serves to benchmark performance on such systems. Server
is built on NUMA architecture with two Quad-Core AMD Opteron chips.

pcjaros-gpu – high-performance private SMP system with single Quad-Core Intel CPU
used for benchmarking algorithms accelerated on graphic cards. As all of the other
systems represents hybrid NUMA architectures, pcjaros-gpu is used for obtaining test
results on SMP architecture.

36

1

1.5

2

2.5

3

3.5

4

4.5

1 1.5 2 2.5 3 3.5 4

sp
ee

du
p

threads

Onemax speedup - edesign1

Linear
Symmetric, NUMA

Symmetric, UMA
Asymmetric, NUMA

Asymmetric, UMA

1

1.5

2

2.5

3

3.5

4

4.5

1 1.5 2 2.5 3 3.5 4

sp
ee

du
p

threads

CGP speedup - edesign1

Linear
Symmetric, NUMA

Symmetric, UMA
Asymmetric, NUMA

Asymmetric, UMA

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

sp
ee

du
p

threads

CGP speedup - edesign2

Linear
Symmetric, NUMA

Symmetric, UMA
Asymmetric, NUMA

Asymmetric, UMA

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

sp
ee

du
p

threads

CGP speedup - merlin

Linear
Symmetric, NUMA

Symmetric, UMA
Asymmetric, NUMA

Asymmetric, UMA

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

sp
ee

du
p

threads

Onemax speedup - merlin

Linear
Symmetric, NUMA

Symmetric, UMA
Asymmetric, NUMA

Asymmetric, UMA

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

sp
ee

du
p

threads

Onemax speedup - edesign2

Linear
Symmetric, NUMA

Symmetric, UMA
Asymmetric, NUMA

Asymmetric, UMA

CGP Onemax

1

1.5

2

2.5

3

3.5

4

1 2 3 4

sp
ee

du
p

threads

CGP speedup - pcjaros-gpu

Linear
Symmetric, NUMA

Symmetric, UMA
Asymmetric, NUMA

Asymmetric, UMA

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4

sp
ee

du
p

threads

Onemax speedup - pcjaros-gpu

Linear
Symmetric, NUMA

Symmetric, UMA
Asymmetric, NUMA

Asymmetric, UMA

Figure 7.1: Graphs showing speedup for different systems and fitness functions.

37

The size of population was chosen to be 840 as this number is divisible by numbers from
1 to 8 (the numbers of threads), so each test run will be run on the population of same
size. For Asymmetric version, the number of subpopulations was s = 2t + 1, where t is the
number of threads. Appendix C describes all of the parameters used to configure genetic
algorithm for the tests. Due to the elitism and migration, different number of genomes are
copied to new generation (details in table 7.1). As these genomes have their fitness already
calculated, they are not counted towards evaluations count.

7.1.1 Conclusion

The results plotted in figure 7.1 shows that the speedup of both methods is dependandant on
many factors, including fitness function and even hardware configuration of multiprocessor
system the test is being run on. Other than that, the results were quite consistent with the
expectations except a few phenomena:

Superlinear speedup – on some systems, the onemax fitness function displays superlin-
ear speedup. This could be the effect of larger cache memory being used – as more
threads use more processor and each processor has its own cache, more data could
be stored in high-speed low latency cache memory contributing to better speed. This
assumption would also explain the fact that CGP fitness function doesn’t display
such large superlinear speedup, as the CGP genome is roughly 10 times larger than
genome used for onemax problem (for details on parameters of GA see appendix C).
This assumption should be the subject of further research.

UMA faster than NUMA – on edesign2, the UMA variant of Asymmetric version op-
timizing the CGP problem shows greater speedup than its corresponding NUMA
variant. As the Asymmetric UMA variant is working with whole population all the
time, it is expected to have the worse speedup. This holds true for all the other test
cases.

Overall, the NUMA variant of the Symmetric Method shows nearly linear speedup in
all of the test cases. Second place in performance is dependant on fitness function, as the
Asymmetric NUMA variant shows better results for onemax, but Symmetric UMA variant
beats it in the field of CGP problem optimization. All of the methods and variations display
somewhat linear speedup on SMP system pcjaros-gpu.

7.2 Convergence

In previous chapter we measured the performance of GA by measuring the the time of
run. Althoug this time is one of the indicators of performance, the effectivity of GAs also
depends largley on fitness convergence. It would not be beneficial to have algorithm that
runs at double speed, but need also twice the steps to reach the same fitness value, as we
would have to wait the same time to get similar solutions.

Following experiments provides results showing the convergence of fitness for each of the
methods and variants. Graph on figure 7.2 displays arithmetic means of best and average
fitness of population after 50 independent runs of GA.

As the surface of CGP fitness function is much more complex than the simple Onemax
problem, the fitness convergence is measured on CGP problem. Each run consisted of
1000 generations (as the methods are asynchronous, one generation is defined as number

38

270

280

290

300

310

320

330

340

350

360

1 2 3 4 5 6 7 8

fit
ne

ss

threads

Average Fitness

Symmetric, NUMA
Symmetric, UMA

Asymmetric, NUMA
Asymmetric, UMA

270

280

290

300

310

320

330

340

350

360

1 2 3 4 5 6 7 8

fit
ne

ss

threads

Best Genome

Symmetric, NUMA
Symmetric, UMA

Asymmetric, NUMA
Asymmetric, UMA

Figure 7.2: Graphs showing best and average fitness achieved on the end of the 1000th
generation. The graph displays relation between number of threads and fitness values.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8

fit
ne

ss

threads

Fitness Difference - Symmetric Method

NUMA
UMA

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8

fit
ne

ss

threads

Fitness Difference - Asymmetric Method

NUMA
UMA

Difference between best and average fitness

Figure 7.3: Difference between best and average fitness.

of evaluations equal to population size), because the solutions have converged by then and
population fitness just slowly rose in the follofing generations.

We can see that the fitness achieved at the end of the evolution rises with the thread
count. Difference between best and average fitness, which is displayed on figure 7.3, can be
considered as one of the indicators of variance in the population.

Plot on figure 7.4 provides the values of average and best fitness during all the steps of
evolution process. Both methods were run with 8 threads for 1000 generations

7.2.1 Conclusion

Result of the convergence tests shows that the fitness values tends to rise with rising thread
count. Figure 7.2 also shows that NUMA variants are more effective than their UMA
counterparts. Better convergence is mirrored by smaller variations in population displayed
on figure 7.3. We can also notice that Asymmetric Method achieves better values and
converge faster than Symmetric Method (figure 7.4).

This effect could be caused by the elitism and migration technique used in UMA and
NUMA variants. In case of Symmetric Method, the number of subpopulations that global

39

260

280

300

320

340

360

0 200000 400000 600000 800000 1e+06

fit
ne

ss

evaluations

Average fitness convergence (8 threads)

Symmetric
Asymmetric

UMA

NUMA

260

280

300

320

340

360

0 200000 400000 600000 800000 1e+06

fit
ne

ss

evaluations

Best fitness convergence (8 threads)

Symmetric
Asymmetric

NUMA

UMA

Figure 7.4: Convergence of best and average fitness values as it develops during the run of
GA.

population is divided into equals to the number of threads t. As the elitism is carried out
on subpopulation level, the number of locally optimal genomes copied into new generation
is equal t in UMA variant and t2 in NUMA variant. In Asymmetric Method, the number
of subpopulations is even bigger: 2t + 1. This migration is possible due to the fact that
each subpopulation keeps local information about the best thread.

Symmetric Asymmetric
Thr SMP NUMA SMP NUMA

1 1 (0%) 1 (0%) 3 (0%) 9 (1%)
2 2 (0%) 4 (0%) 5 (1%) 25 (3%)
3 3 (0%) 9 (1%) 7 (1%) 49 (6%)
4 4 (0%) 16 (2%) 9 (1%) 81 (10%)
5 5 (1%) 25 (3%) 11 (1%) 121 (14%)
6 6 (1%) 36 (4%) 13 (2%) 169 (20%)
7 7 (1%) 49 (6%) 15 (2%) 225 (27%)
8 8 (1%) 64 (8%) 17 (2%) 289 (34%)

Table 7.1: Number of genomes propagating to the new generation by each method.

Number of locally best genomes migrating to the new generation is displayed in table 7.1.
We can see that as we increase the subpopulation count, the number of genomes copied
from ”old” generation increases – we are approaching kind of high-pressure variant of a
steady-state genetic algorithm. SSGA are known to have faster convergence rates at the
expense of smaller variance [28], so it could be possible explanation of acquired data.

Figures 7.2 and 7.3 also displays an unexpected raise in fitness for Symmetric NUMA
Method between 4 and 5 threads. Comparable raise can be observed in Asymmetric NUMA
Method between 2 and 3 threads. According to table 7.1, both of these two points share
the number of migrating genomes (approximatly 3%-6% of whole population). It could
represent a critical migration value to achieve the best convergence and together with
NUMA’s better convergence should be the subject of further research.

40

7.3 Heavy Load

Following experiments test the ability of each method to converge on system with moderate
to heavy load. They are designed to test the assumption that Symmetric Method suffers
from lack of computing resources. To simulate system with load, the tests were run with
more threads than the number of processors.

290

300

310

320

330

340

350

360

1 2 3 4 5 6 7 8

fit
ne

ss

threads

Asymmetric Method, Average Fitness

NUMA

UMA

normal
heavy load

290

300

310

320

330

340

350

360

1 2 3 4 5 6 7 8

fit
ne

ss

threads

Asymmetric Method, Best Genome

NUMA

UMA

normal
heavy load

270

280

290

300

310

320

330

340

350

1 2 3 4 5 6 7 8
fit

ne
ss

threads

Symmetric Method, Average Fitness

normal
heavy load NUMA

UMA

300

310

320

330

340

350

360

1 2 3 4 5 6 7 8

fit
ne

ss

threads

Symmetric Method, Best Genome

normal
heavy load NUMA

UMA

Symmetric Method

Asymmetric Method

Figure 7.5: Graphs show the relation between fitness achieved on system with no load and
system with moderate to heavy load. Plot label normal refers to runs on edesign2 system
with while label heavy load describes data measured on edesign1.

Two systems were used: edesign2 with two Quad-Core CPUs to simulate normal be-
haviour and edesign1 with two Dual-Core CPUs to simulate system with moderate to heavy
load (as it has only 4 cores, 5 to 8 threads could not run simultaneously). More informa-
tions about each system can be found in section 7.1 and in appendix C. Figure 7.5 displays
average and best fitness values achieved by the GA under different conditions.

7.3.1 Conclusion

From graphs on figure 7.5 is obvious that the only variant suffering from lack of processor
time is UMA variant of Symmetric Method. These results confirms the assumptions about

41

the UMA selection. As the selection operates on whole population, sub-optimal genomes
spread from poor subpopulations. On the other hand, UMA variant of Asymmetric Method
is achieving the same convergence under heavy load as under normal conditions, thus the
Asymmetric Method succeeded in solving the lack-of-resources issue of Symmetric Method
and successfully accomplished its design goal.

However, the NUMA variants of both Methods produce almost identical results in-
dependenly of system load. This result is interesting because it renders the Asymmetric
Method unnecessary as the heavy load problem of Symmetric Method can be solved by its
NUMA variant, which has better results than UMA variant in all the aspects.

42

Chapter 8

Conclusion

This work is presenting comparison of two different approaches to paralellization of GA.
These two methods - Symmetric Method and Asymmetric Method - are presented in chap-
ter 6 and their performance is evaluated in chapter 7. Final chapter sums up the conclusions
based on acquired results and presents possible direction for future research of this subject.

8.1 Results

The experiments measured three main aspects of each method:

• Speedup

• Convergence

• Performance under heavy load

The quality of each aspect is measured by running different optimization problems described
in section 6.7.

8.1.1 Speedup

The ability to achieve effective speedup on multiple processors is essential to achieve good
performance. Figure 7.1 displays speedups of each method and variant. As can be seen on
graphs, the speedup depends on many factors as fitness function or hardware configuration
and architecture. Overall, NUMA variant of Symmetric Method has the best performance,
achieving linear or almost linear speedup on all of the architectures.

8.1.2 Convergence

Another important indicator of GA performance is its ability to find near optimal solution
quickly. As the quality of solution is measured by the fitness function, this ability can be
represented as convergence of fitness values in population toward optimal value. Figures 7.2,
7.3 and 7.4 in section 7.2 compare the development and final values of population fitness
of each method.

We can see that NUMA variants are achieving slightly better convergence rates and
fitness values for the CGP fitness function. This improvement of convergence is achieved at
the expense of variance in the population. The relation between Asymmetric Method and
steady-state genetic algorithm is discussed at the end of section 7.2. Overall, Asymmetric

43

Method (especially its NUMA variant) shows better convergence rates that Symmetric
Method. Also NUMA selection is producing better results than its UMA counterpart.

8.1.3 Heavy Load

Final tests were dedicated to the performance under the system with moderate to heavy
load. Graphs on figure 7.5 shows that the methods are not affected much by system load or
lack of resources, with UMA variant of Symmetric Method being the exception (however,
the difference in fitness values is only marginal).

8.2 Future work

The multi-deme approach represented by NUMA variant of Symmetric Method combined
with shared memory of multiprocessor systems shows promising results in the area of per-
formance enhancing for genetic algorithms. As SSGA-like aspect of Asymmetric Methods
provides better convergence than Symmetric Method, so optimal parallelization of GA could
be achieved by combination of these two properties.

Another interesting phenomenon is superlinear speedup achieved on some systems. The
cause of this speedup should be analyzed and conclusion of this analysis should be used in
design and implementation of this new combined method.

As genetic algorithms are complicated dynamic systems with many parameters, it is
difficult to find general assumptions that would hold true in all the cases. Parallel GA are
no different. There are always more test cases that can measure different combination of
various parameters to quantify the performance more accurately. Unfortunately, it is out
of scope of this work to perform all of these tests, so additional tests can be the subject of
the future research. Following list provides some of the aspects that could be measured to
assert the performance of both methods:

• Speedup dependance on the size of population and subpopulations count

• Relation between convergence and subpopulation count

• More fitness functions

• Comparison of convergence with other methods (SSGA, master-slave, . . .)

• More detailed statistics (population variance, standard deviation, . . .)

• More migration strategies

44

Bibliography

[1] Thomas Baeck, David Fogel, and Zbigniew Michalewicz. The Handbook of
Evolutionary Computation. Oxford University Press, 1997.

[2] Glen Beane. The effects of microprocessor architecture on speedup in distributed
memory supercomputers. Technical report, The University of Maine, 2004.

[3] Erick Cantu-Paz. A survey of parallel genetic algorithms. Technical report, Illinois
Genetic Algorithms Laboratory, University of Illinois, 1998.

[4] Erick Cantu-Paz. Efficient and Accurate Parallel Genetic Algorithms. Springer, 2000.

[5] Erick Cantú-Paz. On random numbers and the performance of genetic algorithms. In
GECCO ’02: Proceedings of the Genetic and Evolutionary Computation Conference.
Morgan Kaufmann Publishers Inc., 2002.

[6] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP: Portable
Shared Memory Parallel Programming. MIT Press, 2007.

[7] Janet Clegg, James Alfred Walker, and Julian Frances Miller. A new crossover
technique for cartesian genetic programming. GECCO ’07: Proceedings of the 9th
annual conference on Genetic and evolutionary computation, 2007.

[8] Kenneth Alan De Jong. An analysis of the behavior of a class of genetic adaptive
systems. PhD thesis, University of Michigan, 1975.

[9] Ulrich Drepper. What every programmer should know about memory. Technical
report, Red Hat, Inc., 2007.

[10] Vaclav Dvorak. Architektura a Programovani Paralelnich Systemu. VUTIUM Brno,
2004.

[11] Marin Golub and Domagoj Jakobovic. A new model of global parallel genetic
algorithm. Technical report, Faculty of Electrical Engineering and Computing,
University of Zagreb, 2000.

[12] John Gustafson. Reevaluating amdahl’s law. Communications of the ACM, 1988.

[13] Randy Haupt and Sue Ellen Haupt. Practical Genetic Algorithms.
Wiley-Interscience, 2004.

[14] Intel. Multiprocessors, clusters, grids and parallel computing. Internet,
http://www.intel.com/cd/ids/developer/asmo-na/eng/95581.htm.

45

[15] Intel. Optimizing software applications for numa. Technical report, Intel, 2009.

[16] Earl Joseph, Christopher G. Willard, and Nicholas J. Kaufmann. The amd opteron
processor: A new alternative for technical computing. Technical report, AMD, 2003.

[17] John Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, 1992.

[18] Los Alamos National Laboratory. Roadrunner system overview.

[19] Manuel Lozano, Francisco Herrera, and José Ramón Cano. Replacement strategies to
preserve useful diversity in steady-state genetic algorithms. Information Sciences,
2008.

[20] Adam Marczyk. Genetic algorithms and evolutionary computation. Internet,
http://www.talkorigins.org/faqs/genalg/genalg.html, 2004.

[21] George Marsaglia. Xorshift rngs. Journal of Statistical Software, 2003.

[22] Brad Miller and David Goldberg. Genetic algorithms, tournament selection and the
effect od noise. Technical report, Department of General Engineeringm, University of
Illinois, 1995.

[23] J. F. Millerand and P.Thomson. Cartesian genetic programming. Proceedings of the
3rd European Conference on Genetic Programming (EuroGP2000), 2000.

[24] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1998.

[25] Collective of Authors. Gnu compiler collection manual.

[26] Collective of Authors. Wikipedia, the free encyclopedia. Internet,
http://www.wikipedia.com.

[27] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly
Keeton, Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. A case for
intelligent ram. IEEE Micro, 1997.

[28] Alex Rogers and Adam Prügel-Bennett. Modelling the dynamics of a steady state
genetic algorithm. In Foundations of Genetic Algorithms 5. Morgan Kaufmann, 1999.

[29] Yuan Shi. Reevaluating amdahl’s law and gustafson’s law. Technical report,
Computer and Information Sciences Department, Temple University, Philadelphia,
1996.

46

List of used abbreviations and
symbols

CGP – Cartesian Genetic Programming

CPU – Central Processing Unit

GA – Genetic Algorithm

GP – Genetic Programming

NUMA – Non-Uniform Memory Access

PGA – Parallel Gentic Algorithm

PRNG – Pseudo-Random Number Generator

SSGA – Steady-state genetic algorithm

SMP – Symmetric Multiprocessing

UMA – Uniform Memory Access

47

Appendix A

Atomic Increments

Source code for atomic increments benchmark.

#define ITERS 10000000

#define T 8

void test() {

#pragma omp parallel for shared(a) num_threads(T)

for(int i = 0; i < ITERS; i++) {

a++;

}

}

void testsync() {

#pragma omp parallel for shared(a) num_threads(T)

for(int i = 0; i < ITERS; i++) {

__sync_fetch_and_add(&a, 1);

}

}

void testomp() {

#pragma omp parallel for shared(a) num_threads(T)

for(int i = 0; i < ITERS; i++) {

#pragma omp atomic

a++;

}

}

void testompcrit() {

#pragma omp parallel for shared(a) num_threads(T)

for(int i = 0; i < ITERS; i++) {

#pragma omp critical

a++;

}

}

48

Appendix B

Xorshift Pseudo-Random Number
Generator

B.1 Implementation of xorshift PRNG

Source: [21]

static unsigned int x=123456789,y=362436069,z=521288629,w=88675123;

inline unsigned int xor128(void) {

unsigned int t=x^(x<<11);

x=y; y=z; z=w; return w=(w^(w>>19))^(t^(t>>8));

}

B.2 Initialization with seed value

inline void randseed(unsigned int seed)

{

x ^= seed; y ^= seed; z ^= seed; w ^= seed;

}

49

Appendix C

Speedup Data

C.1 System Specifications

edesign1

Hardware:

2xDual Core AMD Opteron 2220

1024 KB cache, 32 GB RAM

OS:

Linux version 2.6.32.12

(gcc version 4.3.4 (GCC)) #1 SMP Tue Apr 27 15:10:42 CEST 2010

edesign2

Hardware:

2xQuad Core Intel Xeon 5355

4096 KB cache, 32 GB RAM

OS:

Linux version 2.6.32.12

(gcc version 4.3.4 (GCC)) #1 SMP Tue Apr 27 15:10:42 CEST 2010

merlin

Hardware:

2x Quad-Core AMD Opteron 2387 2.8GHz

512 KB cache, 16 GB RAM

OS:

Linux version 2.6.32.12

(gcc version 4.3.4 (GCC)) #1 SMP Tue Apr 27 15:10:42 CEST 2010

pcjaros-gpu

Hardware:

Intel(R) Core(TM) i7 CPU 920 @ 2.67GHz overclocked to 3.32Ghz (Quad-Core)

8192 KB cache, 12 GB RAM

OS:

Linux version 2.6.31-21-generic

(gcc version 4.4.1 (Ubuntu 4.4.1-4ubuntu9)) #59-Ubuntu SMP

50

C.2 Running times

Parameters of genetic algorithm used for speedup benchmark are in table C.1.

CGP Onemax
Population 840 840
Genome size (bits) 9792 1024
Generations 5000 5000

Table C.1: Parameters of GA used for benchmark

Values were calculated as an arithmetic mean and its standard deviation from 50 inde-
pendent runs. Example table C.2 describes measured parameters.

System name
Method name

CGP Onemax
Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd

1 19.75 (0.33) 4.70 (0.08) 1.00 13.01 (0.10) 3.10 (0.02) 1.00
2 9.54 (0.14) 2.27 (0.03) 2.07 6.44 (0.02) 1.53 (0.01) 2.02

Table C.2: Data table example. System nam is on top followed by Method name. CGP
and Onemax are the names of fitness functions used for benchmark. Thr is number of
threads, Time is totoal time of run in seconds, Time/Eval is total time divided by fitness
evaluations count (virtual time of one evaluation) and Spd denotes speedup in comparison
with single-thread version. Values in parentheses represents standard deviations.

51

edesign1
Symmetric Method NUMA

CGP Onemax
Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd

1 19.75 (0.33) 4.70 (0.08) 1.00 13.01 (0.10) 3.10 (0.02) 1.00
2 9.54 (0.14) 2.27 (0.03) 2.07 6.44 (0.02) 1.53 (0.01) 2.02
3 6.37 (0.07) 1.52 (0.02) 3.10 4.30 (0.02) 1.02 (0.00) 3.03
4 4.84 (0.09) 1.15 (0.02) 4.08 3.20 (0.05) 0.76 (0.01) 4.06
Symmetric Method UMA

CGP Onemax
Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd

1 20.24 (0.31) 4.82 (0.07) 1.00 13.81 (0.01) 3.29 (0.00) 1.00
2 10.71 (0.16) 2.55 (0.04) 1.89 7.11 (0.01) 1.69 (0.00) 1.94
3 7.48 (0.09) 1.78 (0.02) 2.70 4.81 (0.01) 1.15 (0.00) 2.87
4 5.75 (0.06) 1.37 (0.01) 3.52 3.68 (0.01) 0.88 (0.00) 3.76
Asymmetric Method NUMA

CGP Onemax
Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd

1 19.49 (0.20) 4.64 (0.05) 1.00 12.91 (0.10) 3.07 (0.02) 1.00
2 10.45 (0.28) 2.49 (0.07) 1.87 6.76 (0.02) 1.61 (0.01) 1.91
3 7.18 (0.33) 1.71 (0.08) 2.71 4.34 (0.01) 1.03 (0.00) 2.98
4 5.50 (0.32) 1.31 (0.08) 3.53 3.20 (0.01) 0.76 (0.00) 4.02
Asymmetric Method UMA

CGP Onemax
Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd

1 20.00 (0.31) 4.76 (0.07) 1.00 13.64 (0.02) 3.25 (0.00) 1.00
2 10.81 (0.16) 2.57 (0.04) 1.85 7.18 (0.01) 1.71 (0.00) 1.90
3 7.83 (0.12) 1.86 (0.03) 2.56 4.98 (0.01) 1.19 (0.00) 2.74
4 6.29 (0.08) 1.50 (0.02) 3.17 3.89 (0.01) 0.93 (0.00) 3.50

Table C.3: Running times and speedup of both methods on edesign1 system

52

edesign2
Symmetric Method NUMA

CGP Onemax
Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd

1 13.58 (0.21) 3.23 (0.05) 1.00 11.11 (0.01) 2.64 (0.00) 1.00
2 6.83 (0.06) 1.63 (0.02) 1.99 5.51 (0.01) 1.31 (0.00) 2.01
3 4.59 (0.04) 1.09 (0.01) 2.96 3.65 (0.01) 0.87 (0.00) 3.04
4 3.47 (0.05) 0.83 (0.01) 3.91 2.69 (0.01) 0.64 (0.00) 4.14
5 2.80 (0.10) 0.67 (0.02) 4.84 2.11 (0.01) 0.50 (0.00) 5.26
6 2.34 (0.08) 0.56 (0.02) 5.80 1.73 (0.01) 0.41 (0.00) 6.42
7 2.02 (0.09) 0.48 (0.02) 6.73 1.46 (0.01) 0.35 (0.00) 7.60
8 1.77 (0.08) 0.42 (0.02) 7.68 1.26 (0.00) 0.30 (0.00) 8.79
Symmetric Method UMA

CGP Onemax
Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd

1 14.28 (0.18) 3.40 (0.04) 1.00 11.33 (0.01) 2.70 (0.00) 1.00
2 7.64 (0.07) 1.82 (0.02) 1.87 5.83 (0.01) 1.39 (0.00) 1.94
3 5.35 (0.05) 1.27 (0.01) 2.67 3.95 (0.00) 0.94 (0.00) 2.87
4 4.18 (0.03) 1.00 (0.01) 3.41 2.99 (0.00) 0.71 (0.00) 3.79
5 3.43 (0.03) 0.82 (0.01) 4.16 2.40 (0.00) 0.57 (0.00) 4.72
6 2.95 (0.03) 0.70 (0.01) 4.84 2.00 (0.00) 0.48 (0.00) 5.68
7 2.62 (0.03) 0.62 (0.01) 5.45 1.71 (0.00) 0.41 (0.00) 6.62
8 2.34 (0.02) 0.56 (0.00) 6.09 1.49 (0.00) 0.36 (0.00) 7.59
Asymmetric Method NUMA

CGP Onemax
Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd

1 13.52 (0.21) 3.22 (0.05) 1.00 10.96 (0.04) 2.61 (0.01) 1.00
2 8.24 (0.19) 1.96 (0.05) 1.64 5.69 (0.02) 1.35 (0.01) 1.93
3 5.89 (0.13) 1.40 (0.03) 2.30 3.68 (0.01) 0.88 (0.00) 2.98
4 4.60 (0.14) 1.10 (0.03) 2.93 2.69 (0.01) 0.64 (0.00) 4.06
5 3.88 (0.11) 0.93 (0.03) 3.47 2.12 (0.00) 0.51 (0.00) 5.14
6 3.38 (0.11) 0.81 (0.03) 3.96 1.75 (0.00) 0.42 (0.00) 6.19
7 3.15 (0.07) 0.75 (0.02) 4.29 1.53 (0.00) 0.36 (0.00) 7.17
8 3.00 (0.06) 0.72 (0.01) 4.47 1.35 (0.00) 0.32 (0.00) 8.06
Asymmetric Method UMA

CGP Onemax
Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd

1 14.11 (0.17) 3.36 (0.04) 1.00 11.24 (0.02) 2.68 (0.00) 1.00
2 7.89 (0.09) 1.88 (0.02) 1.79 5.87 (0.01) 1.40 (0.00) 1.91
3 5.79 (0.07) 1.38 (0.02) 2.44 3.97 (0.01) 0.95 (0.00) 2.83
4 4.57 (0.04) 1.09 (0.01) 3.08 2.97 (0.01) 0.71 (0.00) 3.77
5 3.76 (0.03) 0.90 (0.01) 3.73 2.35 (0.01) 0.56 (0.00) 4.75
6 3.24 (0.03) 0.78 (0.01) 4.31 1.94 (0.00) 0.47 (0.00) 5.73
7 2.92 (0.03) 0.69 (0.01) 4.84 1.68 (0.00) 0.40 (0.00) 6.68
8 2.65 (0.02) 0.64 (0.00) 5.28 1.46 (0.00) 0.35 (0.00) 7.62

Table C.4: Running times and speedup of both methods on edesign2 system

53

merlin
Symmetric Method NUMA

CGP Onemax
Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd

1 7.50 (0.15) 4.46 (0.09) 1.00 5.14 (0.05) 3.06 (0.03) 1.00
2 3.74 (0.05) 2.23 (0.03) 2.00 2.53 (0.01) 1.51 (0.01) 2.03
3 2.50 (0.03) 1.49 (0.02) 2.99 1.68 (0.01) 1.00 (0.01) 3.05
4 1.89 (0.03) 1.13 (0.02) 3.97 1.25 (0.01) 0.74 (0.00) 4.12
5 1.51 (0.03) 0.90 (0.02) 4.97 1.00 (0.01) 0.59 (0.01) 5.16
6 1.27 (0.03) 0.76 (0.02) 5.89 0.82 (0.01) 0.49 (0.01) 6.26
7 1.09 (0.04) 0.65 (0.02) 6.89 0.70 (0.00) 0.42 (0.00) 7.35
8 0.97 (0.04) 0.57 (0.02) 7.76 0.61 (0.01) 0.36 (0.01) 8.43
Symmetric Method UMA

CGP Onemax
Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd

1 7.77 (0.12) 4.63 (0.07) 1.00 5.38 (0.05) 3.20 (0.03) 1.00
2 4.12 (0.05) 2.45 (0.03) 1.89 2.82 (0.02) 1.68 (0.01) 1.91
3 2.83 (0.06) 1.69 (0.03) 2.74 1.92 (0.01) 1.14 (0.00) 2.80
4 2.18 (0.03) 1.30 (0.02) 3.57 1.46 (0.00) 0.87 (0.00) 3.68
5 1.83 (0.02) 1.09 (0.01) 4.25 1.19 (0.01) 0.71 (0.01) 4.51
6 1.59 (0.02) 0.94 (0.01) 4.90 0.99 (0.00) 0.59 (0.00) 5.44
7 1.39 (0.01) 0.83 (0.01) 5.58 0.88 (0.01) 0.52 (0.00) 6.12
8 1.25 (0.02) 0.74 (0.01) 6.24 0.79 (0.03) 0.47 (0.02) 6.84
Asymmetric Method NUMA

CGP Onemax
Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd

1 7.09 (0.21) 4.22 (0.12) 1.00 5.05 (0.05) 3.01 (0.03) 1.00
2 4.06 (0.10) 2.42 (0.06) 1.75 2.72 (0.02) 1.62 (0.01) 1.86
3 2.77 (0.09) 1.65 (0.05) 2.55 1.73 (0.01) 1.03 (0.00) 2.91
4 2.14 (0.06) 1.28 (0.04) 3.30 1.27 (0.01) 0.76 (0.00) 3.96
5 1.77 (0.04) 1.06 (0.02) 3.99 1.01 (0.01) 0.60 (0.00) 4.99
6 1.53 (0.07) 0.92 (0.04) 4.58 0.84 (0.00) 0.50 (0.00) 5.98
7 1.38 (0.03) 0.82 (0.02) 5.14 0.73 (0.01) 0.43 (0.00) 6.92
8 1.28 (0.06) 0.77 (0.03) 5.49 0.64 (0.01) 0.38 (0.00) 7.84
Asymmetric Method UMA

CGP Onemax
Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd

1 7.82 (0.15) 4.65 (0.09) 1.00 5.46 (0.06) 3.25 (0.04) 1.00
2 4.21 (0.07) 2.50 (0.04) 1.86 2.94 (0.01) 1.75 (0.01) 1.86
3 3.03 (0.05) 1.81 (0.03) 2.58 2.03 (0.01) 1.21 (0.01) 2.69
4 2.46 (0.04) 1.47 (0.03) 3.17 1.58 (0.01) 0.94 (0.00) 3.44
5 2.13 (0.03) 1.27 (0.02) 3.65 1.33 (0.01) 0.80 (0.00) 4.08
6 1.97 (0.03) 1.18 (0.02) 3.94 1.18 (0.01) 0.71 (0.01) 4.57
7 1.89 (0.04) 1.13 (0.02) 4.13 1.11 (0.00) 0.66 (0.00) 4.92
8 1.87 (0.03) 1.12 (0.02) 4.15 1.08 (0.02) 0.65 (0.01) 5.02

Table C.5: Running times and speedup of both methods on merlin system

54

pcjaros-gpu
Symmetric Method NUMA

CGP Onemax
Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd

1 6.56 (0.14) 1.56 (0.03) 1.00 7.10 (0.01) 1.69 (0.00) 1.00
2 3.27 (0.05) 0.78 (0.01) 2.00 3.49 (0.01) 0.83 (0.00) 2.04
3 2.23 (0.03) 0.53 (0.01) 2.94 2.33 (0.02) 0.55 (0.00) 3.06
4 1.70 (0.05) 0.41 (0.01) 3.85 1.70 (0.02) 0.41 (0.00) 4.18
Symmetric Method UMA

CGP Onemax
Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd

1 6.58 (0.11) 1.57 (0.03) 1.00 7.24 (0.01) 1.72 (0.00) 1.00
2 3.28 (0.07) 0.78 (0.02) 2.01 3.62 (0.01) 0.86 (0.00) 2.00
3 2.22 (0.05) 0.53 (0.01) 2.97 2.42 (0.02) 0.58 (0.00) 2.99
4 1.66 (0.09) 0.40 (0.02) 3.96 1.83 (0.02) 0.43 (0.00) 3.97
Asymmetric Method NUMA

CGP Onemax
Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd

1 6.56 (0.12) 1.56 (0.03) 1.00 6.94 (0.05) 1.65 (0.01) 1.00
2 3.29 (0.17) 0.78 (0.04) 2.00 3.31 (0.02) 0.79 (0.01) 2.10
3 2.15 (0.14) 0.51 (0.03) 3.04 2.17 (0.02) 0.52 (0.00) 3.20
4 1.70 (0.14) 0.41 (0.03) 3.84 1.64 (0.03) 0.39 (0.01) 4.22
Asymmetric Method UMA

CGP Onemax
Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd

1 6.54 (0.15) 1.56 (0.04) 1.00 7.12 (0.02) 1.69 (0.00) 1.00
2 3.33 (0.08) 0.79 (0.02) 1.97 3.55 (0.02) 0.85 (0.00) 2.00
3 2.30 (0.06) 0.55 (0.01) 2.84 2.41 (0.02) 0.57 (0.00) 2.95
4 1.81 (0.05) 0.43 (0.01) 3.61 1.86 (0.02) 0.44 (0.00) 3.81

Table C.6: Running times and speedup of both methods on pcjaros-gpu system

55

	Introduction
	Organization

	Genetic Algorithms
	Introduction
	Methodology
	Steady-State GA
	History
	Genome Encoding and Problems

	Genetic Operators
	Mutation
	Crossover
	One-point crossover
	Two-point crossover
	Uniform crossover
	Ordered chromosome crossover
	Tree crossover

	Selection
	Roulette-wheel selection
	Rank selection
	Tournament selection

	Parallel Genetic Algorithms
	Introduction
	Classification
	Global Parallel GA
	Fine-grained Parallel GA
	Multi-Deme Parallel GA
	Hierarchical PGA

	Multiprocessor Systems
	Introduction
	SMP
	NUMA
	Hybrid NUMA
	OS Support

	Speedup
	Cache Coherence

	New Methods of PGA
	Motivation
	Design Principles
	Symmetric Method
	Elitism
	Properties

	Asymmetric Method
	Properties

	SMP vs NUMA
	NUMA selection
	Disadvantages

	Comparison
	Implementation
	Synchronization
	Fitness functions
	Pseudorandom number generator

	Experimental Results
	Speedup
	Conclusion

	Convergence
	Conclusion

	Heavy Load
	Conclusion

	Conclusion
	Results
	Speedup
	Convergence
	Heavy Load

	Future work

	Bibliography
	List of used abbreviations and symbols
	Atomic Increments
	Xorshift Pseudo-Random Number Generator
	Implementation of xorshift PRNG
	Initialization with seed value

	Speedup Data
	System Specifications
	Running times

