
%512�81,9(56,7<�2)�7(&+12/2*<

)DFXOW\�RI�(OHFWULFDO�(QJLQHHULQJ
DQG�&RPPXQLFDWLRQ

%$&+(/25
6�7+(6,6

%UQR������ 0DUWLQ�+RUbN

%512�81,9(56,7<�2)�7(&+12/2*<
9<62.b�8g(1e�7(&+1,&.b�9�%51h

)$&8/7<�2)�(/(&75,&$/�(1*,1((5,1*�$1'
&20081,&$7,21
)$.8/7$�(/(.7527(&+1,.<
$�.2081,.$g1e&+�7(&+12/2*,e

'(3$570(17�2)�&21752/�$1'�,167580(17$7,21
f67$9�$8720$7,=$&(�$�0hi,&e�7(&+1,.<

'()(&7�'(7(&7,21
'(7(.&(�'()(.7j

%$&+(/25
6�7+(6,6
%$.$/di6.d�35d&(

$87+25
$8725�35d&(

0DUWLQ�+RUcN

683(59,625
9('28&e�35d&(

,QJ��0LORVODY�5LFKWHU��3K�'�

%512�����

ABSTRACT
Visual inspection of the printed circuit boards (PCB’s) by human controllers is becoming
impossible with the increasing complexity and miniaturization of the circuit boards. To
achieve high reliability of the PCB’s, manufacturers are forced to develop new methods
of inspection that will ensure inline control of every circuit board and separate those
that does not fulfill the quality requirements. One of the options is the automatic x-ray
inspection method which is covered in this thesis.

KEYWORDS
Image processing, PCB defects detection, automated x-ray inspection

ABSTRAKT
Vizuální inspekce desek proön˝ch spoj� (DPS) lidmi se stává nemoûná z d�vodu zvyöující
se komplexity a miniaturizace desek ploön˝ch spoj�. K dosaûení vysoké spolehlivosti DPS
jsou v˝robci nuceni vyvíjet nové metody inspekce, které by zajistily kontiunuální kontrolu
kaûdé desky a odd�lily ty, které nespl�ují poûadavky na jakost. Jednou z moûností je
pouûít automatickou rentgenovou inspekci, kterou se zab˝vá tato práce.

KLÍ�OVÁ SLOVA
Zpracování obrazu, detekce defekt� na DPS, Automatická inspekce rentgenov˝ch snímk�

HORÁK, Martin Detekce defekt�: semestral project. Brno: Brno University of Technol-
ogy, Faculty of Electrical Engineering and Communication, Ústav telekomunikací, Rok.
99 p. Supervised by prof. Ing. Miroslav Richter, Ph.D.

Vysázeno pomocí balí�ku thesis verze 2.61; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

DECLARATION

I declare that I have written my semestral project on the theme of “Detekce defekt�”
independently, under the guidance of the semestral project supervisor and using the
technical literature and other sources of information which are all cited in the project
and detailed in the list of literature at the end of the project.

As the author of the semestral project I furthermore declare that, as regards the
creation of this semestral project, I have not infringed any copyright. In particular,
I have not unlawfully encroached on anyone’s personal and/or ownership rights and I am
fully aware of the consequences in the case of breaking Regulation § 11 and the following
of the Copyright Act No 121/2000 Sb. of the Czech Republic, and of the rights related
to intellectual property right and changes in some Acts (Intellectual Property Act) and
formulated in later regulations, inclusive of the possible consequences resulting from the
provisions of Criminal Act No 40/2009 Sb. of the Czech Republic, Section 2, Head VI,
Part 4.

Brno .
author’s signature

24.05.2017

ACKNOWLEDGEMENT

First and foremost, I have to thank ELEDUS which is a company that o�ered me to work
on the topic of this thesis. I also want to thank Ond�ej Vi�ar, Jaroslav Malec and Patrik
Predn˝ for providing me with all the necessary facilities for the research and valuable
remarks. Last but not least I would like to thank my thesis supervisor Ing. Miloslav
Richter, Ph.D. who was willing to cooperate on this theses and for supporting me with
many valuable comments and suggestions.

Brno .
author’s signature

24.05.2017

CONTENTS

1 Introduction 12
1.1 Inspection methods . 12
1.2 The best inspection method . 16
1.3 Computer vision . 18
1.4 What is defect? . 18

2 Automated X-ray inspection 19
2.1 Basic properties of x-ray images of PCB 19
2.2 3D X-ray Computer Tomography . 20
2.3 AXI technology features . 21

3 PCB defects 23
3.1 Bare PCB defects . 23
3.2 Assembly defects . 25

3.2.1 Open Solder Joints . 25
3.2.2 Solder bridges (shorts) . 26
3.2.3 Component Shift . 27
3.2.4 Tombstone . 27
3.2.5 BGA Voids . 28

4 Programming languages for computer vision 30
4.1 Matlab . 30
4.2 C++ . 31
4.3 C sharp . 31
4.4 Python . 32
4.5 Why Python? . 32

5 Defect detection methods 34
5.1 Reference comparison . 34
5.2 Non-reference comparison . 35
5.3 Hybrid inspection . 36

6 Implementation 37
6.1 BGA void detection . 37

6.1.1 Solder ball segmentation . 38
6.1.2 Void area calculation . 43
6.1.3 Program usage . 46

6.2 Thermal pad void detection in the QFN package 47

6.2.1 QFN package segmentation 48
6.2.2 QFN void detection . 51
6.2.3 Program usage . 53

6.3 Image subtraction . 54
6.3.1 Image alignment . 56
6.3.2 Defect classification . 60
6.3.3 Program usage . 61

7 Conclusion 63

Bibliography 65

List of symbols, physical constants and abbreviations 69

List of appendices 70
.1 Additional information . 71
.2 BGA void detection . 71

.2.1 test1 . 71

.2.2 test2 . 73

.2.3 test3 . 75
.3 QFN void detection . 77

.3.1 test1 . 77

.3.2 test2 . 79
.4 Image subtraction . 82

.4.1 PCB1 test1 . 82

.4.2 PCB1 test2 . 85

.4.3 PCB1 test3 . 88

.4.4 PCB2 test1 . 91

.4.5 PCB2 test2 . 94

.4.6 PCB2 test3 . 97

LIST OF FIGURES
1.1 Example of visual inspection [25] . 13
1.2 Flying probe test [26] . 15
1.3 Needle bed test [26] . 15
1.4 CT scan of the BGA [27] . 16
1.5 Number of defects found by each method [18] 17
2.1 Computed tomography setup [20] . 21
2.2 CT reconstruction of BGA [21] . 22
3.1 Classification of the bare PCB defects [22] 24
3.2 Example of bare PCB defects [22] . 24
3.3 Open solder joints of the QFN package [28] 26
3.4 Solder bridge of two solder balls [?] 26
3.5 Shifted component . 27
3.6 Tombstone [29] . 28
3.7 Voids inside the solder balls . 29
5.1 Automatic PCB inspection methods [23] 34
6.1 Example of the voids on the x-ray image 38
6.2 Histogram of gray scaled xray image 39
6.3 Step by step process of the solder ball segmentation using the Bound-

aryRectangle method . 42
6.4 Step by step process of the solder ball segmentation using the Hought-

Circles method . 43
6.5 Image processing steps of the void segmentation 45
6.6 The result of the void segmentation 46
6.7 QFN package . 48
6.8 Segmentation of big components on the PCB 49
6.9 Visualization of intersections of the pins and the center of the component 50
6.10 Arrows pointing at three out of nine vias on under the QFN package 51
6.11 Detected voids inside QFN package 52
6.12 Result of the void detection . 53
6.13 Example of the XOR subtraction [24] 55
6.14 Image subtraction . 56
6.15 Motions models [14] . 57
6.16 Alignment of two PCBs . 60
6.17 Classification of the image subtraction 61
1 Input image . 71
2 Result image . 72
3 Input image . 73

4 Result image . 74
5 Input image . 75
6 Result image . 76
7 Input image . 77
8 Result image . 78
9 Input image . 79
10 Result image . 80
11 Detail of the result image . 81
12 Base image . 82
13 Tested image . 83
14 Result image . 84
15 Base image . 85
16 Tested image . 86
17 Result image . 87
18 Base image . 88
19 Tested image . 89
20 Result image . 90
21 Base image . 91
22 Tested image . 92
23 Result image . 93
24 Base image . 94
25 Tested image . 95
26 Result image . 96
27 Base image . 97
28 Tested image . 98
29 Result image . 99

LIST OF TABLES
1.1 When each inspection method was used 17
2.1 Specifications of the SCIOX SMT from ELEDUS 20
6.1 Comparison of the Hough transform method and the Boundary Rect-

angles method . 41

LISTINGS
6.1 Solderball segmentation and void detection 47
6.2 Solderball segmentation and void detection 54
6.3 Solderball segmentation and void detection 62

11

1 INTRODUCTION
Detection of defects during the manufacturing process of the printed circuit boards
(PCBs) is a never-ending process that is driven by the desire to make the assembly
process more e�cient. Because of the great increase of demand of the electronic
devices, manufacturers of PCBs have taken very important place. This great demand
also introduced a lot of new challenges. They are for example expected to deliver
more circuit boards, cheaper with higher quality. Because the lucrative market with
the PCBs reached an estimated $60.2 billion in value in 2014, a lot of e�ort is put to
improve the process of manufacturing.1 This thesis focuses on the inspection part
of the manufacturing process especially on the visual inspection using the x-ray and
machine vision because by using these technologies manufacturers can achieve high
reliability and reduce repair costs. The goal of the inspection is not to only find
fatal defects such as breakouts, bridges or missing conductors that will compromise
the printed circuit board (PCB) performance during utilization, but also to find
potential defects that can cause troubles in the longer time period such as over
etching, under etching or voids in the ball grid array (BGA).

With the constant improvement of technologies manufacturers are pushed to-
wards smaller, lighter and more functional devices where every millimeter on the
board has to be fully utilized therefore the circuit boards have evolved into very
complex, multilayer, high density boards. Testing of such a boards have become
more challenging task because higher component and joint counts create more defect
opportunities which lead to lower yields for a given defect level. Constant increase
in quality demands and complexity of circuit boards are forcing manufacturers to
develop new methods of inspection that will ensure inline control of every circuit
board and separate those that does not fulfill the quality requirements. By using
the inline inspection, manufacturer can use collected data not only for identifying
the bad pieces but also as a feedback loop to improve the manufacturing process.

1.1 Inspection methods
In the early days of PCB manufacturing, all inspection was undertaken manually
by humans with the magnification glass. Later, this method showed up to be very
limited not only because the human factor, but also because of its speed and lim-
ited ability to spot defects that are invisible for human eye. Because of the rapid
growth of the PCB manufacturing industry manufacturers invested into developing
new methods that would keep up with the growing requirements of the customers.

1http://www.ipc.org/ContentPage.aspx?pageid=World-PCB-Production-in-2014-Estimated-
at-60-2-Billion.

12

That resulted in a wide range of test and inspection strategies that will be briefly
introduced in this chapter.

1. Visual Inspection
Visual method is the traditional way of PCB inspection, but it is still widely
used. It utilizes the magnifying glass or microscope and it is controlled by
trained human controllers. The advantage of this approach is that there are
low initial costs, but because of increasing complexity of circuit boards and
miniaturization it is becoming more challenging. The great disadvantage of
this approach is that the quality of control is depended on each individual, it
is not e�ective in mass production and it is also more di�cult to collect the
data over time for analysis of the production. On top of that some defects can
not be judged only by visual inspection system therefore it does not ensure
100% reliability.

Fig. 1.1: Example of visual inspection [25]

2. Solder Paste Inspection
Solder paste inspection (SPI) is a method that tests the solder paste deposit
by measuring the volume of solder pads before the components are applied
and the solder melted. This inspection method is necessary especially when
the lead free solder pastes are used because it has been proven that they do
not spread as well as tin lead solder pastes. Based on the image capturing
method SPI can be divided into a 2D (area coverage) or 3D (volume coverage)
inspection. [17]

3. Functional Test (FT)
Functional test is the most straight forward way how to test a PCB board. It is
little bit di�erent from other forms of testing because it is not testing whether

13

the solder is there or not. It receives an assembled product and it simulates
the electrical environment where should the circuit board work. For instance,
if the final PCB is going to be a slot inside a computer than the slot will be
simulated during the tests. It can be considered as a final quality control that
will make sure that the end product meets the requirements. The drawback of
this approach is that it is necessary to mimic the environment for every type
of the PCB. Furthermore, it also might be very di�cult to su�ciently test a
systems with moderate complexity. A subcategory of the functional tests is
structural test which does not test the PCB as a whole, but it tests individual
partitions. This method allows to test the functionality more deeply because
it can verify the corner cases, but it is di�cult to reach necessary pins in the
more complex or multiple layer PCBs.

4. Boundary scan
Boundery scan (also known as JTAG boundary-scan) is a method for testing
of interconnects on the PCB or it can be also used as debugging method to
watch integrated circuit pin states. It is a way how to overcome challenges
connected with mechanical access to the pins of the component by adding
dedicated circuit tree to the system ICs. It uses special registers that allow
to observe the signals or to input custom input and test its functionality. A
drawback of this solution is that when the manufacturer wants to utilize this
kind of test it is necessary include it to the design of the PCB.

5. In-circuit test
In-circuit test (ICT) method is based on testing electrical parameters and per-
formance of the circuit board to identify shorts, opens, resistance, capacitance,
and other basic quantities which will show whether the assembly was correctly
manufactured. There are two commonly used methods. The first one is the
Flying Probe method which is basically several probes that are moved above
the measured board by two axis system and test the circuit (see Figure 1.2).
The second method is called bed of nails test which has numerous pins that are
adjusted to the measured circuit board (see figure 1.3). On the one hand this
method is more suitable to high volume production because it is much faster
than flying probe test, but on the other hand it needs a fixture for each kind
of PCBs and the cost is high. This method was very e�ective in the past, but
with the increasing density of components this method is becoming restricted.
Nowadays, these methods are not very e�ective due loss of physical access to
the components and space constraints.

6. Automatic optical inspection
Automatic optical inspection (AOI) is the advanced method that can be used
to identify defects using the camera. It is non-contact method therefore it is

14

Fig. 1.2: Flying probe test [26]

Fig. 1.3: Needle bed test [26]

very flexible because it does not need any fixture. Automatic optical inspection
can work with both bare or assembled circuits and it can be used to find
defects of the circuit board such as open-circuits, short-circuit defects, missing
components, o�set or incorrectly mounted parts. On top of that this method
is fast enough to run online and do the proper testing of each circular board.
The automatic optical inspection (AOI) consists of three steps. In the first
step it obtains the image of the tested board. This image can be captured
by charge coupled device (CCD) camera. The crucial part of capturing of the
image is lighting because PCB has high reflection which will cause shadows
of the object therefore in order to get good results it is essential to have very
good light source. The captured image is processed and useful features are
extracted. Finally the result can be processed by a computer program that
will find defects automatically by using testing the geometrical rules of the
PCB or by comparing with the referential circuit board. The disadvantage of
this method is that it can test only the surface of the PCB therefore it can
not reveal defects that does not manifest itself on the surface of the board.

15

7. Automatic X-ray inspection
Automatic X-ray inspection (AXI) is very similar to the AOI. The only dif-
ference is the way how the image is captured. This method is measuring how
much light got absorbed by the PCB at given point. The great advantage is
that it is providing us more information about the PCB than the AOI. We can
find for example bubbles (usually referred as voids) in the solder balls which
is impossible to reveal using the CCD camera. On the other hand, in case of
multiple layer boards, it might be more challenging to process the captured
image due to the interference which is caused by components on the top and
bottom layer of the PCB that are overlapping. The basic x-ray machine setup
will provide a 2D image of the board, but more advanced machines can capture
2.5D image or even CT scan of the board (see Figure 1.4).

Fig. 1.4: CT scan of the BGA [27]

1.2 The best inspection method
There is no such thing as "the best inspection method" or method that can detect
all possible defects. In fact choosing the right inspection method is very complex
question and the answer is usually combination of multiple methods. Even picking
between AOI and AXI can be tough question because is not just simple matter of
looking at few characteristics. There are a lot of factors that have to be considered
such as volume of the production, type of components, physical accessibility to the
components, potential sources of defects and many others.

16

A lot of studies were done in order to provide some data that will help man-
ufacturers to decide which method to pick. For example Stig Oresjo from Agilent
Technologies Loveland in Colorado published study that was comparing e�ciency
of AOI, AXI and ICT methods after the steps of the PCB manufacturing process
mentioned in the Table 1.1

Tab. 1.1: When each inspection method was used

Process step AOI AXI ICT
Post pick-and-place, Pre-flow X
Post-reflow, Pre-wave X X
Post-wave X X

Fig. 1.5: Number of defects found by each method [18]

The Venn diagram on the Figure 1.5 shows how many defects were detected by
each inspection method. You can see that the most e�ective method is AXI which
detected 130 out of 142 defects. The Venn diagram also clearly shows that the AXI
method is able to detect most of the defects detected by AOI, but not all of them.
On the other hand there is a ICT method itself detected just 22% of the defects.
[18]

17

1.3 Computer vision
Computer vision started in the late 1960s but the massive expansion started recently
thanks to the increasing performance and decreasing price of the computers. Today,
machine vision became a part of many fields starting with smartphones, through
automotive industry up to PCB manufacturing industry trying to provide additional
feedback about the surrounding environment.

X-ray inspection or optical inspection using the CCD camera will not be so
beneficial without computer vision which goal is to mimic behavior of the human
inspector. That means that the system should not only capture the environment
in front of the camera, but also understand what is happening and make decisions
based on the information extracted form the image. These systems have a lot of
advantages over the human such as speed, no subjectivity or mistakes caused by
fatigue and ability to work without any break. Even though the initial costs of
the systems using the computer vision is very high it is beneficial in the long term
especially in the high volume production.

1.4 What is defect?
The word defect is frequently used in this thesis therefore it is important to properly
explain what is meant by this word. According to the Oxford Dictionary "defect" is
defined as "A shortcoming, imperfection, or lack". Which is very accurate definition
even in the context of the printed circuit boards. In general, defect can be descried
as a deviation from the norm that results in modification of the production process
and prevent the defects that can a�ect the proper functionality or reliability of the
PCB to prevent the costs connected with complaints. This implies that defect does
not have to be necessarily something that prevent the PCB to work properly, but
defect can be also an imperfection whose solving can make the overall manufacturing
process more e�cient and reliable.

18

2 AUTOMATED X-RAY INSPECTION
This chapter describes how is the x-ray image captured and characteristic properties
of the automated x-ray inspection.

2.1 Basic properties of x-ray images of PCB
Automatic optical inspection is good for printed circuit boards with the visible
joints, but recently a lot of PCBs are using technologies such as BGA, chip-scale
package or integrated circuits where the potential defect is hidden under the body
of the component. This is the result of miniaturization and the need for more
pins on the integrated circuit. In these cases is AOI inadequate because it can check
defects that are visible on the surface such as open-circuit, solder bridges or excess of
solder whereas the AXI technology allows to check even part under the components.
This is the reason why is the x-ray inspection required. The evaluation process is
similar to the AOI, but the way how is the image obtained works on completely
di�erent principle. Instead of capturing reflected light from the surface of PCB
AXI is measuring how much light got absorbed by the PCB. The x-rays are usually
generated by the x-ray tube that pass through the object and on the other side is a
sensor that captures the remaining x-rays and measures the intensity that is used to
produce the x-ray image of the PCB. X-rays can interact with the materials through
photoabsorption, Compton scattering or Rayleigh scattering. The strength of each
e�ect depends both on the energy of the x-ray and the elemental composition of the
material. The overall absorption deficient depends on the elemental compassion of
the measured material, but it is not depended on the chemical properties. [19] In
case of PCB scanning, the absorption coe�cient of the solder paste is much higher
than absorption coe�cient of the board itself which manifests itself as the dark spots
on the image.

Thanks to the rapid progress in the 2D X-ray inspection technology within last
10 years, today’s systems are capable of extremely sharp and powerful X-ray sources
with submicron feature recognition down to 0.1 micron or 100 nanometers. There is
also a developmnent on the side of x-ray detectors that are providing resolution up
to 16 Magapixels with 25 frames per second which results in faster and more precise
detection capabilities. [8]

In my case I used x-ray machine from the company ELEDUS 1 called SCIOX
SMT with the following specifications:

1
http://www.eledus.cz/sciox/

19

http://www.eledus.cz/sciox/

Tab. 2.1: Specifications of the SCIOX SMT from ELEDUS

SCIOX SMT
Utilization Assembly control and development of electronics
Size (w x d x h) 710 x 760 x 1910 mm
The size of the scanned area 300 x 200 mm
The inner space for objects 560 x 560 x 560 mm

Detector type CCD linear sensor with a high
spatial and energy resolution

Detector resolution 15 lpm
Image resolution 18,3 Mpx
Used X-ray source 140kV / 3mA(focus 0,5 x 0,5 mm)
Weight 360 kg

This can be used to check if any of the solder balls is not missing or to check
whether the solder ball contains voids which manifest itself on the resulting image
as a brighter circular spots inside a solder ball.

2.2 3D X-ray Computer Tomography
Even thought Computer Tomography (CT) was invented in the 1971 by the God-
frey Newbold Hounsfield, it becomes recently more commonly used because the CT
becomes cheaper and faster thanks to the increase in the computing speed capa-
bilities. This method is very useful especially in case of multilayer PCBs because
it can become very challenging for automated x-ray inspection. Components and
conductors on each layer of the PCB cause interference which is caused because of
the nature of the X-rays to penetrate through the all layers of the PCB. Especially
looking for a shorts become very challenging on the 2D image of the multilayer PCB
because the conductors on each layer overlap and the result image is chaotic. The
solution to this problem is 3D X-ray Computer Tomography which is a method that
is commonly used in the medical field. The result of the Computer Tomography is
a model that allows to create virtual cross sections, also called e-sections, at any
plane of the PCB. This is providing a possibility to examine each layer of the PCB
individually. The model of the board is made by capturing multiple 2D images from
the known position and combining them using complicated mathematical formula.
The detail of the model is depended on the number of captured images so it takes
more time to get very precise model.

The typical setup of the computer tomography is visualized on the Figure 2.1.
The scanned PCB is mounted between the x-ray source and the detector. By precise

20

rotation of the PCB, multiple images are taken from the various angles. Afterwards
all the images together with known position of the PCB are combined in the process
called CT reconstruction. The result of that operation is a 3D density cloud that can
be virtually sliced in order to get the required e-section of the circuit board. That
will give us additional information that can be used to improve defect detection.

Fig. 2.1: Computed tomography setup [20]

2.3 AXI technology features
AXI inspection is usually placed after the soldering process so it can take advantage
of it’s ability to see through components and check the quality of soldering. It is able
not only see through the chips, but it can also visualize the absorption deflection
inside a solder ball. This way it can detect for example voids that are otherwise
completely undetectable. So the x-ray method of screening is giving us additional
information that can help manufacturers to ensure that the BGAs are being made
up to the required standard.

Another feature of the x-ray inspection in the ability to measure parameters such
as solder thickness and joint sizes or it can also visualize the heels of the joints on
board which AOI systems can not see because they are hidden under the leads from
the integrated circuit (see Figure 2.2). All these data can be captured and analyzed
to reduce the fault level, improve the quality of the process or prevent the potential
defects to occur. This is extremely useful when the new PCBs are manufactured to
speed up the optimization process of the production and create less fault boards.

21

Last but not least AXI has become important part of the manufacturing pro-
cess because of its ability to provide continuous, fast and in-depth feedback that is
accurate enough to help maintain production of high quality reliable circuits.

Fig. 2.2: CT reconstruction of BGA [21]

22

3 PCB DEFECTS
Due to the high density and smaller size of the components on the PCB, the pro-
cess of manufacturing of these boards is more prone to the defects than in the
past. In general, we can divide these defects into two categories. The first category
of defects are fatal defects (sometimes called functional defects). This kind of de-
fects can endanger the functionality of the PCB. This category includes for example
short-circuit, open-circuit or missing hole. The second category are potential defects
(sometimes called cosmetic defects). This group of defects do not a�ect the func-
tionality right after the manufacturing process, but they can compromise the PCB
performance during utilization due to for example over heating.

This chapter describes the most common defects that can occur on the PCB and
how they manifest on the x-ray image. The chapter 3.1 will introduce defects that
occur before the assembly and the chapter 3.2 will describe defects that occur after
the assembly process. Because the biggest potential of the AXI technology can be
utilized after the PCB is assembled so the bare PCB defects will be introduced just
briefly.

3.1 Bare PCB defects
During the manufacturing process of the PCB (before the assembling) several defects
can appear that are caused by an error in the process. This types of defects can
be classified into defects caused by the missing copper and defects caused by the
redundant copper. The source of this defects is usually dust, over etching, under
etching or spurious metals.

The defects that are formed on the bare PCB are categorized into the categories
described on in the table 3.1 and visualized in the Figure 3.2. [22]

23

Fig. 3.1: Classification of the bare PCB defects [22]

Fig. 3.2: Example of bare PCB defects [22]

24

These kinds of defects can be detected by using both AXI or AOI technology. In
case of multilayer PCBs AOI is able to check only the outer sides of the board and
in case of using the AXI technology it is possible to test all the layers separately by
using the CT method. Depending on the complexity of the board it is also possible
to use simple 2D x-ray image, but more complex boards will cause chaotic image
caused by the overlapping of the conductors on each layer.

There are two ways how to detect these kind of defects. User can compare
the test image with some reference image and analyze the di�erences or it is also
possible to check the geometry of the board. Detection methods are analyzed into
more details in the chapter 5.

3.2 Assembly defects
Assembly defects is a group of defects that occur during the assembly of components
to the PCB. The detection of these defects is crucial because it usually prevents the
end product to meet its criteria. Thought understanding of the root causes of
the defect manufacturers can improve the quality of all assemblies. According to
industry statistics, the top 3 PCB assembly defects which account for 74% of all
manufacturing defects are opens, solder bridging, and component shift. [1]

3.2.1 Open Solder Joints
Open Solder Joint (sometimes called cold solder joint) occurs when there is no
connection or poor connection between the lead and the pad which is causing an
open connection. Some of these connection does not work at all, but some of them
works but they are unreliable. The solder bond will be poor and the cracks may
develop in the joint over time.

Detection of the is di�cult using the top-down view so in order to detect open
solder joint it is necessary to use a 3D CT or to change the viewing angle from
top-down to angle between 55 and 70 degrees. On the figure 3.3 you can see how
does the open solder joint manifest itself on the oblique x-ray image. The red arrows
are pointing toward open pins and the green arrows identify good pins.

This kind of defect accounts for 34% of all assembly defects and it can be caused
by lack of solder paste, gap between the PCB and component or by corrosion at
component lead. It can be prevented by trying to avoid paste contamination or
ensuring proper heated solder paste. It can be repaired by re-heating the joint with
a hot iron until the solder flows or adding more solder.

25

Fig. 3.3: Open solder joints of the QFN package [28]

3.2.2 Solder bridges (shorts)
Solder bridges can occur in case of melting of two solder joints together which cause
unintended connection. Shorts can be microscopic so they can be very di�cult to
detect visually and it can potentially cause serious damage to the components such
as burn-out or it can damage a PCB by burning-out of the trace and causing open
circuit. For detection of this kind of defect it is possible to use 2D top-down view.
For example, on the figure 3.4 you can clearly see that two solder balls in the BGA
melted together underneath the component package.

This defect can be caused by applying too much solder on the pads, misalign-
ment between the stencil and PCB or because of the soldering pads are too big
in compassion to the gab. In some cases this defect can be repaired manually by
scraping out unwanted connection or dragging the tip of a hot iron between the two
solder joints. If there is too much solder, a solder sucker or solder wick can help get
rid of the excess.

Fig. 3.4: Solder bridge of two solder balls [?]

26

3.2.3 Component Shift
Component shift manifests itself as a misalignment between the component and the
solder pad. It usually happens during the reflow soldering due to the components
ability to float on the molten solder. It can be caused because of the oxidation of
component leads, bent leads, vibrations and in case of placing small component next
to the large component where the heated gas is directed from the side of big com-
ponent towards the smaller ones. Component shift can be prevented by minimizing
of the movement of the unreflowed assembly boards, using more aggressive flux and
compliance the requirement temperature and humidity.

On the figure 3.5 you can see example of shifted component. This kind of defect
can be detected by comparison of top-down view of the reference image of the PCB
with the tested image.

Fig. 3.5: Shifted component

3.2.4 Tombstone
Tombstone is an extreme version of component shift. It occurs when one side of the
surface mount technology (SMT) component is properly soldered to the the PCB
pad and the other one stands up vertically. There are several reasons why it can
occur, one of them is di�erent wedding speeds that can cause imbalanced torque on
each side of the component. The uneven oven temperature, nitrogen presence or the
uneven solder paste printing can increase the occurrence of the tombstone defect.

On the figure 3.6 you can see example of the tombstone defect. This kind of
defect can be identified using the top-down view of the board because it also usually
cause shift of the component to the side, but the better option is to use the CT or
oblique x-ray image.

27

Fig. 3.6: Tombstone [29]

3.2.5 BGA Voids
BGA voids or voids in general occur when using the surface mount technology during
the rewlow process. Enclosed voids can cause displacement of electrical or heat paths
that can lead to local overheating. Gas voids usually form balls inside the solder ball
which could lead to tilting of the component. The void occurrence can be a�ected
by the e.g. a good wettability of metallization, solder pastes with special adopted
solvents or an adequate preheating profile.

As you can see on the figure 3.7 BGA voids manifest itself on the x-ray image
as a bright spots inside the solder ball. This kind of defect can be detected by
segmenting each solder ball and calculating the ratio the surface between the solder
ball and the void area. This can be done by using the top-down image of the PCB,
but that will give us just the area of the void so for the more precise calculation
of the volume of the void it is necessary to use the CT scan of the board. For
more information about the BGA void detection read the chapter 6.1 where is the
problem described into more detail.

28

Fig. 3.7: Voids inside the solder balls

29

4 PROGRAMMING LANGUAGES FOR COM-
PUTER VISION

This chapter will introduce programming languages that are mostly used in the field
of the computer vision. It does not make any sense to mark one of these languages
as the best one for the machine vision because it mainly depends on the task and
how it will be implemented in the praxis.

4.1 Matlab
Matlab is a standard in the academic world due to its easy syntax and debugging so
it is great for prototyping of algorithms. The great advantage of being an academic
standard is enormous amount of code that can be found from other researchers. On
top of that Matlab has one of the best documentation with many examples so it is
very easy use.Matlab is a matrix engine. The great advantage of that approach is
that when you get use to the coding in "Matlab style", which is di�erent from the
programming style of general purpose languages, you will get very good performance
with just few lines of code. In case you you do not write code the MATLAB way,
your code can become extremely slow.

Matlab is a great tool when it comes to the university researches, but it very
complicated and expensive to put it to the production. It is very expensive to buy
a license for commercial use of the Matlab for example if you would like to write
this thesis in Matlab and sell it, you will have to buy a Matlab R2016b license for
2 000 EUR, Computer Vision System Toolbox for 1 250 EUR which requires Image
Processing Toolbox for 1 000 EUR. And in case you want to compile it to stand
alone executable you have to pay 8500 EUR. So this approach makes sense for big
companies or universities. [4]

There is also a memory or performance problem which might be a big problem
especially in the computer vision field which is very memory and power demanding.
Generally a typical Matlab program runs many times slower than C++ program,
but it is possible to compensate it by using the MEX Files that will enable to write
computationally intensive parts in C, C++ or Fortran and call them as if they were
built-in functions. [3]

Matlab supports a lot of libraries (toolboxes) that are focused on computer vision
and machine learning. For instance Image Processing Toolbox that provides com-
prehensive set of basic algorithms for image processing such as image enhancement,
image segmentation, geometric transformations and many more. Another toolbox
connected with image processing is Computer Vision System Toolbox which provides

30

advanced function e.g. feature detection, extraction, matching, object tracking, ob-
ject recognition and also it supports 3D point cloud processing. On top of that Mat-
lab also brings possibility to interface with OpenCV using the Matlab’s OpenCV
interface. [5]

4.2 C++
This language is widely used in production-grade computer vision projects because
most of the machine learning and computer vision libraries are supporting this lan-
guage. It also has a great performance results when it comes to "loop on all pixels" so
together with the OpenCV library it is very common combination for the production
version.

Although quite few libraries that are focused on computer vision such as Halcon,
Matrox Imaging Library, Open eVision, Adaptive Vision Library or Common Vision
Blox the uno�cial standard on this field is OpenCV mainly because it is completely
free for commercial applications, you can view the source code and you do not have
to open source your project. OpenCV library has more than 2500 optimized algo-
rithms which includes basic image transformations, object recognition and tracking,
produce 3D point clouds from stereo cameras or classify human actions in videos.
It also have a big community and supports other programming languages such as
C, Python and Java. OpenCV 3 also supports Transparent API which is a way to
add hardware acceleration and some of the algorithms supports CUDA.

The disadvantage of C++ is that it is di�cult and time consuming to develop
new algorithms especially when it is used by inexperienced coder. Also the docu-
mentation of OpenCV is bad so sometimes you need to have a good understanding of
the function or read some paper to find out e�ect of some parameter of the function
to the result.

4.3 C sharp
C# is a general-purpose, object-oriented high level programming language. Consid-
ering computer vision it is very similar Python because it o�ers a wrapper around
the C++ OpenCV classes/functions. It also o�ers another computer vision libraries
such as AForge.NET which is a computer vision and artificial intelligence library
developed by Andrew Kirillov and Accord.NET which is a machine learning frame-
work.

31

4.4 Python
Python is somewhere in the middle ground between the Matlab and C++. With
libraries such as numpy, scipy, scikit-learn and matplotlib Python provides a powerful
environment for both commercial use and research on universities which results in
the great active community. Language itself is easy to learn (especially in comparison
with C++), it is fast for prototiping of new algorithms and on top of that you will
write much less code in compassion with the C++.

Considering the performance it is not so e�cient as a program written in the
the C++. But since the Python’s OpenCV is just a wraper around the original
C/C++ the di�erence between calling OpenCV function in Python and C++ is
minimal. The main performance di�erence will occur when the user needs to write
some function that is not implemented in OpenCV the performance of the Python
program will get considerably slower especially when it will use looping through the
big arrays instead of array manipulation facilities available in Numpy. There is also
a possibility to use Python’s version of OpenCL called PyOpenCL which lets you
access the OpenCL parallel computation API from Python.

Disadvantage of python in comparison with the Matlab is that a lot of the li-
braries are poorly documented so it might be sometimes di�cult to understated
it. In these cases user have to find the answer on forums or some papers that deal
with the same problem. But in contrast to the Matlab, Python also o�ers much
more libraries that are focused on computer vision such as mahotas, scikit-learn,
ilastik, SimpleCV and already mentioned OpenCV. Very interesting library is Sim-
pleCV which should make learning curve with the computer vision much faster for
beginners. [5]

4.5 Why Python?
I did not choose the Matlab for this project because my script will be used in
the commercial product and the licenses for Matlab would add unnecessary cost
moreover the user interface is written in the C# so it would be necessary to integrate
it into a C# application or translate it to di�erent language.

Implementation of the user interface in the C# o�ers the possibility to write the
script also in the C#. The reason why I did not picked this language is that I am
not familiar with this programming language and also C# is not commonly used for
computer vision together with the OpenCV which could result in a lot of troubles
because I do not have a deep knowledge of the computer vision or the OpenCV.

If we compare the C++ and the Python from the performance point of view,
C++ is the number one choice. Even though at the start of this thesis I had similar

32

experience with both of the languages I picked Python because of it’s syntax, the
coding style and mainly because of it’s learning curve because at the beginning of
this thesis I had no idea how di�cult this project is so I wanted to make sure that
I will not struggle with both programming language and computer vision.

33

5 DEFECT DETECTION METHODS
There are a lot of ways how to detect defects on the PCB. This chapter will discuss
the most common approaches of defect detection using x-ray inspection. The Figure
5.1 shows how are the methods structured. There are three main categories of the
methods based on the source of the information that leads to identification of the
defect. The first category of defect detection methods is called Reference comparison
that compares the tested image with some image that is considered as perfect. The
second category is Non-reference comparison that uses usually some general design
rules of the PCB and uses them to look for parts of the board that violate these
rules.

Fig. 5.1: Automatic PCB inspection methods [23]

5.1 Reference comparison
Reference comparison methods are based on comparing a referential image of the
PCB with the image of the PCB that we want to test. Reference image of the image

34

of PCB that passed all tests and does not contain any significant defect. This image
is afterwards compared with the test image and the di�erence is considered as a
potential defect and can be used for the further classification. The most crucial part
of the comparison process is the image alignment which have to be very accurate
because every misalignment will be source of the false defects.

The reference comparison method can be used to detect the following defects:
1. Missing component or solder paste
2. Over-etching/Under-etching of conductors
3. Bridging faults
4. Oversized or undersize solder paste
5. Dislocation faults
6. Deformed pads
There are several ways how to get a referential image. The most straightforward

method is to find out the PCB board without any defect using other defect detection
methods and use its image as a reference that can be used for the comparison. The
second approach is to take advantage of the designing process of the PCB and use
some of the resulting CAD files as a reference. The most used is a Gerber file
which is an open ASCII vector format for 2D binary images. The advantage of
this approach is that you will always get the most accurate reference image and no
testing is necessary to make sure that the reference image is without any defect.

This approach was used in the function that is described in the chapter 6.3.

5.2 Non-reference comparison
Non-reference comparison methods does not need any referential image instead of
that it uses general designing rules of the PCB to determinate whether the image
has defects. This method works with the assumption that features are simple ge-
ometrical shapes and the defects cause irregularities. These method typically use
morphological technique such as erosion and dilation as a basic operation. This
method can be used to find voids in the BGA or to recognize some components
based on their characteristic geometric shape.

For more information about this method read the description of the function that
is described in the chapter 6.1 which describes the implementation of void detection
in the BGA.

35

5.3 Hybrid inspection
The hybrid method is the combination of the both methods mentioned above. It
takes advantages of both approaches to overcome some shortcomings. Hybrid sys-
tems make use of both methods and complement each other so they are able to cover
large variety of defects.

36

6 IMPLEMENTATION
This chapter will describe the implementation of three defect detectors. The first
two of them (BGA void detection and QFN void detection) are using the non-
reference comparison method. These algorithms are autonomous and after initial
setup of input parameters it can be used to automatically check the solder balls on
the PCBs without any help of the operator. The last algorithm is using the reference
comparison method. This method is not fully autonomous and needs operator to
decide whether there is a defect or not. The best use of this algorithm is as a
auxiliary tool that can help to reveal the defects faster.

Because the images from di�erent x-ray machines or images of di�erent PCB
boards can have di�erent properties I decided to use configuration files for entering
the parameters that can a�ect the result of the program. In this way the program
becomes very flexible because instead of changing all the arguments for each image,
user can easily create configuration file for each configuration and change just the
path to the configuration file.

6.1 BGA void detection
The goal of this function is to find all solder balls in the BGA package and calculate
a ratio between the area of the solder ball and void for each solder ball in the ball
grid array. The function is divided into two steps. In the first step it is necessary to
implement robust function that will segment the solder balls from the image. This
function have to be very robust because solder balls on the one side of the board
can overlay with the components on the other side of the board. In the second step
the program will iterate through each solder ball and calculates the ration between
the solder ball area and the void area.

The example of the voids in solder ball is on Figure 6.1. On the left image you
can see easily visible voids, but the right image has poor contrast so the voids are
very di�cult to detect for the human eye. The algorithm that is described in this
chapter can work even with the images with poor contrast.

37

Fig. 6.1: Example of the voids on the x-ray image

6.1.1 Solder ball segmentation
Because the solder paste has a high absorption coe�cient, solder balls appear on
the x-ray image as a dark circles whereas the conductors and the board itself does
not absorb so much x-ray so they are much lighter on the x-ray image. The initial
task in the solder ball segmentation is to separate components (including solder
balls) from the board itself which means that it is necessary to find some threshold
value of the pixel intensity to separate dark regions from the bright ones. The most
common method to separate background from the foreground is the thresholding.
Because the 2D x-ray image of the PCB can be considered as the image with the
bi-modal histogram which means that if we look at the histogram of the gray scaled
image of the PCB we can see the same pattern that is repeating. The histogram has
two peaks, the first one is around intensity 35 that represents dark pixels and the
second peak that is usually has much higher number of pixels is around intensity
170 (see 6.2). These two peaks represent dark pixels of solder balls and components
and bright pixels are the conductors and the board itself. For this image we can
approximately take a value that is in the middle of these peaks. This can be done
automatically by threholing method called Otsu’s Binarization. [11]

38

Fig. 6.2: Histogram of gray scaled xray image

Afterwards we have to find all circles on the resulting image and decide if they
are solder balls or not. To find solder balls on the image, user can use the function
called find_solderballs(...) which will get the image that contains the the BGA as
the only mandatory parameter and several other parameters that are not mandatory,
but they might be useful in case of using the x-ray image with di�erent properties
than the image obtained from the SCIOX x-ray machine.

1. input_image is the only mandatory parameter. It should be color image
that contains BGA

2. method is an optional parameter that will decide what fuction will be used
for detection of circles on the image. The default value is CircleDetection-
Method.BoundaryRectangles. The method have to be entered using the custom
enum type called CircleDetectionMethod.
At this point two methods are implemented. The conventional circle detection
algorithm is Hough transform that can be used using the HoughtCircles. This
circle detection method is a basic technique in the computer vision for detecting
the circular objects in the image. [6] [7] The disadvantage of this method is
it’s low performance for images that contains a lot of potential circles after
initial thresholding. Another disadvantage is that this function has four input
parameters1 that can a�ect the both computation time and the accuracy. This
method would work much faster with known radius of the circles that it is
looking for because the parameter space dimension would increase to 2D.
The second function that could be used to find a circles on the image is called
BoundaryRectangles. This function is taking the binary image that was ob-

1Read more about the parameters of the HoughCircles on http://docs.opencv.org/3.

0-beta/modules/imgproc/doc/feature_detection.html#houghcircles

39

http://docs.opencv.org/3.0-beta/modules/imgproc/doc/feature_detection.html#houghcircles
http://docs.opencv.org/3.0-beta/modules/imgproc/doc/feature_detection.html#houghcircles

tained by thresholding and finds a contours of the components on the PCB.
Afterwards it will find boundary rectangles of these contours and compares the
ratio between the width and height of the rectangle. In case the ratio between
the width and height is approximately 1 we can consider the object inside as a
square or as a circle. This method is very simple and extremely fast (see Table
6.1) even with the high resolution images and the number of false detection
is much better that using the Hought transform because Hought transform is
able to find also circles that are partly covered by some other object. Because
we would filter out these partly visible circles anyway the second method is
the recommended one to use.

3. closing_kernel_size is a parameter from configuration file. It is used for
filtration of the binary image that was obtained by the thresholding function.
The default value is tuple (5, 5) that should work in most cases. This parame-
ter defines the size of kernel of the morphological function closing that is used
to remove small holes (dark regions) in the image.

4. closing_iterations is a parameter from configuration file. It is also used for
the morphological closing. The default value is 2 and it defines how many
times will be morphological closing used.

5. radius_histeresis is a parameter from configuration file. It is used for a
filtration of small and big circles on the image. The algorithm that is imple-
mented will find all circles on the image. The default value is 0.2 which means
that after performing initial filtering, it will calculates median radius of the
circles and remove circles that are smaller than 0.8*average_radius and circles
that are bigger than 1.2*average_radius.

6. intensity_ratio is a parameter from configuration file. This parameter is
used for the filtering purposes. The default value is 25 which means that it
checks if every detected circle has ratio between the white and black pixels
inside the circle and if the circle has more than 25% of the white pixels it is
removed because the solder ball should be black.

7. fxy is an optional parameter that is used for visualization purposes. Big
images might not fit to the screen so it is necessary to resize the image by the
fxy which is a scale ratio that will be used to resize the width and height.

8. debug_mode is an optional parameter that is used for debugging. The
default value is False, but when it is set True it will show every step of the
image processing. This can be used when user have problems with detection
of the circles on the image because it will help you to find in which step of the
image processing is the problem.

One of the steps during the segmentation is a filter that is removing false sol-
der balls. This filter can be tuned using the arguments intensity_ratio and ra-

40

Tab. 6.1: Comparison of the Hough transform method and the Boundary Rectangles
method

Image size [px] Hough transform [sec] Boundary rectangles [sec]
600x600 0.3137 0.0029

4000x4000 73.080 0.0572
2300x2300 13.689 0,0188

dius_histeresis. False detected solder balls are usually caused by square components
(in case of the BoundaryRectangle method), by vias (that are aslo circular, but they
does not absorb so much x-rays so they does not appear so dark on the image) or
by other components on the board. Both methods for circle segmentation usually
find several false solder balls. Especially the method HoughCircles returns a lot of
false solder balls so it is necessary to come up with some criteria that will filter
out obviously false solder balls. There are implemented three conditions. For the
filtering out the circles that are not surrounding solder balls the following set of
rules is used.

1. The whole contour of the circle have to be in the image.
2. The number of white pixels can not be higher than number of black pixels.

User can define manually the ratio between the white and black pixels or leave
the default value which is set to 25%

3. After using two previous filters the median of circles found is calculated and
all circles that are much smaller or bigger are deleted. The default hysteresis
of circle size set to 20% which means that circles that have smaller radius than
80% of average radius and circles that have bigger radius than 120% of the
radius are deleted.

At this stage most of the true solder balls should be found, but some PCBs
have a lot of components on the other side of the desk that are interfering with
the BGA and that can force user to set the filters too strict so there will be some
missing solder balls. To ensure the robustness the algorithm is taking advantage of
the fact that the solder balls are placed in the 90° grid. To take advatage of that
the Delaunay triangulation is used (see Figure 6.4). It will take all centers of solder
balls and connects them with triangles such that no point is inside of any triangle.
Than the lines that connects the centers of the solder balls and rotate them three
times 90 degrees and test if any of this position already contains some circle and in
case it does not, then I check if the whole contour of the circle lies on the image and
the ratio of black and white pixels.

On the Figure 6.4 and Figure 6.3 you can see the intermediate results of each step
of solder ball segmentation. The first image is the output 2D image that is captured

41

by the x-ray machine. The second image is the binary image after the thresholding
and the third image is result of morphological closing that removes small holes in
the image. In the fifth image you can see all circles that were detected on the image
and in the next step the filtering is used to remove circles that does not surrounds
solder ball. On the penultimate image you can see the triangles that ware obtained
using the Delaunay triangulation and in the last image is the result of the solder
ball segmentation.

Fig. 6.3: Step by step process of the solder ball segmentation using the Bound-
aryRectangle method

42

Fig. 6.4: Step by step process of the solder ball segmentation using the HoughtCircles
method

6.1.2 Void area calculation
The process of image processing of the void detection can be very tricky due to
low contrast and possible interference with the components on the other side of
the board. To find voids inside each solder ball user can use function called sol-
derballs.analyze_voids(...) which has two mandatory arguments and 6 optional
arguments.

1. image is the first mandatory argument that contains a color image that will
be used for segmentation of voids

43

2. method is the second mandatory argument that receives object that will
represent the method that will be used to get the contour of the void and pa-
rameters for that method. I decided to use this approach because each method
that could be used receives di�erent arguments. If I would use conditional logic
(e.g. user would input a method name using the string, number or enum) and
than I will use if-else statement, it would lead to a lot of arguments that will
do anything. You can imagine that on the following example. If I implemented
method1 with aruments arg1 and arg2 and method2 with arguments arg3 and
arg4 and user would pick method1, the arguments arg3 and arg4 would be
useless. On top of that if you would want to tune this function, you would
have to find out what arguments really a�ect the method that was picked.
In order to make this choice more user friendly I replaced conditional logic
with polymorphism which means that I implemented a class for each method
that contains the necessary arguments for the particular method and method
itself for detection of the edge of the void. So the user have to create the
object with the necessary variables for particular edge detector using Method-
LoG(gaus_blur_kernel, laplace_kernel), MethodCanny(threshold1, threshold2,
apertureSize, L2gradient) or MethodDoG(blur_kernel1, blur_kernel2) and af-
terwards input that object to the function analyze_voids().

3. clahe_clip_limit is a parameter from the configuration file that is used for
enhancing contrast. The default value is 4 and it a�ects the contrast limit.

4. clahe_tile_grid_size is a parameter from the configuration file that is also
used for enhancing of the contrast. The default value is tuple (5, 5) and it
defines in how many blocks (titles) will be the image divided.

5. closing_ksize is a parameter from the configuration file that is used for
morphological closing. The default value is tuple (2, 2) which defines the size
of the kernel that is used for removing of the holes (dark spots) on the image.

6. closing_iterations is a parameter from the configuration file that is used for
morphological closing. The default value is 2 which defines how many times
will be morphological closing used.

7. fxy is an optional parameter that is used for visualization purposes. High
resolution images that will not fit to the screen have to be resized and the fxy
is a scale ratio that will be used to resize the width and height.

8. debug_mode is an optional parameter that is used for debugging. The
default value is False, but when it is set True it will show every step of the
image processing. This can be used when user have problems with detection
of voids inside the solder balls because it will show you in which step of the
image processing is the problem.

44

The images that I have available are mostly low contrast and su�ers from salt and
pepper noise. So the first step in the image processing is using the median filter that
is very e�ective in suppression of the salt and pepper noise. The second step is to
increase the contrast of the image. To enhance the contrast of the image the global
contrast enhancement alone is not su�cient so I have decided to use the Contrast
Limited Adaptive Histogram Equalization (CLAHE) which is an image processing
technique to improve local contrast in images. The main advantage of CLAHE is
that unlike the ordinary histogram which calculates the transformation based on
the image histogram of the whole image, this method computes a transformation
from a histogram derived from the neighborhood of the pixel so it is more e�ective
to enhance the local contrast. On the Figure 6.5 you can see step by step process
of the image image void segmentation and on the Figure 6.6 you can see the result.

Fig. 6.5: Image processing steps of the void segmentation

After image enhancement we have to find the borders of the voids. Voids are
typically circular bright spots inside the solder balls so to find their border we can
use one of the many edge detection algorithms. I have implemented Canny edge
detector, Di�erence of Gaussians (DoG) and Laplacian of Gaussian (LoG) and got
the best results with the LoG algorithm with the proper size of the filter. This edge
detector usually detects also the borders of the noise so after the edge detection I
use the morphological closing to get rid of the detected noise. In the last step the
area of all voids inside each circle is calculated and divided by the area of the solder
ball to get the ratio between void and solder ball area.

45

Fig. 6.6: The result of the void segmentation

6.1.3 Program usage
The solder ball detection works in three steps. In the first step user has to call
a function find_solderballs(...) that can be found in the python module /utili-
ties/find_functions.py. This function look for the solder balls on the x-ray image
and returns an SolderBalls object that inherits from the Component object and
stores all necessary variables that defines the location of the solder ball. Afterwards
user can use the the method of the object SolderBalls called find_solderballs(...)
that has two mandatory arguments. Image that will be used to find voids and the
method that will be used to find void inside the solder balls (for more information
about the arguments of this function read the chapter 6.1.2). This function will find
the voids inside each component and adds the contours of the voids and it’s hierar-
chy to the SolderBalls instance. The last step is the vizualization of the voids using
the method show_all_voids(...) where user has to input the image that will be used
for the visualization and the error_ratio that will visualize all solder balls with the
void ration higher than the entered error_ratio red and writes the percentage above
each solder ball.

The working example of the void detection algorithm can be found in the root
directory of the program in the folder root/example/voids_inside_solderballs.py. All
available images that can be used by this algorithm can be found in the attached
folder Images/Solder balls/Original images. On top of that you can find more results
of this algorithm in the chapter .2 or in the enclosed file Images/Solder balls/Results
where you can find input and result images together with the configuration file so

46

you can test the program yourself without spending too much time tuning the input
arguments.

import cv2
from Ultron . enums import Circ leDetect ionMethod
from Ultron . u t i l i t i e s import f ind_func t i ons
from Ultron import edge_detect ion

image_path = ’ . . . / images / f i g u r e . jpg ’
con f i g_f i l e_path = ’ . . . / images / c o n f i g . i n i ’
image = cv2 . imread (image_path)
s o l d e r b a l l s = f ind_func t i ons . f i n d _ s o l d e r b a l l s (

image ,
method=Circ leDetect ionMethod . BoundaryRectangles ,
c o n f i g u r a t i o n=conf ig_f i l e_path ,
debug_mode=False ,
fxy =1)

method = edge_detect ion . MethodLoG(
gaus_blur_kernel =5,
l ap l ac e_ke rne l =15)

s o l d e r b a l l s . analyze_voids (
image ,
method=method ,
c o n f i g u r a t i o n=conf ig_f i l e_path ,
fxy =3,
debug_mode=False)

s o l d e r b a l l s . show_all_voids (image , e r r o r_ra t i o =25)

Listing 6.1: Solderball segmentation and void detection

6.2 Thermal pad void detection in the QFN pack-
age

Quad Flat No-leads package also known under the shortcut QFN is a package type
that connects integrated circuits to the PCB using the surface-mount technology.
This kind of chip is encapsulated in the plastic package with a planar copper lead
frame substrate. The package can have rectangular or square shape with the pins
that provide electrical connection on the perimeter of the package (see Figure 6.7). In
order to enhance the electrical performance of the integrated circuits it is necessary
to e�ectively remove the heat from the package. This is achieved by the soldering
the thermal pad to the PCB with the minimum of the voids. This is very di�cult to
achieve especially because of the large size of the thermal pad and the presence of
thermal vias. Because the heat removal is necessary for achieving the high reliability

47

of the resulting PCB it is essential to ensure the minimum void area. This can be
done only by using the AXI methods. [12] [13]

Fig. 6.7: QFN package

6.2.1 QFN package segmentation
The segmentation of the QFN package consists of two steps. In the first step it is
necessary to filter out the background including the board itself and the small com-
ponents. This is done in the very similar way as the segmentation of the solder balls
that was described in the previous chapter so the process of component segmenta-
tion will be described very briefly. Because the x-ray image of PCB has a bi-modal
histogram we can use OTSU thresholding for background suppression. The only
di�erence between the segmentation of solder balls and the QFN package is that the
morphological closing is used with large kernel and high number of iterations. This
parameter is dependent on resolution, contrast of the image and the type of x-ray
machine that was used for the capturing of the image. In case of the SCIOX x-ray
machine we use kernel size eleven and the number of iterations also eleven. This
way we can eliminate small components on the board (see Figure 6.8).

48

Fig. 6.8: Segmentation of big components on the PCB

In the final step of the QFN package segmentation, the program iterate through
each component that was left on the board and test whether it meets all conditions
that are defined by the user.

1. The default condition that has to be met is that the center part of the QFN
package has to be surrounded by pins. This is tested by taking the center
part of the package that was detected in the previous step and look for the
pins in the close neighborhood. This is tested by counting number of in-
tersections of line that is formed by the centre of pin and the centre of the
component with the each edge of the potential QFN package (e.g. it counts
how many times this line intersects with the top edge of the component,
bottom edge of component etc. see Figure 6.9). If the number of intersec-
tions of each edge is equal or larger than minimum number of intersections
defined by user using the argument min_intersection_count in the function
find_functions.find_qnf_package(...) the condition is fulfilled.

2. The optional condition that can be set by the user is the shape of the QFN
package. If the qfn package that the user wants to inspect is square we can
set the is_square_package argument to True and the algorithm will find just
packages with the square shape.

3. The last optional argument is called is_bevelled_edge. Some of the QFN pack-
ages have one bevelled edge. In this case we use template matching function
that is a part of the OpenCV library and compare the shape of the component
with the template image of the QFN package. If the similarity level is equal or
lower than the threshold similarity, that can be set by the user, the condition
is fulfilled.

49

Fig. 6.9: Visualization of intersections of the pins and the center of the component

To segment the QFN packages from the x-ray image user can use the function
find_functions.find_qnf_package(...) that have the following arguments:

1. original_image is a mandatory parameter which is a input color image that
will be used for QFN package segmentation

2. is_square_package is a parameter from the configuration file that defines
if the QFN package that we are looking for has a square shape.

3. is_bevelled_edge is a parameter from the configuration filer that defines if
the QFN package that we are looking for has a beveled edge.

4. min_intersection_count is a parameter from the configuration file that
defines minimum number of pins on each side of the QFN package. The
default value is 3.

5. min_number_of_pins is a parameter from the configuration file that de-
fines minimum number of pins that are surrounding the QFN package. It the
default value is None therefore it is not using this condition. User can define
any positive integer.

6. k_size is a parameter from the configuration file that defines the kernel size
of the morphological closing that is used to remove small objects (holes) in the
image. The default value is 11.

7. iterrations is a parameter from the configuration file that defines how many
times will be the of the morphological closing applied to the image to remove
small objects (holes) in the image. The default value is 11.

8. debug_mode is an optional parameter that can be used for debugging pur-
poses. The default value is False. It can be useful to find for tuning the input

50

arguments.
9. fxy is an optional parameter that is used to resize the output image by the

fxy ratio that is applied to both width and height.

6.2.2 QFN void detection
The void detection in the thermal pad of the QFN package is very similar process
to the void detection in the solder ball. The only di�erence is that most of the QFN
packages have vias underneath the package which cause a lot of troubles because
it destroys the homogeneity of the void (see Figure 6.10). To get rid of these vias
it is necessary to use very strong Gaussian blurring which works very good in this
case because the voids have very good contrast otherwise by using strong bluing on
image with low contrast we would also loose the voids. The rest of the algorithm is
exactly the same as the algorithm used for searching the voids inside the solder balls
because both share the same method that is inherited from the super class called
Component.

Fig. 6.10: Arrows pointing at three out of nine vias on under the QFN package

To find voids inside the QFN packages user can use the method of the QFNPack-
age object called qnf_packages.analyze_voids(...) the same input arguments as the
void detection inside the solder ball that are described into a detail in the chapter
6.1.2. The only deference between the solder ball void detection and the QFN void
detection is the process of cropping the contour. After cropping, it calls the same
method from the super class from which it inherits. See the result of the void

51

Fig. 6.11: Detected voids inside QFN package

52

Fig. 6.12: Result of the void detection

6.2.3 Program usage
Analyzing the voids inside the QFN package consists of three steps. In the first
step user calls a find_qnf_package() that is located in the python module located
in /utilities/find_functions.py which will return the QFNPackage object. This ob-
ject contains method analyze_voids(...) that will find the voids inside each QFN
package. Afterwards user can use another method from QFNPackage object called
show_all_voids(...) that will mark all QFN packages with the void ratio higher
than error_ratio with red color and the rest with green.

The working example of the void detection under the QFN package can be found
in the root directory of the program in the folder root/example/void_inside_QFN.py.
All available images that can be used by this algorithm can be found in the at-
tached folder Images/QFN package/Original images. On top of that you can find

53

more results of this algorithm in the chapter .3 or in the enclosed file Images/QFN
package/Results where you can find input and result images together with the con-
figuration file so you can test the program yourself without spending too much time
tuning the input arguments.

import cv2
from Ultron . u t i l i t i e s import f ind_func t i ons
from Ultron import edge_detect ion

image_path = ’ . . . / images / f igure_with_qfn . jpg ’
con f i g_f i l e_path = ’ . . . / images / c o n f i g . i n i ’

image = cv2 . imread (image_path)

qnf_packages = f ind_func t i ons . find_qnf_package (
image ,
c o n f i g u r a t i o n=conf ig_f i l e_path ,
debug_mode=False ,
fxy =1)

method = edge_detect ion . MethodLoG(gaus_blur_kernel =51, l ap l a c e_kerne l
=11)

qnf_packages . analyze_voids (
image ,
c o n f i g u r a t i o n=conf ig_f i l e_path ,
method=method ,
debug_mode=False ,
fxy =1)

qnf_packages . show_all_voids (image , e r r o r_ra t i o =25, fxy =1)

Listing 6.2: Solderball segmentation and void detection

6.3 Image subtraction
In this category of defect detection methods, there are two major techniques. The
first one is direct image comparison. This method is based on pixel-by-pixel com-
parison of the PCB image with some referential image of the circuit board that is
stored in the image database. The referential image can have various forms it can
be an image of the PCB board that can be considered as a perfect board or the
Gerber file can be used. Gerber file is an open ASCII vector format for 2D binary
images that is generated by the CAD system and it contains all necessary data for
manufacturing. [9] It is basically a text file that specifies the shape, dimensions and
coordinated of the solder pads. The main advantage of Gerber file over the image of

54

referential board is that it is very accurate because it describes designed properties
of the board. In most of the cases it is also easier to obtain Gerber file because it
can be exported from the software that was used to design the PCB whereas the
referential board must undergo many tests to ensure that it does not contain any
defect.

Image comparison is usually done by using the XOR operator on the binary
image of the images (see Figure 6.13). This approach is based on assumption that
every di�erence between the reference board and the test board is a defect.

Fig. 6.13: Example of the XOR subtraction [24]

Another approach is to subtract the pixel values on the same position of the
reference image from the test image. The result of this subtraction is a positive
and negative image. These two images provides more information about the defect,
than the simple XOR operator, which can be used for the defect classification.
For example because the components manifest in the image as a darker regions, the
positive image contains the missing components on the tested board and the negative
image contains things that are redundant on the tested image such as bridges (see
Figure 6.14).

55

Fig. 6.14: Image subtraction

I
negative

= I
test

≠ I
reference

(6.1)

I
positive

= I
reference

≠ I
test

(6.2)

This method is very easy to implement, but the pixel-by-pixel comparison re-
quires high location accuracy. If both of the images are not aligned properly, a lot
of the false warning will occur.

Another type of the reference comparison methods is model based methods,
which match the pattern under the inspection with the predefined template models.
The most used techniques for the template matching are connectivity based tech-
nique, N-tuple technique and Run Length Encoding based technique. The best one
is the Run Length Encoding technique because it not only finds defect but also get
the location of the defect. [10]

6.3.1 Image alignment
Image alignment (also referred as image registration) is a process of determination
of a right transformation that aligns a source and target image. In a typical image
alignment problem we have two images of the same scene and they are related by
the motion model. So to be able to align two images we have to determinate the
motion model parameters. OpenCV is able to represent following models:

1. Translation model means, that the images are just shifted. To describe this
transformation we need just two parameters (x,y)

56

2. Euclidean model covers the translation model that can be also rotated by
some angle. To describe this transformation we need three parameters (x,y,
angle)

3. A�ne model includes all previous and also scale and shear.
4. Homography motion model is able to describe some of the 3D e�ects in the

space. This transformation is described by eight parameters [14]

Fig. 6.15: Motions models [14]

There are two major approaches for image alignment. The first one is called
"Intensity based" (also called direct alignment) which takes whole image or it’s part
in case if the images are just partly overlapping and estimates geometric warp be-
tween the source and target image with the minimum cost function for the pixels.
Example of cost function is a function that calculates sum of square di�erences of
intensity values.

The second approach is a feature-based which finds a feature points (sometimes
called key-points) on both images and finds the most similar one and based on
their descriptors decide the transformation matrix. There is a lot of key points
detectors that can be used e.g. SIFT (Scale-Invariant Feature Transform), SURF
(Speeded-Up Robust Features), FAST (Features from accelerated segment test) or
ORB (Oriented FAST and Rotated BRIEF). After finding the feature points we
have to find matches between the feature points on the source and the target image
using for example Brute-Force Matching or FLANN (Fast Library for Approximate
Nearest Neighbors). After finding the same points on both images the a�ne trans-
formation matrix (2 x 3 matrix) or Homography matrix (3 x 3 matrix) can be
calculated and used to align the target image.

In case of alignment of two PCBs I implemented my own rough alignment algo-
rythm because after cropping of the PCB the program will return upright rectangle
(that means that the rectangle will either standing or laying). So I have decided to
rotate the rectangle 4 times by 90° and subtract both source and target images and
compare them using the cv2.absdi�(img1, img2) that will calculate the per-element
absolute di�erence between two images. The rotation that is the most similar is
taken as a the result of the rough alignment. Afterwards, I use Enhanced Cor-
relation Coe�cient (ECC) for precise image alignment. ECC is a new similarity

57

measure method introduced in the OpenCV 3 which brings two advantages over
the traditional intensity based methods. This method is invariant to photometric
distortions in contrast, brightness and it is fast because of the optimization. The
small disadvantage is that if the target image undergo strong displacement there
might be a need for an initial rough transformation which is exactly what I did in
the previous step. [14] [15] [16]

For image alignment of two x-ray images of the printed circuit boards user can
utilize the function called allign_images(...) that has two mandatory arguments
and three optional:

1. base_img is a mandatory argument. It is the template image that will be
used as the reference.

2. test_img is a mandatory argument. It is the image that will be compared
with the template image.

3. method is an optional argument. User can choose which method will be used
for the image alignment by entering the enum type called AlignMethod. At this
point user can choose from the ECC method by entering AlignMethod.ECC
or SIFT method by entering AlignMethod.SIFT. The default value method is
ECC because it is more accurate.

4. fxy is an optional parameter that is used for visual purposes. Big images
might not fit to the screen so it is necessary to resize the image by the fxy
factor that will be used to resize the width and height.

5. debug_mode is an optional parameter that is used for debugging. The
default value is False, but when it is set True it will show every step of the
image processing.

Before the alignment itself it is recommended to crop the PCB because it will
speed up process and also prevents a problem with the alignment caused by some
errors in the captured image. The image cropping is done by function that can
be found in the python module located in the /utilities/image_operations.py. The
fucntion has six arguments:

1. input_image is the mandatory parameter that is an image with the PCB
that user wants to crop

2. pcb_thresholding is an optional parameter that divides the pcb board from
the background. The default value is 190

3. closing_kernel is an optional parameter. It defines the size of the kernel
that will be used for the morphological closing in order to remove holes from
the image. The default value is 5.

4. closing_iterations is an optional parameter. It defines the number of iter-
ations of the morphological closing in order to remove holes from the image.
The default value is 3.

58

5. fxy is an optional parameter that is used for visualization purposes. Big
images wont that wont fit to the screen have to be resized and the fxy is a
scale ratio that will be used to resize the width and height.

6. debug_mode is an optional parameter that is used for debugging. The de-
fault value is False, but when it is set True it will show every step of the image
processing. This can be used when user have problems with the segmentation
of the PCB.

On the figure 6.16 you can see example of alignment and cropping of two PCBs.
The top left image is the template and the top right image is the tested board that
has to be aligned with the tested board. Underneath of each of this image is the
result of cropping and alignment.

59

Fig. 6.16: Alignment of two PCBs

6.3.2 Defect classification
This method is not fully automatic like the other two defect detection methods
because the classification of the defects using just the template image and the tested
image is very complex task. The problem is that the amount of the displacement
that can be considered as a defect is di�erent for each type of the component which
raise the need to precisely segment each component and recognize the type of the
component. This is a challenging task to do automatically because a lot of the
ICs does not have homogeneous body as the QFN package so it is very di�cult to
segment it. On top of that there is an interference from the components on the

60

other side of the board. Instead of writing complex script for the classification of
each component (which most likely will not be reliable due to the interference) it
is much easier to use the Gerber file to determinate the position and shape of the
component and decide if it is shifted.

In my case I classified the defects only into two categories and visualized the
result with the di�erent colors. The first category are things that are missing on the
tested image such as missing components. The contours of these kind of defects are
marked with the red color. The second category are things that are redundant on
the tested image such as bridges. These kind of defects are marked with the blue
color (see Figure 6.17).

This function can be utilized as a auxiliary tool to help operator to spot the
potential defects faster and evaluate whether it is a critical defect or not.

Fig. 6.17: Classification of the image subtraction

6.3.3 Program usage
Compassion of two PCBs consists of two steps. In the first step user uses the
function called crop_and_align_images(...) that can be found in the python module
in /utilities/image_operations.py. This function will crop and align both x-ray
images of PCB. User can also use the functions crop_pcb(...) and allign_images(...)
separately in case of necessity to do some modification of the image before alignment.

The second step is a visualization of the results. At this point there are imple-
mented 3 functions for visualizing the di�erences between the template and tested
image. The first one is show_missing_components(...) that will show only things

61

that are missing in the tested image. The function show_redundant_components(...)
will visualize only the redundant components and the last function called show_all_defects(...)
will visualize both missing and redundant things with di�erent colors.

The working example of the image subtraction algorithm can be found in the
root directory of the program in the folder root/example/comparison_method.py. All
available images that can be used by this algorithm can be found in the attached
folder Images/Image Subtraction/Original images. On top of that you can find
more results of this algorithm in the chapter .4 or in the enclosed file Images/Image
Subtraction/Results where you can find input and result images together with the
configuration file so you can test the program yourself without spending too much
time tuning the input arguments.

import cv2
from Ultron . u t i l i t i e s import output
from Ultron . u t i l i t i e s import image_operations
from Ultron . enums import AlignMethod

source_image_path = ’ . . . / images / source . jpg ’
target_image_path = ’ . . . / images / t a r g e t . jpg ’
con f i g_f i l e_path = ’ . . . / images / c o n f i g . i n i ’

source_image = cv2 . imread (source_image_path)
target_image = cv2 . imread (target_image_path)

output . debug_show (" Input source image " , source_image , fxy =1)
output . debug_show (" Input t a r g e t image " , target_image , fxy =1)

base_img_cropped , test_img_cropped = image_operations .
crop_and_align_images (
source_image ,
target_image ,
align_method=AlignMethod .ECC,
c o n f i g u r a t i o n=conf ig_f i l e_path ,
debug_mode=False ,
fxy =1)

output . debug_show (" Base Image Aligned " , base_img_cropped , fxy =1)
output . debug_show (" Test Image Aligned " , test_img_cropped , fxy =1)

output . show_al l_defects (
base_img_cropped ,
test_img_cropped ,
debug_mode=True , fxy =1)

Listing 6.3: Solderball segmentation and void detection

62

7 CONCLUSION
This thesis covers implementation of the 3 methods to find a defects on the x-ray
image of the printed circuit board.

The first method focused on the segmentation of solder balls and the detection
of voids inside. The segmentation part using the boundary rectangles is very fast
even with the images with high resolution. The only drawback of the segmentation
process is the triangulation which is very slow especially if the BGA consists of
hundreds of solder balls. It would be very beneficial to come up with faster function
that will check the regular grid of the BGA. But overall segmentation function is
reliable and robust. The second part is a void detection. The algorithm that was
implemented works also with the x-ray images with low contrast because it uses
local contrast enhancement using the CLAHE. The drawback of CLAHE algorithm
is that it can enhance the noise in the homogeneous areas if the input parameters
are chosen wrongly. The advantage of this implementation is that it can work fully
autonomously without the need to evaluate the results by the operator. I can imagine
this method to be used in the manufacturing process to automatically separate the
PCBs that might be unreliable.

The detection of the second defect is similar to the first one in many ways. The
biggest challenge of this task was to segment the QFN package. The problem is
that shape of di�erent types of the QFN packages can vary. It can be rectangular
or square shape, some of them have beveled edge, but all of them are surrounded
by the pins which I used as a primary condition. The algorithm itself works fine,
but it has problems to identify QFN package if it is partially overlapping with
some component on the other side of the board that will significantly modify the
geometry of the package. This kind of interference is very di�cult to overcome and
in my opinion the only way how to make this segmentation reliable in all cases is by
using some additional information from Gerber file. The void detection itself is also
very similar to the void detection in the solder balls. The only di�erence is that a lot
of the QFN packages have vias underneath their body which is challenging for the
void detection. To solve this problem I used strong Gaussian blur that suppressed
the strong edges of the vias on the image and allowed me to find the contour of
the whole void. The overall reliability of this function is not su�cient due to the
interference of the other components so I can not imagine this method to work
in the real manufacturing process. I believe that by using some hybrid inspection
method instead of relying just on the geometrical rules would result in much better
reliability.

The last defect detection method which I implemented is using the reference
comparison method. The algorithm consists of two steps. In the first step I wrote

63

an algorithm for image alignment. I used the ECC algorithm for alignment together
with my rough alignment algorithm which is very fast (approximately 0.5 seconds for
image 1600x1000px) and precise. The problem with automatic checking of the PCB
using this method is that it is very challenging to evaluate the results automatically.
The main bottleneck is the segmentation and recognition of each component because
unlike solder ball or QFN package other components does not have homogeneous
body with high absorption coe�cient which is a major problem for evaluation of the
results. For that reason this algorithm is not fully automated and needs someone to
evaluate the results. This problem can be solved by using Gerber file or any other
source of position and shape information of the components because that would allow
the program to create an output that will be much easier to analyze. Furthermore,
this method can be very helpful in connection with the manual inspection because
it can help the operator to highlight the areas with the potential defects.

64

BIBLIOGRAPHY
[1] Hooks, Nick 3 Most Common PCB Assembly Defects. (n.d) from Optimum De-

sign Associates Web Site: http://blog.optimumdesign.com/3- most-common-
pcb-assembly-defects

[2] "How to Prevent the Tombstone and Open Defects during the SMT Reflow
Process." How to Prevent the Tombstone and Open Defects during the Reflow
Process. Bittele Electronics Inc, n.d. Web. 21 Feb. 2017.

[3] "Documentation." Introducing MEX Files - MAT-
LAB & Simulink. Accessed February 21, 2017.
https://www.mathworks.com/help/matlab/matlab_external/introducing-
mex-files.html.

[4] "New License for MATLAB R2016b." New License
for MATLAB R2016b. Accessed February 21, 2017.
https://www.mathworks.com/store/link/products/standard/new?s_iid=htb_buy_gtwy_cta1.

[5] Mallick, Satya. "Home." Learn OpenCV. October 30, 2015. Accessed Febru-
ary 21, 2017. https://www.learnopencv.com/opencv-c-vs-python-vs-matlab-
for-computer-vision/.

[6] Somchai Nuanprasert, Sueki Baba, Takashi Suzuki, (2015). A Sim-
ple Automated Void Defect Detection for Poor Contrast X-ray Im-
ages of BGA, 3rd International Conference on Industrial Application
Engineering 2015. Department of Systems Innovation, Osaka Univer-
sity, 1-3 Machikaneyama-cho, Toyonaka 560-8531, Japan bBEAMSENSE
Co.Ltd., 2-19-16 Izumi-cho, Suita 564-0041, Japan URL: https://www2.ia-
engineers.org/iciae/index.php/iciae/iciae2015/paper/viewFile/549/426

[7] A. F. Said, B. L. Bennett, L. J. Karam and J. Pettinato, "Ro-
bust automatic void detection in solder balls," 2010 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, Dal-
las, TX, 2010, pp. 1650-1653. doi: 10.1109/ICASSP.2010.5495524 URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5495524&isnumber=5494886

[8] Evstatin Krastev, John Tingay , "RECENT ADVANCES IN THE X-RAY IN-
SPECTION TECHNOLOGY WITH EMPHASIS ON LARGE BOARD COM-
PUTER TOMOGRAPHY AND AUTOMATION", Evstatin Krastev and John
Tingay Nordson DAGE Concord, CA, USA doi: 10.1109/ICASSP.2010.5495524
URL: http://www.nordson-at.com/technology/up_img/1428036789-
103009.pdf

65

[9] Wikipedia contributors. Gerber format [online]. Wikipedia, The Free
Encyclopedia. 2017 Mar 27, 20:19 UTC [cited 2017 Apr 3]. Available from:
https://en.wikipedia.org/w/index.php?title=Gerber_format&oldid=772526836.

[10] IBRAHIM, Zuwairie, Syed ABDUL RAHMAN AL-ATTAS a Zulfakar ASPAR.
Model-based PCB Inspection Technique Using Wavelet Transform. Singapore,
2002. Universiti Teknologi Malaysia.

[11] Image Thresholding [online]. OpenCV team, 2016 [cit. 2017-03-28]. http://
docs.opencv.org/3.2.0/d7/d4d/tutorial_py_thresholding.html

[12] Wikipedia contributors. Quad Flat No-leads package [online]. Wikipedia, The
Free Encyclopedia; 2016 May 12, 16:25 UTC [cited 2017 Apr 5]. Avail-
able from: https://en.wikipedia.org/w/index.php?title=Quad_Flat_
No-leads_package&oldid=719922003.

[13] ATMEL, Atmel Corporation. QFN Package Mounting Guidelines AT88RF1354.
2009. 8583A–RFID–3/09.

[14] MALLICK, SATYA. Image Alignment (ECC) in OpenCV (C++
/ Python) [online]. [cit. 2015-07-01]. http://www.learnopencv.com/
image-alignment-ecc-in-opencv-c-python/

[15] Motion Analysis and Object Tracking [online]. OpenCV dev team,
2014. http://docs.opencv.org/3.0-beta/modules/video/doc/motion_
analysis_and_object_tracking.html#findtransformecc

[16] MALLICK, SATYA. Homography Examples using OpenCV (Python / C ++)
[online]. OpenCV dev team, 2016 [cit. 2017-04-08]. http://www.learnopencv.
com/homography-examples-using-opencv-python-c/

[17] MOHANTY, Rita a Vatsal SHAH. Solder Paste Inspection Technologies:
2D-3D Correlation [online]. Speedline Technologies, Inc Franklin, MA. Dos-
tupné také z: https://www.smtnet.com/library/files/upload/Solder-Paste-
Inspection-APEX2008.pdf

[18] ORESJO, Stig. WHEN TO USE AOI, WHEN TO USE AXI, AND WHEN TO
USE BOTH [online]. Agilent Technologies Loveland, Colorado, 2002 [cit. 2017-
04-10]. http://www.keysight.com/upload/cmc_upload/All/When_Use_AOI_
AXI_Both.pdf?&cc=CZ&lc=eng

[19] Wikipedia contributors. X-ray [online]. Wikipedia, The Free Encyclopedia; 2017
Apr 10, 05:34 UTC [cited 2017 Apr 10]. https://en.wikipedia.org/w/index.
php?title=X-ray&oldid=774708625.

66

http://docs.opencv.org/3.2.0/d7/d4d/tutorial_py_thresholding.html
http://docs.opencv.org/3.2.0/d7/d4d/tutorial_py_thresholding.html
https://en.wikipedia.org/w/index.php?title=Quad_Flat_No-leads_package&oldid=719922003
https://en.wikipedia.org/w/index.php?title=Quad_Flat_No-leads_package&oldid=719922003
http://www.keysight.com/upload/cmc_upload/All/When_Use_AOI_AXI_Both.pdf?&cc=CZ&lc=eng
http://www.keysight.com/upload/cmc_upload/All/When_Use_AOI_AXI_Both.pdf?&cc=CZ&lc=eng
https://en.wikipedia.org/w/index.php?title=X-ray&oldid=774708625
https://en.wikipedia.org/w/index.php?title=X-ray&oldid=774708625

[20] KRASTEV, Evstatin a John TINGAY. RECENT ADVANCES IN THE X-RAY
INSPECTION TECHNOLOGY WITH EMPHASIS ON LARGE BOARD
COMPUTER TOMOGRAPHY AND AUTOMATION [online]. Nordson
DAGE Concord, CA, USA, 2014 [cit. 2017-04-10]. http://www.nordson-at.
com/technology/up_img/1428036789-103009.pdf

[21] Cost-E�ective 3D X-Ray Inspection [online]. Metris USA, Inc., Brighton, MI
[cit. 2017-04-10]. http://www.us-tech.com/RelId/674885/ISvars/default/
Cost-Effective_3D_X-Ray_Inspection.htm

[22] PAL, Ajay, Singh CHAUHAN a Sharat CHANDRA BHARDWAJ. Detection
of Bare PCB Defects by Image Subtraction Method using Machine Vision [on-
line]. 2011 [cit. 2017-04-10]. https://www.researchgate.net/publication/
265319589_Detection_of_Bare_PCB_Defects_by_Image_Subtraction_
Method_using_Machine_Vision

[23] KAUR, Kamalpreet. Various Techniques for PCB Defect Detection [online].
Lecturer, ECE Department, Thapar Polytechnic College, Patiala: An Interna-
tional Journal of Engineering Sciences, 2016 [cit. 2017-04-11]. http://ijoes.
vidyapublications.com/paper/Vol17/23-Vol17.pdf

[24] IBRAHIM, Zuwairie, Syed ABDUL RAHMAN AL-ATTAS a Zul-
fakar ASPAR. Model-based PCB Inspection Technique Using Wavelet
Transform [online]. Singapore, 2002 [cit. 2017-04-18]. Dostupné z:
https://pdfs.semanticscholar.org/f200/d23b93c46b6e12f07e6eefd0aa9045495c9c.pdf.
Universiti Teknologi Malaysia.

[25] BRISSETTE, Peter. Introduction to IPC Inspection Guidelines
[online]. 2015 [cit. 2017-04-20]. https://bayareacircuits.com/
introduction-to-ipc-inspection-guidelines/

[26] SPEA 3030 Operatorless Test Cell. Maximum competitiveness, max-
imum savings [online]. 2015 [cit. 2017-04-20]. http://www.spea.com/
Portals/0/SPEANewsTemplates/Generic.aspx?pItemId=268&pModuleId=
845&pViewType=AllPress

[27] XT V 160 Electronics X-ray system [online]. [cit. 2017-04-20]. http:
//www.nikonmetrology.com/en_EU/Products/X-ray-and-CT-Inspection/
X-ray-systems-for-electronics-inspection/
XT-V-160-Electronics-X-ray-system/(key_features)

[28] Primer on 2D and 3D X-Ray. Datest [online]. [cit. 2017-04-21]. http://www.
datest.com/resources-boardtestmeth-primer2d3d.php

67

http://www.nordson-at.com/technology/up_img/1428036789-103009.pdf
http://www.nordson-at.com/technology/up_img/1428036789-103009.pdf
http://www.us-tech.com/RelId/674885/ISvars/default/Cost-Effective_3D_X-Ray_Inspection.htm
http://www.us-tech.com/RelId/674885/ISvars/default/Cost-Effective_3D_X-Ray_Inspection.htm
https://www.researchgate.net/publication/265319589_Detection_of_Bare_PCB_Defects_by_Image_Subtraction_Method_using_Machine_Vision
https://www.researchgate.net/publication/265319589_Detection_of_Bare_PCB_Defects_by_Image_Subtraction_Method_using_Machine_Vision
https://www.researchgate.net/publication/265319589_Detection_of_Bare_PCB_Defects_by_Image_Subtraction_Method_using_Machine_Vision
https://bayareacircuits.com/introduction-to-ipc-inspection-guidelines/
https://bayareacircuits.com/introduction-to-ipc-inspection-guidelines/
http://www.nikonmetrology.com/en_EU/Products/X-ray-and-CT-Inspection/X-ray-systems-for-electronics-inspection/XT-V-160-Electronics-X-ray-system/(key_features)
http://www.nikonmetrology.com/en_EU/Products/X-ray-and-CT-Inspection/X-ray-systems-for-electronics-inspection/XT-V-160-Electronics-X-ray-system/(key_features)
http://www.nikonmetrology.com/en_EU/Products/X-ray-and-CT-Inspection/X-ray-systems-for-electronics-inspection/XT-V-160-Electronics-X-ray-system/(key_features)
http://www.nikonmetrology.com/en_EU/Products/X-ray-and-CT-Inspection/X-ray-systems-for-electronics-inspection/XT-V-160-Electronics-X-ray-system/(key_features)
http://www.datest.com/resources-boardtestmeth-primer2d3d.php
http://www.datest.com/resources-boardtestmeth-primer2d3d.php

[29] PCB inspection using X-ray inspection technologies [online]. 2016 [cit. 2017-04-
21]. https://www.ourpcb.com/x-ray-inspection.html

68

https://www.ourpcb.com/x-ray-inspection.html

LIST OF SYMBOLS, PHYSICAL CONSTANTS
AND ABBREVIATIONS
PCB printed circuit board

PCBs printed circuit boards

BGA ball grid array

AOI automatic optical inspection

CCD charge coupled device

AXI automatic X-ray inspection

ICT in-circuit test

SPI solder paste inspection

FT functional test

SMT surface mount technology

CGA column grid array

CSP chip size package

CLAHE Contrast Limited Adaptive Histogram Equalization

69

LIST OF APPENDICES
.1 Additional information . 71
.2 BGA void detection . 71

.2.1 test1 . 71

.2.2 test2 . 73

.2.3 test3 . 75
.3 QFN void detection . 77

.3.1 test1 . 77

.3.2 test2 . 79
.4 Image subtraction . 82

.4.1 PCB1 test1 . 82

.4.2 PCB1 test2 . 85

.4.3 PCB1 test3 . 88

.4.4 PCB2 test1 . 91

.4.5 PCB2 test2 . 94

.4.6 PCB2 test3 . 97

70

.1 Additional information
You can find all following images in the original resolution in the attached files.
There is also a configuration file so you can easily test each method yourself.

.2 BGA void detection

.2.1 test1

Fig. 1: Input image

71

Fig. 2: Result image

72

.2.2 test2

Fig. 3: Input image

73

Fig. 4: Result image

74

.2.3 test3

Fig. 5: Input image

75

Fig. 6: Result image

76

.3 QFN void detection

.3.1 test1

Fig. 7: Input image

77

Fig. 8: Result image

78

.3.2 test2

Fig. 9: Input image

79

Fig. 10: Result image

80

Fig. 11: Detail of the result image

81

.4 Image subtraction

.4.1 PCB1 test1

Fig. 12: Base image

82

Fig. 13: Tested image

83

Fig. 14: Result image

84

.4.2 PCB1 test2

Fig. 15: Base image

85

Fig. 16: Tested image

86

Fig. 17: Result image

87

.4.3 PCB1 test3

Fig. 18: Base image

88

Fig. 19: Tested image

89

Fig. 20: Result image

90

.4.4 PCB2 test1

Fig. 21: Base image

91

Fig. 22: Tested image

92

Fig. 23: Result image

93

.4.5 PCB2 test2

Fig. 24: Base image

94

Fig. 25: Tested image

95

Fig. 26: Result image

96

.4.6 PCB2 test3

Fig. 27: Base image

97

Fig. 28: Tested image

98

Fig. 29: Result image

99

	Introduction
	Inspection methods
	The best inspection method
	Computer vision
	What is defect?

	Automated X-ray inspection
	Basic properties of x-ray images of PCB
	3D X-ray Computer Tomography
	AXI technology features

	PCB defects
	Bare PCB defects
	Assembly defects
	Open Solder Joints
	Solder bridges (shorts)
	Component Shift
	Tombstone
	BGA Voids

	Programming languages for computer vision
	Matlab
	C++
	C sharp
	Python
	Why Python?

	Defect detection methods
	Reference comparison
	Non-reference comparison
	Hybrid inspection

	Implementation
	BGA void detection
	Solder ball segmentation
	Void area calculation
	Program usage

	Thermal pad void detection in the QFN package
	QFN package segmentation
	QFN void detection
	Program usage

	Image subtraction
	Image alignment
	Defect classification
	Program usage

	Conclusion
	Bibliography
	List of symbols, physical constants and abbreviations
	List of appendices
	Additional information
	BGA void detection
	test1
	test2
	test3

	QFN void detection
	test1
	test2

	Image subtraction
	PCB1 test1
	PCB1 test2
	PCB1 test3
	PCB2 test1
	PCB2 test2
	PCB2 test3

