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Abstract: In the present paper, we study conformal mappings between a connected n-dimension
pseudo-Riemannian Einstein manifolds. Let g be a pseudo-Riemannian Einstein metric of indefinite
signature on a connected n-dimensional manifold M. Further assume that there is a point at which not
all sectional curvatures are equal and through which in linearly independent directions pass n complete
null (light-like) geodesics. If, for the function ψ the metric ψ−2g is also Einstein, then ψ is a constant,
and conformal mapping is homothetic. Note that Kiosak and Matveev previously assumed that all
light-lines were complete. If the Einstein manifold is closed, the completeness assumption can be omitted
(the latter result is due to Mikeš and Kühnel).
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1. Introduction

As is well known, Einstein spaces play a very important role in the general theory of relativity.
The conformal mappings of these spaces has been studied since 1920 by Brinkmann [1], see [2,3].
Brinkmann proved that this task is closely related to the existence of concircular vector fields.

In 1944, Yano [4–7] introduced term a concircular vector field ξ, which satisfies ∇ξ = $ · Id, where ∇ is
affine connection. The existence of concircular vector fields “as a whole” was studied in papers [4–13].

A lot of work has been devoted to special mappings of Einstein spaces, such as [2,3,8,9,14–24].
Kühnel and Rademacher in [21] presented some results on Einstein spaces with a conformal

group, and also conformal mappings. Many of these results are formulated for (geodesical) complete
Einstein spaces.

In our paper, we find a generalization of results by Kiosak and Matveev [19], see Remark 4.

2. Main Results

We suppose that domain V of n-dimensional manifold M is connected and one of the following
condition holds: (1) V is without a boundary; (2) ∂V is the Lipschitz boundary, i.e., domain V lies on one
side of ∂V, see [25], p. 46; (3) V is the weakly Lipschitz domain, see [26].
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The following theorem is proved in our paper.

Theorem 1. Let g be a pseudo-Riemannian Einstein metric of indefinite signature on a domain V of n-dimensional
manifold M. Further assume that there is a point at which not all sectional curvatures are equal and through which
in linearly independent directions pass n complete null (light-like) geodesics. If, for the function ψ, the metric ψ−2g
is also Einstein, then ψ is a constant.

Remark 1. Complete geodesics condition in Theorem 1 can be substituted for closed. (This term is obviously used in
Riemannian geometry).

Remark 2. Evidently, the dimension n in Theorem 1 is more than 3. For n = 2, it is trivial, and for n = 3 any
Einstein space has the constant curvature.

Remark 3. In the four-dimensional Lorentz case, conformal Einstein rescalings of Einstein metrics were described
by Brinkmann [1].

Remark 4. Kiosak and Matveev [19] proved the following theorem (see comments in [21]).

Theorem 2. Let g be a light-line-complete pseudo-Riemannian Einstein metric of indefinite signature (i.e., for no
constant c the metric c · g is Riemannian) on a connected (n>2)-dimensional manifold M. Assume that, for the
nowhere vanishing function ψ, the metric ψ−2g is also Einstein. Then, ψ is a constant.

Remark 5. Theorems 1 and 2 fail for Riemannian metrics (even if we replace light-line completeness by usual
completeness)–Möbius transformations of the standard round sphere and the stereographic map of the punctured
sphere to the Euclidean space are conformal nonhomothetic mappings. One can construct other examples on warped
Riemannian manifolds, see ([20] Theorem 21).

Remark 6. By Theorem 1, pseudo-Riemannian Einstein metrics of indefinite signature with n complete light-line do
not admit nonhomothetic conformal complete vector fields. The Riemannian version of this result is due to Yano and
Nagano [13]. Moreover, the assumption that the metric is Einstein can be omitted (by the price of considering only
essential conformal vector fields): as it was proved by Alekseevskii [27], Ferrand [28] and Schoen [29], a Riemannian
manifold admitting an essential complete vector field is conformally equivalent to the round sphere or the Euclidean
space. It is still not known whether the last statement (sometimes called Lichnerowicz–Obata conjecture) can be
extended to the pseudo-Riemannian case, see [30] for a counterexample in the C1-smooth category, and [31,32]
for a good survey on this topic.

Remark 7. A partial case of Theorem 1 is ([21] Theorem 2.2), in which it is assumed that both metrics are complete.
This extra assumption is very natural in the context of [21] since the paper is dedicated to the classification of
conformal vector fields; moreover, Theorem 2.2 is not the main result of the paper. It is not clear whether, in the proof
of ([21] Theorem 2.2), the assumption that the second metric is complete could be omitted.

3. Proof of Theorem 1

It is well known (see for example ([1] Equation (2.21)), ([20] Lemma 1) or [2,3,15,23]) that the Ricci
curvatures Rij and R̄ij of two conformally equivalent metrics g and ḡ = ψ−2g = e−2ϕg on the domain V of
manifold M are related by

R̄ij = Rij + (∆ϕ− (n− 2) ‖∇ϕ‖2) gij +
n− 2

ψ
∇i∇jψ. (1)
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We rewrite Equation (1) to the following form:

∇i∇jψ = $ gij, (2)

where $ is a function on the domain V. It is evident that ξh = ∇αψghα (gij are components of the inverse
matrix gij) is a concircular vector field.

Kazdan and deTurck [33], see [14], proved that locally there exists an analytic coordinate system x in
an Einstein manifold, i.e., the components gij(x) are real analytic functions. Therefore, the functions ψ(x)
and $(x) that satisfy Equation (2) are also real analytic, see [18], ([23] p. 143).

Consider a null (light-like) geodesic γ(t) of the metric g. Since the geodesic γ(t) is complete,
γ(t) satisfies equation ∇γ̇γ̇ = 0 on the whole R, where γ̇ is the velocity vector of γ. “Light-like” means
that g(γ̇(t), γ̇(t)) = gij γ̇i(t)γ̇j(t) = 0. It is well known that, if this property is fulfilled in one point, then it
is fulfilled at every point of the geodesic.

We calculate d2

dt2 ψ(γ(t)) = ∇i∇jψ(γ(t)) γ̇iγ̇j. Since Rij, R̄ij and ḡij are proportional to gij, therefore,

from Equation (1), we obtain d2

dt2 ψ(γ(t)) = 0. Evidently, ψ(γ(t)) = const1 · t+ const. Since by assumptions
the function ψ is defined on the whole R and is equal to zero at no point, we have ψ = const along complete
light-like geodesics. See, for example, [19].

It is known, for example ([23] p. 115), that, from the Ricci identity

(∇k∇j −∇j∇k)ψi = ψhRh
ijk,

where Rh
ijk are components of the Riemann tensor curvature and ψi = ∇iψ; from Equation (2), we obtain

ψhRh
ijk = gij∇k$− gik∇j$. (3)

After contracting (3) with gij, we get

∇i$ = − R
n(n− 1)

ψi,

where R = Rijgij is the scalar curvature on V; evidently, R is a constant.
We found a linear Cauchy system of differential equations in covariant derivatives

∇iψ = ψi,

∇iψj = $ gij,

∇i$ = − R
n(n− 1)

ψi,

(4)

with respective unknown functions ψ(x), ψi(x) and $(x).
This system has at most one solution on V which meets the requirements for the boundary ∂V for the

Cauchy initial conditions (in a detail see [23], pp. 130–133)

ψ(x0) = ψ0, ψi(x0) = ψ0
i , $(x0) = $0.

Evidently, for initial conditions ψ(x0) = ψ0, ψi(x0) = 0, $(x0) = 0, Equation (4) has a unique trivial
solution ψ(x) = ψ0, ψi(x) = 0, $(x) = 0 for all x ∈ V.
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The condition (3) with (4) has the following form:

ψhYh
ijk = 0, (5)

where δh
i is the Kronecker symbol and Yh

ijk is the Yano tensor

Yh
ijk = Rh

ijk −
R

n(n− 1)
(gijδ

h
k − gikδh

j ). (6)

Deriving (5) and applying Equation (4), we get

$ Ylijk + ψh∇lYh
ijk = 0, (7)

where Ylijk = glhYh
ijk.

Let x0 ∈ V be the point from Theorem 1, which, from the non-identical section curvature in this
point, follows Yhijk(x0) 6≡ 0. Due to n complete light-like geodesics go through at x0, the function ψ(x) is
constant along those geodesics. In these null (isotropic) directions dψ(γ(t))/dt = 0, and because these
n directions form a basis, we obtain ψi(x0) = 0. From (7), it follows $(x0) = 0, and system (4) has only
trivial solutions ψ(x) = ψ(x0) = const. Because V is connected (and meets the requirements for the
boundary ∂V), this local solution may be extended on all V.

4. Example of Non-Trivial Mappings with n-Complete Light-Like Geodesics Go through at the Point

Let M be a part of an n-dimensional pseudo-Euclidean space with Cartesian coordinates

(x1, x2, . . . , xn) and metric g =
n
∑

i=1
ei (xi)2, ei = ±1, which is defined by inequality

1
2

c
n

∑
i=1

ei (xi)2 + ψ0 > 0,

where c and ψ0 are positive constants.
Any light-like geodesics with go through at point (0, 0, . . . , 0) is complete on M.
The function

ψ =
1
2

c
n

∑
i=1

ei (xi)2 + ψ0

is a positive solution of Equation (2) on M, and metric ψ−2 g is regular.
Evidently, g and ψ−2 g are Einstein metrics.
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25. Fučík, S.; Kufner, A. Nonlinear Differential Equations; TKI, SNTL: Praha, Slovakia, 1978.
26. Dacorogna, B. Introduction to the Calculus of Variations; Imperial College Press: London, UK, 2004.
27. Alekseevskii, D.V. Groups of conformal transformations of Riemannian spaces. Mat. Sbornik 1972, 89, 285–301.

[CrossRef]
28. Ferrand, J. The action of conformal transformations on a Riemannian manifold. Math. Ann. 1996, 304, 277–291.

[CrossRef]
29. Schoen, R. On the conformal and CR automorphism groups. Geom. Funct. Anal. 1995, 5, 464–481. [CrossRef]
30. Leitner, F. Twistor spinors with zero on Lorentzian 5-space. Comm. Math. Phys. 2007, 275, 587–605. [CrossRef]
31. Frances, C. Sur le groupe d’automorphismes des géométries paraboliques de rang 1. Ann. Sci. Ecole Norm.

Supérieure 2007, 40, 741–764. Available online: http://www.math.u-psud.fr/?frances/cartan-english6.pdf
(accessed on 1 August 2019 ). [CrossRef]

http://dx.doi.org/10.1007/BF01208647
http://dx.doi.org/10.2307/1970193
http://dx.doi.org/10.1090/S0002-9947-1939-1501998-9
http://dx.doi.org/10.1016/j.crma.2009.06.017
http://dx.doi.org/10.1007/s00025-009-0440-7
http://dx.doi.org/10.1007/978-3-0348-0448-6_28
http://dx.doi.org/10.1070/SM1972v018n02ABEH001770
http://dx.doi.org/10.1007/BF01446294
http://dx.doi.org/10.1007/BF01895676
http://dx.doi.org/10.1007/s00220-007-0326-z
http: //www.math.u-psud.fr/?frances/cartan-english6.pdf
http://dx.doi.org/10.1016/j.ansens.2007.07.003


Mathematics 2019, 7, 801 6 of 6

32. Frances, C. Essential conformal structures in Riemannian and Lorentzian geometry. In Recent Develop-Ments in
Pseudo-Riemannian Geometry; ESI Lectures in Mathematics and Physics; European Mathematical Society: Zürich,
Switzerland, 2008; Volume 4, pp. 231–260.

33. DeTurck, D.M.; Kazdan, J.L. Some regularity theorems in Riemannian geometry. Ann. Sci. Éc. Norm. Supér. 1981,
14, 249–260. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.24033/asens.1405
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Main Results
	Proof of Theorem 1
	Example of Non-Trivial Mappings with n-Complete Light-Like Geodesics Go through at the Point
	References

