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a b s t r a c t

In this note, we study a Robin problem driven by the Orlicz g-Laplace operator.
In particular, by using a regularity result and Kajikiya’s theorem, we prove that
the problem has a whole sequence of distinct smooth nodal solutions converging
to the trivial one. The analysis is developed in the most general abstract setting
that corresponds to Orlicz–Sobolev function spaces.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this paper, we are interested in the existence and multiplicity of smooth nodal (that is, sign-changing)
solutions for the following nonlinear Robin boundary problem:⎧⎪⎨⎪⎩

−div (a(|∇u(x)|)∇u(x)) + a(|u(x)|)u(x) = f(x, u(x)), x ∈ Ω

a(|∇u(x)|)∂u(x)
dν

+ b(x)|u(x)|p−2
u(x) = 0, x ∈ ∂Ω ,

(P)

here Ω ⊂ Rd (d ≥ 3) is a smooth bounded domain, ∆gu := div (a(|∇u|)∇u) is the Orlicz g-Laplace
perator, ∂u

∂ν = ∇u · ν, ν is the unit exterior vector on ∂Ω , p > 0, b ∈ C1,θ(∂Ω) with θ ∈ (0, 1) and
nfx∈∂Ω b(x) > 0.
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Very recently, the authors in [1] proved the existence of one smooth sign-changing solution of problem (P).
The multiplicity question of smooth nodal solutions has been treated by many authors, see for instance [2–4].
None of the aforementioned works study the multiplicity of smooth nodal solution for the Orlicz–Sobolev
problems (with Dirichlet, Neumann, or Robin boundary conditions). Hence, a natural question is whether or
not there exist multiple smooth nodal solutions. Based on regularity results obtained in [1,5], and Kajikiya’s
theorem [6], we show that problem (P) has infinitely many smooth nodal solutions.

Before stating our main result, we need the following class of hypotheses on the functions a : (0, +∞) →
0, +∞) and the N-function (see [7] for details) G(t) :=

∫ t

0 g(s)ds, where g(t) := a(|t|)t if t ̸= 0 and g(t) = 0
f t = 0.

Hg) (g1) : a(t) ∈ C1 (0, +∞) , a(t) > 0 and a(t) is an increasing function for t > 0.
(g2) : 1 < p < g− := inft>0

g(t)t
G(t) ≤ g+ := supt>0

g(t)t
G(t) < d,

(g3) : 0 < g− − 1 = a− := inft>0
g′(t)t
g(t) ≤ g+ − 1 = a+ := supt>0

g′(t)t
g(t) .

(g4) : t ↦→ G
(√

t
)

is convex on [0, +∞),
∫ δ

0

(
t

G(t)

) 1
d−1

dt < ∞ and
∫ +∞

β

(
t

G(t)

) 1
d−1

dt = ∞, for some
constants β, δ > 0.

We assume that f : Ω ×R → R is a Carathéodory function, f(x, .) is odd and f(x, 0) = 0, for a.a. x ∈ Ω ,
and satisfies the following class of assumptions:

Hf ) (f1) There exist an odd increasing homomorphism h ∈ C1(R,R), and a positive function â(t) ∈ L∞(Ω)
such that |f(x, t)| ≤ â(x) (1 + h(|t|)), for all t ∈ R, x ∈ Ω ,

1 < g+ < h− := inf
t>0

h(t)t
H(t) ≤ h+ := sup

t>0

h(t)t
H(t) ≤ g−

∗
g− ,

1 < h− − 1 := inf
t>0

h′(t)t
h(t) ≤ h+ − 1 := sup

t>0

h′(t)t
h(t)

and
lim

t→+∞

G(kt)
H(t) = lim

t→+∞

H(kt)
G∗(t) = 0, for all k > 0

where H(t) :=
∫ t

0 h(s) ds is an N-function, g−
∗ := dg−

d−g− , and G∗ is defined in Section 2.
(f2) limt→±∞

F (x,t)
|t|g+ = +∞, uniformly in x ∈ Ω , where F (x, t) =

∫ t

0 f(x, s)ds.
(f3) There is an odd increasing homomorphism q ∈ C1(R,R), and constants c0 ≥ 0, δ ≥ 0 such that

c0q(t)t ≤ f(x, t)t ≤ q+F (x, t), for a.a. x ∈ Ω and all 0 < |t| ≤ δ,

1 < q− := inf
t>0

q(t)t
Q(t) ≤ q+ := sup

t>0

q(t)t
Q(t) < p < g−,

1 < q− − 1 := inf
t>0

q′(t)t
q(t) ≤ q+ − 1 := sup

t>0

q′(t)t
q(t)

and
lim

t→+∞

Q(kt)
G(t) = 0, for all k > 0,

where Q(t) :=
∫ t

0 q(s)ds is an N-function.
(f4) There exist η− < 0 and η+ > 0 such that

f(x, η+) < 0 < f(x, η−), for a.a. x ∈ Ω .
Now, we can state our main result
2



A. Bahrouni, H. Missaoui and V.D. Rădulescu Applied Mathematics Letters 142 (2023) 108635

D

N

H
L

w

N
o

w

T

T
w
i

L

Theorem 1.1. Suppose that hypotheses (Hf ) and (Hg) are satisfied, then problem (P) has a sequence
{un}n∈N ⊂ C1(Ω) ∩ W 1,G(Ω) of distinct nodal solutions such that un → 0 in C1(Ω) as n → ∞.

To the best of our knowledge, this is the first work deal with the existence of infinitely many smooth
nodal solutions for problem (P). The main theorem of this note extends the result obtained in [1]. We would
like to mention that condition (g4) is weaker than the assumption assumed in the aforementioned reference.
The new assumption (g4) leads us to prove some important propositions (Propositions 3.1 and 3.2) to keep
all the results obtained in [1,5] valid for problem (P).

2. Preliminarie and main result

In this section, we present the main space for the study of problem (P) and some notions needed in the
sequel. The assumptions made on a and G ensure that G is an even N-function (see [7]). Moreover, G and
its conjugate N-function G̃ satisfy the well-known △2-condition. Therefore, we can define the Orlicz space
LG(Ω) as the vectorial space of all measurable functions u : Ω → R such that ρ(u) =

∫
Ω

G(|u(x)|) dx < ∞.

efinition 2.1. On the Orlicz space LG(Ω) we define the Luxemburg norm by the formula

∥u∥(G) = inf
{

λ > 0 : ρ(u

λ
) ≤ 1

}
.

In our case, the space LG(Ω) is a separable reflexive Banach space under the above Luxemburg norm.
ow, from the Orlicz space LG(Ω), we define the Orlicz–Sobolev space W 1,G(Ω) by

W 1,G(Ω) :=
{

u ∈ LG(Ω) : ∂u

∂xi
∈ LG(Ω), i = 1, . . . , d

}
.

ere, the space W 1,G(Ω) is a Banach space and it inherits the separability and reflexivity from the space
G(Ω) with respect to the norm

∥u∥ = inf
{

λ > 0 : K(u

λ
) ≤ 1

}
,

here
K(u) =

∫
Ω

G(|∇u(x)|)dx +
∫
Ω

G(|u(x)|) dx. (2.1)

ext, we mention the following optimal fractional Sobolev inequality introduced by A. Cianchi [8]. The
ptimal N-function for embedding theorem is defined by

G∗(t) := G(M−1(t)), for all t ≥ 0, (2.2)

here

M(t) :=
(∫ t

0

(
s

G(s)

) 1
d−1

ds

) d−1
d

, for all t ≥ 0. (2.3)

he optimal embedding is the next result [8].

heorem 2.2. Under the assumptions (g1) − (g4), the continuous embedding W 1,G(Ω) ↪→ LG∗(Ω) holds,
here G∗ is defined in (2.2). Moreover, for any N-function B, the embedding W 1,G(Ω) ↪→ LB(Ω) is compact

f and only if limt→+∞
B(kt)
G∗(t) = 0, for all k > 0.

The above result is optimal in the sense that if the embedding holds for an N-function B, then the space
G∗(Ω) is continuously embedded into LB(Ω).
In the following lemma, we give some properties of the N-function and the relationship between the norm

of the Orlicz–Sobolev space and its module.

3
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Lemma 2.3. (see [9]) Let B(t) :=
∫ |t|

0 b(s)ds be an N-function such that b ∈ C1 (0, +∞) and

1 < b− := inf
t>0

b(t)t
B(t) ≤ b+ := sup

t>0

b(t)t
B(t) < +∞.

hen

(1) min
{

tb−
, tb+

}
B(z) ≤ B(tz) ≤ max

{
tb−

, tb+
}

B(z), for all t, z ≥ 0.

(2) min
{

∥u∥b−
(B), ∥u∥b+

(B)

}
≤ ρ(u) ≤ max

{
∥u∥b−

(B), ∥u∥b+
(B)

}
, for all u ∈ LB(Ω).

(3) min
{

∥u∥b−
, ∥u∥b+

}
≤

∫
Ω

B(|∇u(x)|)dx +
∫
Ω

B(|u(x)|) dx ≤ max
{

∥u∥b−
, ∥u∥b+

}
, for all u ∈

W 1,B(Ω).

Let u, v : Ω → R be two measurable functions such that u(x) ≤ v(x) for a.a. x ∈ Ω , then we introduce the
order interval [u, v] =

{
y ∈ W 1,G(Ω) : u(x) ≤ y(x) ≤ v(x) for a.a. x ∈ Ω

}
. Recall that C1(Ω) is an ordered

anach space with a positive order cone C1(Ω)+ =
{

u ∈ C1(Ω), u(x) ≥ 0 for all x ∈ Ω
}

. This cone has a
nonempty interior given by int(C1(Ω)+) =

{
u ∈ C1(Ω)+, u(x) > 0 for all x ∈ Ω

}
.

. Proof of the main result

First, we give some important properties of the optimal N-function G∗ which will be useful in the proof
f Theorem 1.1.

roposition 3.1. Under the assumptions (g1) − (g2) and (g4) the following inequality holds

min
{

tg−
∗ , tg+

∗
}

G∗(z) ≤ G∗(tz) ≤ max
{

tg−
∗ , tg+

∗
}

G∗(z), for all t, z ≥ 0,

here g−
∗ := dg−

d−g− and g+
∗ := dg+

d−g+ .

Proof. According to the definition of M(t) (see (2.3)), for all t > 0 and z ≥ 0, we have

M(tz) =
(∫ tz

0

(
s

G(s)

) 1
d−1

ds

) d−1
d

= t
d−1

d

(∫ z

0

(
ts

G(ts)

) 1
d−1

ds

) d−1
d

.

sing Lemma 2.3-(1), for all 0 < t ≤ 1 and z ≥ 0, we obtain

M(tz) ≤ t
d−1

d

(∫ z

0

(
ts

tg+G(s)

) 1
d−1

ds

) d−1
d

= t

(
d−1

d
− g+−1

d

) (∫ z

0

(
s

G(s)

) 1
d−1

ds

) d−1
d

= t
d−g+

d M(z)

and

M(tz) ≥ t
d−1

d

(∫ z

0

(
ts

tg−G(s)

) 1
d−1

ds

) d−1
d

= t

(
d−1

d
− g−−1

d

) (∫ z

0

(
s

G(s)

) 1
d−1

ds

) d−1
d

= t
d−g−

d M(z).

hus,
t

d−g−
d M(z) ≤ M(tz) ≤ t

d−g+
d M(z), for all 0 ≤ t ≤ 1 and all z ≥ 0. (3.4)
4
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By the same way, we get

t
d−g+

d M(z) ≤ M(tz) ≤ t
d−g−

d M(z), for all t > 1 and all z ≥ 0. (3.5)

By (3.4) and (3.5), it follows that

ζ0(t)M(z) ≤ M(tz) ≤ ζ1(t)M(z), for all t, z ≥ 0, (3.6)

where
ζ0(t) = min

{
t

d−g−
d , t

d−g+
d

}
and ζ1(t) = max

{
t

d−g−
d , t

d−g+
d

}
. (3.7)

utting in the inequality (3.6) τ = M(z) and κ = ζ0(t) that is, z = M−1(τ) and t = ζ−1
0 (κ), we get

τ ≤ M(ζ−1
0 (κ)M−1(τ)). Since M−1 is non-decreasing, we infer that

M−1(κτ) ≤ ζ−1
0 (κ)M−1(τ), for all κ, τ > 0. (3.8)

imilarly, putting in (3.6) τ = M(z) and κ = ζ1(t) that is, z = M−1(τ) and t = ζ−1
1 (κ), we obtain

ζ−1
1 (κ)M−1(τ) ≤ M−1(κτ), for all κ, τ > 0. (3.9)

rom (3.7), (3.8) and (3.9), it yields that

min
{

t
d

d−g− , t
d

d−g+
}

M−1(z) ≤ M−1(tz) ≤ max
{

t
d

d−g− , t
d

d−g+
}

M−1(z), for all t, z ≥ 0. (3.10)

rom Lemma 2.3-(1), we deduce that

min
{

tg−
∗ , tg+

∗
}

G∗(z) ≤ G∗(tz) ≤ max
{

tg−
∗ , tg+

∗
}

G∗(z), for all t, z ≥ 0

here g−
∗ = dg−

d−g− and g+
∗ = dg+

d−g+ . This ends the proof. □

The function G∗ inherits the △2-condition from the function G. Indeed, we have the following property.

Proposition 3.2. Under the assumptions (g1) − (g2) and (g4) the following inequality holds

g−
∗ ≤ g∗(t)t

G∗(t) ≤ g+
∗ , for all t > 0, where G∗(t) =

∫ t

0
g∗(s)ds.

∗ satisfies the △2-condition and

min
{

∥u∥g−
∗

(G∗), ∥u∥g+
∗

(G∗)

}
≤
∫
Ω

G∗(u)dx ≤ max
{

∥u∥g−
∗

(G∗), ∥u∥g+
∗

(G∗)

}
, for all u ∈ LG∗(Ω).

roof. From Proposition 3.1, we have

tg−
∗ G∗(z) ≤ G∗(tz) ≤ tg+

∗ G∗(z), for all t, z > 1, (3.11)

nd
1g+

∗ G∗(z) ≤ G∗(z) ≤ 1g−
∗ G∗(z), for all z > 0. (3.12)

utting together (3.11) and (3.12), we find

tg−
∗ − 1g−

∗
G∗(z) ≤ G∗(tz) − G∗(z) ≤ tg+

∗ − 1g+
∗

G∗(z), for all t, z > 1. (3.13)

t − 1 t − 1 t − 1

5
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Passing to the limit as t → 1 in (3.13), we deduce that

g−
∗ ≤ g∗(z)z

G∗(z) ≤ g+
∗ , for all z > 0, where G∗(z) =

∫ z

0
g∗(s)ds.

ence, G∗ satisfies the △2-condition and

min
{

∥u∥g−
∗

(G∗), ∥u∥g+
∗

(G∗)

}
≤
∫
Ω

G∗(u)dx ≤ max
{

∥u∥g−
∗

(G∗), ∥u∥g+
∗

(G∗)

}
, for all u ∈ LG∗(Ω).

hus the proof. □

emark 3.3. From Propositions 3.1, 3.2 and Theorem 2.2, all the results obtained in [1,5] are valid for
roblem (P) with the new assumption (g4). In particular, from [1, Theorem2.20], we have

∅ ≠ S+ ⊂ int
(
C1(Ω)+

)
and ∅ ≠ S− ⊂ −int

(
C1(Ω)+

)
. (3.14)

Here, S+ := {u : u is a non-negative solution of (P)} and S− := {u : u is a non-positive solution of (P)}.
oreover, by [1, Proposition 4.5], we have that problem (P) admits a smallest positive solution u∗ ∈

nt
(
C1(Ω)+

)
∩ [0, η+] and a biggest negative solution v∗ ∈ −int

(
C1(Ω)+

)
∩ [η−, 0].

roof of Theorem 1.1. Let µ > max{−η−, η+}. Then [η−, η+] ⊂ [−µ, µ]. Let ξ(·) ∈ C(R) be an even
unction such that

0 ≤ ξ(t) ≤ 1, ξ⏐⏐
[η−,η+]

= 1 and supp(ξ) ⊂ [−µ, µ]. (3.15)

sing the function ξ(·), we define a Carathèodory function f̂ : Ω × R → R by

f̂(x, t) := ξ(t)f(x, t) + (1 − ξ(t))q(t), for all x ∈ Ω and all t ∈ R (3.16)

here q(t) is defined in (f3). From (3.15)–(3.16) and hypothesis (f1), we have

f̂(x, .)⏐⏐
[η−,η+]

= f(x, .)⏐⏐
[η−,η+]

for all x ∈ Ω , (3.17)⏐⏐⏐f̂(x, t)
⏐⏐⏐ ≤ Ĉ (1 + q(|t|)) for a.a. x ∈ Ω , all t ∈ R where Ĉ > 0. (3.18)

Now, we consider the following Robin problem{
−div(a(|∇u(x)|)∇u(x)) + a(|u(x)|)u(x) = f̂(x, u(x)), x ∈ Ω

a(|∇u(x)|) ∂u(x)
dν + b(x)|u(x)|p−2

u(x) = 0, x ∈ ∂Ω ,
(R)

Let F̂ (x, t) =
∫ t

0 f̂(x, s)ds and define the energy J : W 1,G(Ω) → R by

J(u) := K(u) + 1
p

∫
∂Ω

b(x)|u|pdγ −
∫
Ω

F̂ (x, u)dx for all u ∈ W 1,G(Ω).

e know that J ∈ C1 (W 1,G(Ω),R
)
. Moreover, J is even and coercive (see (3.17) and recall that q+ < g−).

t follows, by [10, Proposition 5.1.15, p. 369], that J is bounded from below and satisfies the Palais–Smale
condition. So, J satisfies hypothesis (A1). It is remain to verify that J satisfies hypothesis (A2) of [6,

heorem1].
To this end, we consider V ⊂ W 1,G(Ω) as a finite-dimensional subspace. So, there exists ϱ ∈ (0, 1) small

uch that

u ∈ V, ∥u∥ ≤ ϱ ⇒ |u(x)| ≤ δ for a.a. x ∈ Ω , (3.19)

6
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where δ > 0 is defined in hypothesis (f3). Let u ∈ V such that ∥u∥ = ϱ. From (3.17)–(3.19), hypothesis (f3),
heorem 2.2 and Lemma 2.3, we deduce that

J(u) ≤ K(u) + 1
p

∫
∂Ω

b(x)|u|pdγ − C0
q−

q+

∫
Ω

Q(u(x))dx

≤ ∥u∥g−
+ 1

p
Cb

∫
∂Ω

|u|pdγ − C0
q−

q+ min
{

∥u∥q−

(Q), ∥u∥q+

(Q)

}
≤ ∥u∥g−

+ 1
p

CbC1∥u∥p − C0C2
q−

q+ ∥u∥q+
(since all norms are equivalent on V ), (3.20)

or some Cb, C1, C2 > 0. Since q+ < p < g−, we can choose ϱ ∈ (0, 1) even smaller if necessary such that

J(u) < 0 for all u ∈ V with ∥u∥ = ϱ. (3.21)

t follows that sup {J(u) : u ∈ V, ∥u∥ = ϱ} < 0. So, we conclude that J satisfies hypotheses (A1) − (A2) of
heorem 1 of Kajikiya [6]. Then, there exists {un}n∈N ⊂ KJ :=

{
u ∈ W 1,G(Ω), J ′(u) = 0

}
such that

un → 0 in W 1,G(Ω). (3.22)

rom [5], there exist α ∈ (0, 1) and C3 > 0 such that

un ∈ C1,α(Ω) and ∥un∥C1,α(Ω) ≤ C3, for all n ∈ N. (3.23)

he compact embedding of C1,α(Ω) into C1(Ω) (see [11]) and (3.22)–(3.23) imply that un → 0 in C1(Ω).
hus, there exists n0 ∈ N such that un ∈ [η−, η+] ∩ [v∗, u∗] ∩ C1(Ω), for all n ≥ n0. It follows, by (3.17),

that {un}n≥n0 are nodal solutions of (P). This ends the proof of Theorem 1.1. □
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