Properties of concrete intended for further testing measured by the Impact-Echo and the ultrasonic pulse method

Loading...
Thumbnail Image
Date
2018-07-16
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing
Altmetrics
Abstract
The aim of the paper is non-destructive measurement of differently degraded specimens by high temperature intended for further testing of joints of stainless steel helical reinforcement glued into the groove and differently degraded concrete. Measurement intended for determination of possibilities of estimation of future properties of named joints is performed by the Impact-Echo method and by the ultrasonic pulse velocity method on specimens of dimensions 400 × 100 × 100 mm made of concrete of the C20/25 strength class degraded by different elevated temperature. Five sets of specimens were manufactured - four sets of specimens were heated in the furnace at temperatures of 400 °C, 600 °C, 800 °C and 1000 °C and one set was kept intact as reference. Specimens will be afterwards additionally strengthened at the tensile side of specimens and broken by four-point flexural strength test. The non-destructive measurement aims to evaluate the residual physical-mechanical properties of plain concrete in terms of resonance frequency of test specimen, and sound velocity in tested specimen before and after the temperature degradation. This assessment will serve as material information basis for interpretation of the expected behaviour of used helical reinforcement for a retrofitting process and the thermally damaged concrete reaction to such intervention.
Description
Citation
IOP Conference Series: Materials Science and Engineering. 2018, vol. 385, issue 1, p. 1-6.
http://iopscience.iop.org/article/10.1088/1757-899X/385/1/012025
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 3.0 Unported
http://creativecommons.org/licenses/by/3.0/
Citace PRO