Experimental and numerical study of turbulent flow around a Fanwings profile

Loading...
Thumbnail Image
Date
2019-07-20
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Taylor & Francis Group
Altmetrics
Abstract
The main objective of this paper is an experimental and numerical study of airflow on a propulsive wing also called ventilated wing or FANWING, which is a drone operating at low speed. To optimize the aerodynamic shape of the Fanwing, two different configurations of NACA4415 rectangular wing profile were realized. The first one is a wing where the Cross-Flow Fan is fitted directly to the leading edge with a classic niche. For the second one, we truncated the extension of the niche to create a profile without nose. Two flow velocities with constant fan rotation were used and observed in the range of 16°<<+30°. A lift coefficient generated by the profiles increases and the drag coefficient decreases, while the distribution of the pressure coefficient on the upper surface increases abruptly because of the flow recirculation. The experiment was performed in a subsonic wind tunnel TE44 and numerical simulations in software Fluent 6.3.2.6. Both approaches are in good agreement. The visualization showed that the recirculation phenomenon occurs right after the discharge of the cross-flow fan. It reveals that the jet coming out of the fan causes a strong wake behind the profile and suppresses the boundary layer separation.
Description
Citation
Engineering Applications of Computational Fluid Mechanics. 2019, vol. 13, issue 1, p. 698-712.
http://www.tandfonline.com/doi/full/10.1080/19942060.2019.1639076
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO