Application of Linear Optimization on Parameters of 3D FDM Print

Loading...
Thumbnail Image
Date
2019-07-25
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Strojarski fakultet u Slavonskom Brodu
Altmetrics
Abstract
Nowadays, a fused deposition modelling (also called “FDM”) belongs to one of the most widespread additive methods of 3D print. It allows producing both models for functional verification or casts and functional components. The main advantage of this technology is an option to produce complex components of a difficult shape independent of their outer and inner surfaces. Moreover, this mentioned technology brings the decreasing of production costs in comparison with the other well-known additive methods. The final quality of a product depends on the used material and on technological conditions at the same time. The number of parameters and limits of the complete printing process is enormous. The choice of the individual parameters by a trial-and-error procedure is very time-consuming. Therefore, a use of linear optimization for finding of optimal values of chosen print parameters can be offered. For forming of the required procedures, it seems to be necessary to choose structural variables, find an appropriate objective function and deduce properly limiting conditions in a linear shape, which relates to a linear measurement. The final solution enables, on the basis of the selected initial conditions, to choose optimal parameters of the 3D print for a given material and production equipment in a relatively short period.
Description
Citation
TEHNIČKI VJESNIK - TECHNICAL GAZETTE. 2019, vol. 26, issue 4, p. 1164-1170.
https://hrcak.srce.hr/223339
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO