Characteristic Curve and Its Use in Determining the Compressive Strength of Concrete by the Rebound Hammer Test

Loading...
Thumbnail Image
Date
2019-08-23
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Altmetrics
Abstract
During the construction of concrete structures, it is often useful to know compressive strength at an early age. This is an amount of strength required for the safe removal of formwork, also known as stripping strength. It is certainly helpful to determine this strength non-destructively, i.e., without any invasive steps that would damage the structure. Second only to the ultrasonic pulse velocity test, the rebound hammer test is the most common NDT method currently used for this purpose. However, estimating compressive strength using general regression models can often yield inaccurate results. The experiment results show that the compressive strength of any concrete can be estimated using one’s own newly created regression model. A traditionally constructed regression model can predict the strength value with 50% reliability, or when two-sided confidence bands are used, with 95% reliability. However, civil engineers usually work with the so-called characteristic value defined as a 5% quantile. Therefore, it appears suitable to adjust conventional methods in order to achieve a regression model with 95% one-sided reliability. This paper describes a simple construction of such a characteristic curve. The results show that the characteristic curve created for the concrete in question could be a useful tool even outside of practical applications.
Description
Citation
Materials . 2019, vol. 12, issue 17, p. 1-17.
https://www.mdpi.com/1996-1944/12/17/2705
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO