Wide Range High Precision CMOS Exponential Circuit Based on Linear Least Squares Approach

Loading...
Thumbnail Image
Date
2018-12
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Společnost pro radioelektronické inženýrství
Altmetrics
Abstract
A new strategy to implement exponential circuit in CMOS technology is presented in this paper. The proposed method is based on the new approximation function optimized by linear least squares approach to extend the output dynamic range. The current mode method is employed for realization of circuits, because of simple circuitry and intuitive topology. Unlike to the some reported circuits which were designed in the subthreshold region, the proposed design operates in the saturation region which provides acceptable bandwidth for the circuit. In order to validate the circuit performance, the post layout simulation results are presented using HSPICE and Cadence with TSMC level 49 (BSIM3v3) parameters for 0.18 μm CMOS technology. The results demonstrate 78 dB output dynamic range with the linearity error less than ±0.5 dB which shows a remarkable improvement in comparison with previously reported works. A bandwidth of 67 MHz, maximum power consumption of 0.326 mW under supply voltage of 1.5 V, and 0.77% error for temperature variations are further achievement of the design.
Description
Citation
Radioengineering. 2018 vol. 27, č. 4, s. 1092-1099. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2018/18_04_1092_1099.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/
Collections
Citace PRO