Extraordinary Response of H-Charged and H-Free Coherent Grain Boundaries in Nickel to Multiaxial Loading

Loading...
Thumbnail Image
Date
2020-07-08
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Multidisciplinary Digital Publishing Institute
Altmetrics
Abstract
The cohesive strength of 3, v5, and v11 grain boundaries (GBs) in clean and hydrogen-segregated fcc nickel was systematically studied as a function of the superimposed transverse biaxial stresses using ab initio methods. The obtained results for H-free GBs revealed a quite different response of the coherent twinning boundary 3 to the applied transverse stresses in comparison to the other GB types. While the cohesive strength of 5 and 11 GBs increased with increasing level of tensile transverse stresses, the strength of 3 GB remained constant for any applied levels of transverse stresses. In the case of GBs with segregated hydrogen, the cohesive strength of 3 was distinctly reduced for all levels of transverse stresses, while the strength reduction of 5 and 11 GBs was significant only for a nearly isotropic (hydrostatic) triaxial loading. This extraordinary response explains a high susceptibility of 3 GBs to crack initiation, as recently reported in an experimental study. Moreover, a highly triaxial stress at the fronts of microcracks initiated at 3 boundaries caused a strength reduction of adjacent high-energy grain boundaries which thus became preferential sites for further crack propagation.
Description
Citation
Crystals. 2020, vol. 10, issue 7, p. 1-12.
https://www.mdpi.com/2073-4352/10/7/590
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO