ÚPI-odbor procesního inženýrství

Browse

Recent Submissions

Now showing 1 - 3 of 3
  • Item
    Effect of alkali cation type on the plasticizing effect of ligno-sulfonate in alkali-activated systems
    (IOP Publishing, 2021-09-29) Iliushchenko, Valeriia; Bílek, Vlastimil; Kalina, Lukáš; Hrubý, Petr; Opravil, Tomáš; Bojanovský, Jiří
    The rheological properties of alkali-activated systems are significantly affected by the nature of the alkaline activator. Hydroxide-activated systems' workability is typically lower than that of alkali-activated systems but can be improved by lignosulfonate plasticizer. However, the lignosulfonate plasticizer's effectivity depends on the dosage of lignosulfonate, the nature of hydroxide and pH of their solutions. Therefore, in this study, the effectiveness of lignosulfonate plasticizer with respect to alkali ion type (Na+, K+, Li+) in alkali hydroxide-activated systems based on ground granulated blast furnace slag was evaluated. The concentration of the alkaline activator (NaOH, KOH and LiOH) was the same in all cases of 4M. The superplasticizer dosage was 0%, 0.5% and 1.0% of dry matter of lignosulfonate plasticizer to the slag weight. Rheological properties were determined using a rotational rheometer equipped with vane in-cup geometry working in oscillation amplitude sweep mode, from which critical strain and corresponding viscoelastic variables were obtained.
  • Item
    Perspective Design of Algae Photobioreactor for Greenhouses-A Comparative Study
    (MDPI, 2021-03-01) Sukačová, Kateřina; Lošák, Pavel; Brummer, Vladimír; Máša, Vítězslav; Vícha, Daniel; Zavřel, Tomáš
    The continued growth and evolving lifestyles of the human population require the urgent development of sustainable production in all its aspects. Microalgae have the potential of the sustainable production of various commodities; however, the energetic requirements of algae cultivation still largely contribute to the overall negative balance of many operation plants. Here, we evaluate energetic efficiency of biomass and lipids production by Chlorella pyrenoidosa in multi-tubular, helical-tubular, and flat-panel airlift pilot scale photobioreactors, placed in an indoor environment of greenhouse laboratory in Central Europe. Our results show that the main energy consumption was related to the maintenance of constant light intensity in the flat-panel photobioreactor and the culture circulation in the helical-tubular photobioreactor. The specific power input ranged between 0.79 W L-1 in the multi-tubular photobioreactor and 6.8 W L-1 in the flat-panel photobioreactor. The construction of multi-tubular photobioreactor allowed for the lowest energy requirements but also predetermined the highest temperature sensitivity and led to a significant reduction of Chlorella productivity in extraordinary warm summers 2018 and 2019. To meet the requirements of sustainable yearlong microalgal production in the context of global change, further development towards hybrid microalgal cultivation systems, combining the advantages of open and closed systems, can be expected.
  • Item
    A Novel Check-List Strategy to Evaluate the Potential of Operational Improvements in Wastewater Treatment Plants
    (MDPI, 2020-09-23) Zejda, Vojtěch; Máša, Vítězslav; Skryja, Pavel
    With increasing demands for cleaning and purification of water, wastewater treatment plants (WWTP) require their most efficient operation. The operators are thus obliged to constantly review the efficiency of the processing units and technological equipment of WWTPs and seek opportunities for improvements. To increase the efficiency of particular equipment, the important parameters to be used for the intensification must be correctly selected. A common WWTP consists of different types of processing units, where the basic parameters can be changed to achieve the highest efficiency (i.e. maximum output with minimum energy consumption) in the WWTP. However, due to many possible technologies in the wastewater treatment process, the combinations of processing units can be complex. In such cases, the efficiency assessment can be misleading if only basic parameters were accessed. Moreover, single-unit intensification can potentially improve the efficiency of the unit itself, but cannot guarantee full process improvement. This can be due to negative causal effects in the downstream due to that unit intensification. This work reviews of key parameters at selected five WWTP equipment (inlet pump station, airlift pump, primary sedimentation tank, aeration chamber and mixing of anaerobic digester) to demonstrate the correct selection of all affected parameters for the efficiency assessment. In the context of the whole WWTP process, it is necessary to take into account several other parameters to evaluate the efficiency of the equipment. Finally, a methodology for assessing the significance of the identified parameters is proposed. This methodology is effectively applied and demonstrated to the WWTP case study.