The effect of synthesis procedure on hydrogen peroxidase-like catalytic activity of iron oxide magnetic particles

Abstract
A comparative study was carried out using magnetic nanoparticles (MNPs) for the fabrication of non-enzymatic sensors for the continuous and rapid detection and monitoring of H2O2. Various MNPs, differing in terms of their synthesis procedure and modification, were synthesized and characterized by different techniques. The electrochemical catalytic activity of the synthesized MNPs toward the reduction in H2O2 was investigated by cyclic voltammetry. The naked MNPs showed the highest catalytic activity among all the synthesized MNPs. The biosensor based on the naked MNPs was then applied in the determination of H2O2 using chronoamperometry. The parameters such as the applied cathodic potential and the amount of MNPs on the developed biosensor were optimized. Moreover, the analytical figures of merit, including reproducibility (RSD = 6.14%), sensitivity (m = 0.0676 mu A mu M-1), limit of detection (LOD) = 27.02 mu mol L-1, and limit of quantification (LOQ) = 89.26 mu mol L-1 of the developed biosensor indicate satisfactory analysis. Finally, MNPs were successfully utilized for the determination of H2O2 in milk.
Description
Citation
Applied Sciences - Basel. 2020, vol. 10, issue 19, p. 1-12.
https://www.mdpi.com/2076-3417/10/19/6756
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO