Flow Inside the Sidewall Gaps of Hydraulic Machines: A Review

Loading...
Thumbnail Image
Date
2020-12-15
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Altmetrics
Abstract
The paper critically reviews the current state of the art in flow inside sidewall gaps of hydraulic pumps and turbines. It describes the consequences of the presence of this type of flow in turbomachinery and then relates it to other physical phenomena that determine the behavior, operating characteristics, and overall performance of the machine. Despite the small dimensions of the rotor-stator spaces, the flow in these regions can significantly affect the overall flow field and, consequently, efficiency. The circulation of the fluid inside the gaps and secondary flow that is caused by rotating elements influences the disk friction losses, which is of great importance, especially in the case of low specific speed pumps and turbines. The flow pattern affects the pressure distribution inside a machine and, thus, generates axial thrust. The presence of secondary flow also significantly changes the rotordynamics and can bring about undesirable vibrations and acoustics issues. This article aims to review and summarize the studies that were conducted on the mentioned phenomena. Experimental and numerical studies are both taken into consideration. It proposes some requirements for prospective research in order to fill current gaps in the literature and reveals the upcoming challenges in the design of hydraulic machines
Description
Citation
ENERGIES. 2020, vol. 13, issue 24, p. 1-37.
https://www.mdpi.com/1996-1073/13/24/6617
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO