Classically determined effective Delta K fails to quantify crack growth rates

Loading...
Thumbnail Image
Date
2020-08-01
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Altmetrics
Abstract
Decomposition of the resistance to fatigue crack growth into the intrinsic and extrinsic component is very important for understanding of fatigue failure mechanisms, relation to microstructure and modelling of residual fatigue life. Crack closure for four grades of steel were estimated by the difference between K-max values and the effective Delta K-eff values (measured at the load ratio R = 0.8) corresponding to the same crack growth rate. The results showed that crack closure values obtained by the difference K-max - Delta K-eff were not in agreement with the available crack closure models, both the Newman's model of plasticity-induced closure and the results from finite element analysis. The discrepancies could not be explained by the effect of mean stress, specimen thickness, loading amplitude or T-stress. Therefore, the application of fracture mechanics to fatigue cracks should be revisited. It was pointed out that Delta K-eff may not be a good parameter for quantification of the crack driving force, since the relationship between K-max - K-cl and the cyclic plastic deformation at the crack tip might not be linear.
Description
Citation
Theoretical and Applied Fracture Mechanics. 2020, vol. 108, issue 1, p. 1-13.
https://www.sciencedirect.com/science/article/pii/S0167844220301841
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
Citace PRO