Fyzika AdMaS

Browse

Recent Submissions

Now showing 1 - 3 of 3
  • Item
    The Effect of Specimen Size on Acoustic Emission Parameters and Approximate Position of Defects Obtained during Destructive Testing of Cementitious and Alkali-Activated Degraded Fine-Grained Materials
    (MDPI, 2023-05-04) Topolář, Libor; Kocáb, Dalibor; Hrubý, Petr; Jakubka, Luboš; Hoduláková, Michaela; Halamová, Romana
    Two sizes of test samples were selected to investigate the effect of size on the level of degradation. The smaller test specimens had dimensions of 40 × 40 × 160 mm, and the larger ones had dimensions of 100 × 100 × 400 mm. Both sizes of test specimens were always made of the same mortar. In one case, Blast Furnace Cement was chosen as the binder. In the other case, it was an alkali-activated material as a possibly more environmentally economical substitute. Both types of material were deposited in three degrading solutions: magnesium sulphate, ammonium nitrate and acetic acid. The reference set was stored in a water bath. After six months in the degradation solutions, a static elastic modulus was determined for the specimens during this test, and the acoustic emission was measured. Acoustic emission parameters were evaluated: the number of hits, the amplitude magnitude and a slope from the amplitude magnitude versus time (this slope should correspond to the Kaiser effect). For most of the parameters studied, the size effect was more evident for the more degraded specimens, i.e., those placed in aggressive solutions. The approximate location of emerging defects was also determined using linear localisation for smaller specimens where the degradation effect was more significant. In more aggressive environments (acetic acid, ammonium nitrate), the higher resistance of materials based on alkaline-activated slag was more evident, even in the case of larger test bodies. The experiments show that the acoustic emission results agree with the results of the static modulus of elasticity.
  • Item
    Classification of Thermally Degraded Concrete by Acoustic Resonance Method and Image Analysis via Machine Learning
    (MDPI, 2023-01-22) Dvořák, Richard; Chobola, Zdeněk; Plšková, Iveta; Hela, Rudolf; Bodnárová, Lenka
    The study of the resistance of plain concrete to high temperatures is a current topic across the field of civil engineering diagnostics. It is a type of damage that affects all components in a complex way, and there are many ways to describe and diagnose this degradation process and the resulting condition of the concrete. With regard to resistance to high temperatures, phenomena such as explosive spalling or partial creep of the material may occur. The resulting condition of thermally degraded concrete can be assessed by a number of destructive and nondestructive methods based on either physical or chemical principles. The aim of this paper is to present a comparison of nondestructive testing of selected concrete mixtures and the subsequent classification of the condition after thermal degradation. In this sense, a classification model based on supervised machine learning principles is proposed, in which the thermal degradation of the selected test specimens are known classes. The whole test set was divided into five mixtures, each with seven temperature classes in 200 °C steps from 200 °C up to 1200 °C. The output of the paper is a comparison of the different settings of the classification model and validation algorithm in relation to the observed parameters and the resulting model accuracy. The classification is done by using parameters obtained by the acoustic NDT Impact-Echo method and image-processing tools.
  • Item
    Acoustic non-destructive testing of high temperature degraded concrete with comparison of acoustic impedance
    (MATEC Web of Conferences, 2018-10-30) Dvořák, Richard; Chobola, Zdeněk; Kusák, Ivo
    The paper is focused on non-destructive measurement of high temperature degraded concrete test specimens of three mixtures different by the use of coarse aggregate. Testing is done by ultrasonicpulse velocitymethod and Impact-Echo method. Non-destructive results are compared with destructive tests. Ultrasonic pulse velocity, dominant resonance frequency and acoustic impedance are discussed and compared with changes in density, cubic compressive strength, and tensile strength of concrete. The paper suggests possible assessment of degraded concrete by the change in acoustic impedance dependent on residual tensile strength.