3D-printed electrodes for the detection of mycotoxins in food

Loading...
Thumbnail Image
Date
2020-06-01
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Altmetrics
Abstract
Additive manufacturing, also termed 3D printing, enables economical, dynamic and rapid fabrication of customisable three-dimensional (3D) devices catering for specialised functions. Herein, we report the fabrication of 3D-printed graphene electrodes by fused deposition modelling (FDM), which were then used for the electrochemical detection of the mycotoxin zearalenone (ZEA). Chemical and electrochemical pre-treatment procedures were applied to remove the inert polylactic acid external layer from the graphene electrodes, exposing and activating the inner graphene surface. These procedures enhanced the sensitivity of the electrodes towards electrochemical detection of ZEA. The activated 3D-printed graphene electrodes displayed a good linear response (r = 0.995) over a wide concentration range (10 to 300 mu M). This proof-of-concept application opens up a wide range of possibilities for the fabrication of 3D-printed electrochemical devices for use in food analysis and food safety.
Description
Citation
ELECTROCHEMISTRY COMMUNICATIONS. 2020, vol. 115, issue 1, p. 106735-1-106735-5.
https://www.sciencedirect.com/science/article/pii/S1388248120300862?via%3Dihub
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
Citace PRO