New Current-Mode Class 1 Frequency-Agile Filter for Multi Protocol GPS Application

Loading...
Thumbnail Image
Date
2015-10-12
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Kaunas University of Technology
Altmetrics
Abstract
Recently, due to their cost, accuracy, and integrability of conventional current-mode (CM) on-chip integrated filters working in radio frequency region, frequency-agile filters (FAFs) have started taking great interest in multi-standard transceivers, encrypted communication, cognitive radio, software defined radio structures, and global positioning system applications. By following the most recent trend in the literature, this paper proposes the first class 1 CM FAF using high-performance analog building block so-called positive-type electronically controllable second-generation current conveyor (ECCII+), two resistors, and two grounded capacitors. The theory and the proposed 2nd-order CM FAF are supported by both regular and post-layout simulations performed using CADENCE Spectre tool with TSMC 0.18 µm level-49 CMOS technology process BSIM3v3 parameters. Furthermore, corner and Monte-Carlo analyses are given to prove the accuracy of centre frequency of the CM FAF.
Recently, due to their cost, accuracy, and integrability of conventional current-mode (CM) on-chip integrated filters working in radio frequency region, frequency-agile filters (FAFs) have started taking great interest in multi-standard transceivers, encrypted communication, cognitive radio, software defined radio structures, and global positioning system applications. By following the most recent trend in the literature, this paper proposes the first class 1 CM FAF using high-performance analog building block so-called positive-type electronically controllable second-generation current conveyor (ECCII+), two resistors, and two grounded capacitors. The theory and the proposed 2nd-order CM FAF are supported by both regular and post-layout simulations performed using CADENCE Spectre tool with TSMC 0.18 µm level-49 CMOS technology process BSIM3v3 parameters. Furthermore, corner and Monte-Carlo analyses are given to prove the accuracy of centre frequency of the CM FAF.
Description
Citation
Elektronika Ir Elektrotechnika. 2015, vol. 21, issue 5, p. 35-39.
http://www.vpa.ktu.lt/index.php/elt/article/view/13323
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO