Lyapunov Drift-Plus-Penalty Based Resource Allocation in IRS-Assisted Wireless Networks with RF Energy Harvesting

Loading...
Thumbnail Image
Date
2022-09
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Společnost pro radioelektronické inženýrství
Altmetrics
Abstract
We propose a resource allocation policy for intelligent reflective surface (IRS)-assisted wireless powered communication network (WPCN) where the energy harvesting (EH) users (EHUs) have finite energy storage and data buffers, for storing the harvested energy and the input (sensory) data, respectively. The IRS reflecting coefficients for uplink and downlink are chosen to focus the beam towards a specific EHU, but have additional constant phase offsets (different for uplink and downlink) in order to account for the direct link between the base station and the IRS targeted EHU, and the influence to the EH process of other EHUs in downlink. The EHUs acquire data from their sensors, receive energy in downlink and send information in uplink. We maximize the overall average amount of sensor information in the WPCN by optimizing the IRS reflecting coefficients for the downlink transmissions, the amount of acquired sensor information and the duration of the information transmission period for each EHU in each epoch using the Lyapunov drift-plus-penalty optimization technique. The simulation results demonstrate the effectiveness of the proposed solution.
Description
Citation
Radioengineering. 2022 vol. 31, č. 3, s. 382-389. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2022/22_03_0382_0389.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/
Collections
Citace PRO