Návrh experimentu pro řešení inverzní úlohy vedení tepla

Loading...
Thumbnail Image
Date
ORCID
Mark
P
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta strojního inženýrství
Abstract
V této práci je komplexně studována inverzní úloha vedení tepla s důrazem na optimální návrh experimentu. V technické praxi se vyskytuje mnoho aplikací, v nichž jsou nebo mohou být inverzní úlohy použity. Jedná se především o metalurgické procesy v průmyslu jako je chlazení při kontinuálním odlévání ocelí, hydraulické odkujování či válcování za tepla. Inverzní úlohy se obecně využívají ke zjišťování okrajových podmínek diferenciálních rovnic a ve výše zmíněné problematice slouží ke stanovování součinitele přestupu tepla (HTC – Heat transfer coefficient). Znalost přibližného numerického řešení přesné hodnoty okrajové podmínky je v dnešní době pro mnoho aplikací klíčové, např. umožňuje navrhnout vhodné chlazení válcovacích stolic s důrazem na požadované vlastnosti a kvalitu finálního produktu. V práci je pro řešení inverzní úlohy použit Beckův sekvenční algoritmus v kombinaci s optimalizačními metodami na vybrané problémy z výše zmíněných oblastí. Vzhledem ke specifickým požadavkům a vysokým nárokům na přesnost měření bylo v rámci této práce navrženo a postaveno speciální experimentální zařízení pro zjišťování intenzity přenosu tepla. Experimentální zařízení bylo vybaveno čtyřmi typy různých teplotních senzorů, jež slouží v Laboratoři přenosu tepla a proudění (LPTaP) na různých již existujících experimentálních zařízeních. První typ senzoru slouží k provádění experimentů simulujících chlazení při kontinuálním lití. Druhý senzor je určen pro experimenty spojené s chlazením válcovací stolice a třetí senzor pak pro chlazení rychle se pohybujícího válcovaného tělesa. Poslední senzor je upravenou verzí prvního typu, ovšem s termočlánkem umístěným rovnoběžně s chlazeným povrchem. V experimentální části byla provedena série měření pro zjištění HTC pro různé typy chladiv, chladících směsí a ostřikových parametrů. Zjištěné výsledky, které byly porovnány s dostupnými publikacemi, výrazně rozšiřují znalosti o účinnosti běžně používaných průmyslových chladiv. V druhé časti této práce byly prováděny numerické simulace chování senzorů. Konkrétně byly připraveny detailní modely uvažující jejich vnitřní geometrickou strukturu a rozdílné materiálové vlastnosti. Simulace byly prováděny s dlouhým a krátkým časovým pulzem HTC, dále pak s vlivem šumu v datech a sníženou přesností měřícího termočlánku. Cílem této práce byl optimální návrh experimentu pro řešení inverzní úlohy vedení tepla, jehož výstupem jsou účinnosti chlazení (tzn. zjistit velikost HTC). Experimenty zahrnovaly širokou škálu chladiv (voda, olej, emulze, atd.) v závislosti na celé řadě parametrů (např. tlak, průtok chladiva). Důležitým parametrem byla též koncentrace rozpuštěných olejů v chladící emulzi. Druhým cílem bylo podrobné vyhodnocení výše popsaných senzorů, jejich přesnosti a použitelnosti při praktických experimentech.
this thesis complex inverse heat transfer problem, which is focused on optimal design of experiment, is studied. There are many fields and applications in technical practice, where inverse tasks are or can be applied. On first place main attention is focused on industrial metallurgical processes such as cooling of continues casting, hydraulic descaling or hot rolling. Inverse problems are in general used to calculate boundary conditions of differential equations and in this field are used to find out Heat Transfer Coefficient (HTC). Knowledge of numerical approximation of precise boundary conditions is nowadays essential. It allows for example design of optimized hot rolling mill cooling focused on material properties and final product quality. Sequential Beck’s approach and optimization method is used in this work to solve inverse heat transfer problems. Special experimental test bench measuring heat transfer intensity was developed and built to full fill specific requirements and required accuracy. There were four different types of thermal sensor applied and studied. Those sensors are in usage in Heat Transfer and Fluid Flow laboratory (Heatlab) at various experimental test benches. Each specific sensor was tailored in Heat Transfer and Fluid Flow Laboratory to specific metallurgical application. Fist type of sensor was designed to simulate cooling during continuous casting. Second sensor is used for experiments simulate hot rolling mill cooling, while third sensor is designated for experiments with fast moving hot rolled products. Last sensor is similar to sensor type one, but thermocouple is located parallel to cooled surface. Experimental part of this study covers series of measurements to investigate Heat Transfer Coefficient (HTC) for various types of coolant, cooling mixtures and spray parameters. Results discovered in this study were compared with published scientific articles, and widely extend the knowledge of cooling efficiency for commonly used
Description
Citation
HORÁK, A. Návrh experimentu pro řešení inverzní úlohy vedení tepla [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2011.
Document type
Document version
Date of access to the full text
Language of document
cs
Study field
Inženýrská mechanika
Comittee
prof. RNDr. Jan Kohout, CSc. (předseda) Ing. Martin Pavliska, Ph.D. (člen) prof. Ing. Josef Štětina, Ph.D. (člen) RNDr. Milan Macur, CSc. (člen) doc. Ing. Michal Jaroš, Dr. (člen) prof. Ing. Jaroslav Horský, CSc. (člen)
Date of acceptance
2011-04-14
Defence
Doktorand velmi úspěšně zkombinoval teoretický přístup s výsledky exp. měření.
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení
DOI
Collections
Citace PRO