Studium vlastností hyperpolarizovaného xenonu-129 pro zobrazování magnetickou rezonancí

Loading...
Thumbnail Image
Date
ORCID
Mark
P
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
Abstract
Produkce hyperpolarizovaných plynů, především helia (3He) nebo xenonu (129Xe), nachází stále rostoucí rozsah aplikací v zobrazování magnetickou rezonancí (MRI). Helium ani xenon nejsou obyčejně obsaženy v těle a experimenty tedy nejsou ovlivněny nechtěným signálem z okolních tkání. Ukázalo se, že několika hyperpolarizačními technikami může být magnetická polarizace (magnetizace) jader vzácných plynů zvýšena na hladinu, se kterou jsou praktické aplikace proveditelné. Hyperpolarizované plyny mohou tedy být užitečným nástrojem pro neinvazivní zkoumání lidského dýchání, dovolující statické zobrazování během zadržení dechu nebo zkoumání dynamiky výdechu nebo nádechu, nebo funkčního zobrazování. V neživé přírodě, mohou být hyperpolarizovaný plyny využity jako kontrastní látka při studiu mikroporézních materiálů, jako jsou zeolity, stavební látky a hmoty, atd. V této doktorské práci je popsán vývoj a konstrukce aparatury pro hyperpolarizaci xenonu (izotopu 129Xe). Nákup hyperpolarizovaného xenonu od jiných výzkumných center v zahraničí a jeho dovážení by ovšem nebylo efektivní a to zejména z důvodu náročnosti zajištění potřebných fyzikálních podmínek pro přepravu hyperpolarizovaného plynu. Toto bylo hlavní motivací k vývoji vlastní technologie pro přípravu hyperpolarizovaného xenonu. Se zvládnutou technologií by bylo možné navázat spolupráci s medicínskými zařízeními, nebo s týmy zabývající se živou nebo neživou přírodou (např. při studiu mikroporézních materiálů, gelů, v zemědělských aplikacích nebo při výzkumu využívajících zvířat, atd.). Cílem této práce je studium teorie hyperpolarizovaných vzácných plynů se zaměřením na 129Xe a experimentální ověření a změření relaxačních časů pomocí jaderné magnetické rezonance. Vzhledem k tomu, že je možné hyperpolarizované vzácné plyny skladovat pro pozdější využití, se tato práce také zabývá možnostmi zásobníku hyperpolarizovaného vzácného plynu a jeho teoretickým a experimentálním řešením. V této práci jsou popsány především dva základní typy experimentů přípravy hyperpolarizovaného xenonu. V obou jsou využity zatavené válcové skleněné vzorky naplněné xenonem a doplňujícím plynem – dusíkem, heliem. První z experimentů se zabývá měřením vlastností termálně polarizovaného xenonu a druhý měřením vlastností hyperpolarizovaného xenonu. Pro hyperpolarizaci 129Xe bylo použito výkonového laseru a experimentálně byla zkoumána jednak míra polarizace na základě změny spektrální hustoty čerpacího laserového svazku a dále pak optimální doba optického čerpání 129Xe a relaxační časy xenonu.
The production of hyperpolarized gases (HpG), predominantly helium (3He) or xenon (129Xe), have found a steadily increasing range of applications in magnetic resonance imaging (MRI). Neither helium nor xenon are normally present in the body, thus the magnetic resonance experiments do not suffer from unwanted background signals. It has been demonstrated by several techniques of hyperpolarization that the magnetic polarization (magnetization) of the noble gas nuclei can be increased to levels that make practical application feasible. Hence, hyperpolarized gases may become a useful tool for non-invasive investigation of human lung ventilation, permitting static imaging during breathhold or probing the dynamics of inhalation/exhalation, or functional imaging. In inanimate nature, hyperpolarized gas can be used as a contrast medium for microporous materials, such zeolites, constructive materials in civil engineering, etc. This thesis describes the development and construction of a xenon (129Xe) hyperpolarization (Hp) device. Buying hyperpolarized xenon from other research centres abroad is inefficient mainly because of a need of a fast transport of HpXe under specific conditions. That was the main motivation for developing of our own technology for production of HpXe. Well-handled technology could allow a medical cooperation or cooperation with teams dealing with in/animate nature (microporous material, gels, agriculture, animals, etc.). The aim of this work is to study the hyperpolarized noble gases theory with concern to 129Xe and to experimentally prove and measure xenon relaxation times by the NMR. Since it is possible to store hyperpolarized noble gases for later use, this doctoral thesis also explores the potentials of hyperpolarized noble gas storage system and its theoretical and experimental solution. Mainly two types of experiments are described in the thesis. In both experiments, sealed cylindrical Simax sample filled with xenon and supplement gas – nitrogen, helium were used. The first type of experiment is based on thermally polarized xenon and the second on hyperpolarized xenon. For hyperpolarization of 129Xe a high-power laser was used. In this experiment, the relation between power spectral density of optical pumping beam and efficiency of HpXe production process was investigated. The optimal duration of optical pumping and relaxation times of HpXe were investigated too.
Description
Citation
RYCHNOVSKÝ, J. Studium vlastností hyperpolarizovaného xenonu-129 pro zobrazování magnetickou rezonancí [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2009.
Document type
Document version
Date of access to the full text
Language of document
en
Study field
Mikroelektronika a technologie
Comittee
prof. Ing. Vladislav Musil, CSc. (předseda) prof. Ing. Jiří Kazelle, CSc. (člen) doc. Ing. Marie Sedlaříková, CSc. (člen) doc. Ing. Jan Maschke, CSc. (člen) Ing. Sabina Nováková, Ph.D. - oponentka (člen) Doc. Dr. Mgr. Jaroslav Kohout - oponent (člen) prof. Ing. Karel Bartušek, DrSc. (člen)
Date of acceptance
2009-11-06
Defence
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení
DOI
Collections
Citace PRO