On the Preparation of Advanced Materials via Pulsed Electric Current Sintering Procedures

Loading...
Thumbnail Image
Date
2017-01-01
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Trans Tech Publications
Altmetrics
Abstract
A general overview on the processing of a series of advanced engineering materials, synthesized via pulsed-electric-current-sintering related techniques, and the similarities in between those techniques are introduced in this work. This paper is focused on two major techniques; namely, the Spark Plasma Extrusion (SPE) and Current Assisted Infiltration Sintering (CAIS), which in turn are derived from the Spark Plasma Sintering (SPS) technique, all widely used by this research group. Not only the geometry but also the microstructure of thus prepared specimens might vary depending on the selected technique. The resulting specimens can be under the forms of discs (flat or thick coin-like), rivets (enlarged cylindrical bars)-like and/or disclosing interpenetrated periodic networks with regular or irregular (either coin or rivet/screw)-like specimens, respectively. As for the CAIS technique, either 3D printed ceramic frameworks or naturally synthesized porous substrates (such as bone-like structures), can be infiltrated with virtually any metal or alloy. Among the series of produced materials we can include, for example: biomaterials such as: Ti- and Mg-hydroxyapatite, pure hydroxyapatite HA, composites, e.g., Al5083-CNT´s, just to name a few. The expanding possibilities of SPS, SPE and CAIS techniques are briefly indicated here.
Description
Citation
Solid State Phenomena. 2017, vol. 258, issue 1, p. 436-439.
http://www.scientific.net/SSP.258.436
Document type
Peer-reviewed
Document version
Accepted version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
(C) Trans Tech Publications
Citace PRO