Binary Weighted DAC with 2-ξ Resistor Ratio

Loading...
Thumbnail Image
Date
2018-06
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Společnost pro radioelektronické inženýrství
Altmetrics
Abstract
In this paper we present a new digital analog converter (DAC) design, based on the binary weighted resistor network. The proposed design ensures high conversion accuracy using low precision resistors with ±1% ±2%, ±5%, ±10% and ±20% resistor tolerance. High accuracy is achieved due to better coverage of the analog domain of the transfer characteristic. In binary weighted converters the imprecision of resistors introduces positive and negative differential nonlinearities (DNL). Positive DNL causes gap in the analog domain of the transfer characteristic and negative DNL causes non-monotonicity. In the proposed solution we change the resistor ratio of the two consecutive DAC branches from 2 to 2-ξ, where ξ is small positive number. With this change, we intentionally introduce an additional negative DNL in order to entirely avoid the positive gap. Simulation results confirm that even with resistors tolerance of up to ±10%, we can achieve a converter with maximal gap in the transfer characteristic less than or around one LSB.
Description
Citation
Radioengineering. 2018 vol. 27, č. 2, s. 501-509. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2018/18_02_0501_0509.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Collections
Citace PRO