Fe-MOF Catalytic Nanoarchitectonic toward Electrochemical Ammonia Production

Abstract
Electrochemical reduction of nitrate into ammonia has lately been identified as one among the promising solutions to address the challenges triggered by the growing global energy demand. Exploring newer electrocatalyst materials is vital to make this process effective and feasible. Recently, metal-organic framework (MOF)-based catalysts are being well investigated for electrocatalytic ammonia synthesis, accounting for their enhanced structural and compositional integrity during catalytic reduction reactions. In this study, we investigate the ability of the PCN-250-Fe-3 MOF toward ammonia production in its pristine and activated forms. The activated MOF catalyst delivered a faradaic efficiency of about 90% at -1 V vs RHE and a yield rate of 2.5 x 10(-4) mol cm(-2) h(-1), while the pristine catalyst delivered a 60% faradaic efficiency at the same potential. Theoretical studies further provide insights into the nitrate reduction reaction mechanism catalyzed by the PCN-250-Fe-3 MOF catalyst. In short, simpler and cost-effective strategies such as pretreatment of electrocatalysts have an upper hand in aggravating the intrinsic material properties, for catalytic applications, when compared to conventional material modification approaches.
Description
Citation
ACS applied materials & interfaces. 2023, vol. 15, issue 40, p. 47294-47306.
https://pubs.acs.org/doi/10.1021/acsami.3c12822
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO