In Vivo Organic Bioelectronics for Neuromodulation

dc.contributor.authorBerggren, Magnuscs
dc.contributor.authorGlowacki, Eric Danielcs
dc.contributor.authorSimon, Daniel T.cs
dc.contributor.authorStavrinidiou, Elenics
dc.contributor.authorTybrandt, Klascs
dc.coverage.issue4cs
dc.coverage.volume122cs
dc.date.accessioned2022-08-05T14:54:35Z
dc.date.available2022-08-05T14:54:35Z
dc.date.issued2022-02-23cs
dc.description.abstractThe nervous system poses a grand challenge for integration with modern electronics and the subsequent advances in neurobiology, neuroprosthetics, and therapy which would become possible upon such integration. Due to its extreme complexity, multifaceted signaling pathways, and similar to 1 kHz operating frequency, modern complementary metal oxide semiconductor (CMOS) based electronics appear to be the only technology platform at hand for such integration. However, conventional CMOS-based electronics rely exclusively on electronic signaling and therefore require an additional technology platform to translate electronic signals into the language of neurobiology. Organic electronics are just such a technology platform, capable of converting electronic addressing into a variety of signals matching the endogenous signaling of the nervous system while simultaneously possessing favorable material similarities with nervous tissue. In this review, we introduce a variety of organic material platforms and signaling modalities specifically designed for this role as "translator" , focusing especially on recent implementation in in vivo neuromodulation. We hope that this review serves both as an informational resource and as an encouragement and challenge to the field.en
dc.formattextcs
dc.format.extent4826-4846cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationChemical Reviews. 2022, vol. 122, issue 4, p. 4826-4846.en
dc.identifier.doi10.1021/acs.chemrev.1c00390cs
dc.identifier.issn0009-2665cs
dc.identifier.other176412cs
dc.identifier.urihttp://hdl.handle.net/11012/208225
dc.language.isoencs
dc.publisherAmerican Chemical Societycs
dc.relation.ispartofChemical Reviewscs
dc.relation.urihttps://pubs.acs.org/doi/10.1021/acs.chemrev.1c00390cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0009-2665/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectconductive polymeren
dc.subjectneurite out growthen
dc.subjectelectrical-stimulationen
dc.subjectpolypyrroleen
dc.subjecttissueen
dc.subjectelectrodesen
dc.subjectdeliveryen
dc.subjectreleaseen
dc.subjectreductionen
dc.subjectoxygenen
dc.titleIn Vivo Organic Bioelectronics for Neuromodulationen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-176412en
sync.item.dbtypeVAVen
sync.item.insts2022.08.05 16:54:35en
sync.item.modts2022.08.05 16:14:40en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Bioelektronické materiály a systémycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
acs.chemrev.1c00390.pdf
Size:
14.05 MB
Format:
Adobe Portable Document Format
Description:
acs.chemrev.1c00390.pdf